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ABSTRACT

We present 32 epochs of optical (3300−9700 Å) spectrophotometric observations of the nearby quintessential “normal” type Ia
supernova (SN Ia) SN 2011fe in the galaxy M101, extending from −15 to +97 d with respect to B-band maximum, obtained by the
Nearby Supernova Factory collaboration. SN 2011fe is the closest (µ = 29.04) and brightest (Bmax = 9.94 mag) SN Ia observed since
the advent of modern large scale programs for the intensive periodic followup of supernovae. Both synthetic light curve measurements
and spectral feature analysis attest to the normality of SN 2011fe. There is very little evidence for reddening in its host galaxy. The
homogeneous calibration, intensive time sampling, and high signal-to-noise ratio of the data set make it unique. Thus it is ideal
for studying the physics of SN Ia explosions in detail, and for furthering the use of SNe Ia as standardizable candles for cosmology.
Several such applications are shown, from the creation of a bolometric light curve and measurement of the 56Ni mass, to the simulation
of detection thresholds for unburned carbon, direct comparisons with other SNe Ia, and existing spectral templates.

Key words. supernovae: individual: SN 2011fe

1. Introduction

Having exploded in the Pinwheel galaxy just 6.4 Mpc dis-
tant (z = 0.00080 ± 0.00001; µ = 29.04 ± 0.19, Paturel
et al. 2003; Shappee & Stanek 2011), the Type Ia supernova
SN 2011fe represents a rare opportunity for intensive study.
Its discovery (Nugent et al. 2011a) by the Palomar Transient
Factory (PTF; Law et al. 2009; Rau et al. 2009) less than

⋆ A movie is available in electronic form at
http://www.aanda.org
⋆⋆ All the reduced spectra are available as FITS files in electronic
form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A27

12 h after outburst (Nugent et al. 2011b) precipitated a num-
ber of diverse ground-based and space-based follow-up cam-
paigns. Promptly initiated, high-cadence observations from a
number of these have been published already. Brown et al.
(2012) presented two months of nearly continuous Swift/UVOT
follow-up in ultraviolet uvw2, uvm2, and uvw1 filters. BVRI pho-
tometry obtained over six months appeared in Richmond &
Smith (2012), Vinkó et al. (2012) and Munari et al. (2013).
Tammann & Reindl (2011) used extensive optical photometry
of SN 2011fe obtained by the American Association of Variable
Star Observers (AAVSO) and the tip of the red-giant branch
distance to its host (M101) to measure H0. Covering the near-
infrared, Matheson et al. (2012) presented high-cadence JHK
photometry from the Wisconsin Indiana Yale NOAO (WIYN)
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telescope with WHIRC. The apparent brightness (V ∼ 10 at
peak) of SN 2011fe made multi-epoch spectropolarimetry much
more accessible than usual (Smith et al. 2011). Finally, Parrent
et al. (2012) have published 18 optical spectra from multiple
telescopes, starting 1.2 days after explosion with a 1.8 day aver-
age cadence, along with a spectroscopic analysis including con-
straints on unburned carbon.

These data sets and others can address numerous long-
standing questions about the nature of the Type Ia supernova
(SN Ia) progenitor systems, environs, and explosion mecha-
nisms. It has generally been thought that SNe Ia arise from the
thermonuclear disruption of white dwarf stars accreting material
from a companion donor star (for an overview, see e.g. Branch
et al. 1995). Using images obtained just hours after outburst,
pre-explosion X-ray limits, and the inferred 56Ni yield, Bloom
et al. (2012) constrain the progenitor primary of SN 2011fe to
be a white dwarf or neutron star − the first direct imaging ev-
idence for a compact primary. Pre-explosion multi-wavelength
archival images of the SN 2011fe stellar neighborhood require
the mass-donating secondary to be another white dwarf, sub-
giant, or main-sequence star; red giants and helium stars are ex-
cluded with the companion restricted to M < 3.5 M⊙ (Li et al.
2011). Radio and x-ray observations probing the circumstellar
environment of SN 2011fe imply a progenitor system with a
mass loss rate as low as 6× 10−10 M⊙ yr−1, severely constraining
models where the secondary is not a white dwarf (Chomiuk et al.
2012; Horesh et al. 2012; Margutti et al. 2012). A case study
in attempting to constrain explosion models from spectropho-
tometric observations slightly favors a white dwarf companion
(Röpke et al. 2012) but further detailed modeling is needed to
be more conclusive. The future emergence (or absence) of a sur-
viving non-compact secondary, brightened as a consequence of
its interaction with the SN ejecta, may be decisive in identifying
the progenitor system (Shappee et al. 2013).

Such progress is exciting for several reasons; chief among
these is the potential ability for such results to reduce uncertainty
about the reliability of SNe Ia as tools for observational cosmol-
ogy. The use of SNe Ia as standardizable candles (Phillips 1993)
brought about the discovery of the accelerating expansion of the
Universe just over a decade ago (Riess et al. 1998; Perlmutter
et al. 1999). SNe Ia have since become a key means for con-
straining the unknown physics of cosmic acceleration, called
“Dark Energy” (e.g., Guy et al. 2010; Howell 2011; Suzuki et al.
2012). A fundamental physics result is thus inextricably linked
to the details of binary stellar evolution and stellar death, details
which SN 2011fe may help sort out. It is thus fortuitous that
SN 2011fe is also a normal SN Ia, and is highly representative
of the typical SN Ia sought for placement on a Hubble diagram.

In this article, the Nearby Supernova Factory (SNfactory,
Aldering et al. 2002) presents an atlas of 32 spectrophotometric
observations of SN 2011fe extending from −15 to +97 d with re-
spect to the time of maximum light. Some of these spectra have
appeared in the Röpke et al. (2012) study and a quick-pipeline
reduction of the first spectrum presented here has appeared in
Parrent et al. (2012). This atlas should become a useful resource
in studying SN Ia physics, in exploring systematics in the anal-
ysis of SN Ia spectra and spectral indicators, and in constructing
spectral templates for SN cosmology applications.

The remainder of this article is organized as follows. In
Sect. 2 we describe the observations and data reduction proce-
dure, present the reduced spectrophotometric time series, syn-
thesize photometry from it, and analyze the synthetic light
curves using a standard SN Ia light curve fitter. Analyses of light
curve residuals, possible extinction in the host galaxy, and the

bolometric light curve appear in Sect. 3. This section also cov-
ers spectral feature measurements, sub-classification within ex-
isting schemes, parameterized spectral fitting, and examination
of unburned carbon signatures. In Sect. 4, we place our data and
analysis in context but primarily seek to demonstrate some use-
ful features and applications of the data set. Conclusions appear
in Sect. 5. The spectrophotometry of SN 2011fe is available for
download in electronic form at the SNfactory project website1.

2. Spectrophotometric observations

2.1. Data acquisition

The data were obtained using the SuperNova Integral Field
Spectrograph (SNIFS, Lantz et al. 2004). SNIFS is a fully inte-
grated instrument optimized for automated observation of point
sources on a structured background over the full ground-based
optical window at moderate spectral resolution. It consists of
a high-throughput wide-band pure-lenslet integral field spectro-
graph (IFS, “à la TIGER”; Bacon et al. 1995, 2001), a multi-
filter photometric channel to image the stars in the vicinity of
the IFS field-of-view (FOV) to monitor atmospheric transmis-
sion during spectroscopic exposures, and an acquisition/guiding
channel. The IFS possesses a fully-filled 6.′′4 × 6.′′4 spectro-
scopic field of view subdivided into a grid of 15 × 15 spatial
elements, a dual-channel spectrograph covering 3200−5200 Å
and 5100−10 000 Å simultaneously with FWHM resolutions of
5.65 Å and 7.54 Å respectively, and an internal calibration unit
(continuum and arc lamps). SNIFS is continuously mounted on
the south bent Cassegrain port of the University of Hawaii 2.2 m
telescope (UH 2.2 m) on Mauna Kea. The telescope and instru-
ment, under script control, are supervised remotely.

PTF discovered SN 2011fe (PTF11kly) in images obtained
on 2011 Aug. 24.2 (UTC, used throughout). Nugent et al.
(2011b) derive an explosion date of Aug. 23.7. SNfactory
follow-up observations commenced on Aug. 26.3, an estimated
2.6 days after the explosion, and encompass 32 nights with two
consecutive spectrophotometric exposures on most of the nights.
The observing log is shown in Table 1. Daily observational ca-
dence was maintained until 12.5 days after explosion. Lack of
telescope access then forced a four day gap, but the daily ca-
dence was re-established for days 16.5 to 21.5 after explosion.
The cadence was relaxed to every 2−3 days until SN 2011fe was
no longer observable from Hawaii, 41.5 days after explosion.
Follow-up resumed a month and a half later, when observations
were made over 7 nights spanning 20 days. The last spectra re-
ported here were obtained Dec. 16.6, about 115 days after explo-
sion. The position of SN 2011fe on the sky during the follow-up
campaign forced observations at low altitude. The mean airmass
was 2.1 and most of the early observations were taken during
astronomical twilight.

2.2. Data calibration

All spectra were reduced using SNfactory’s dedicated data re-
duction pipeline, similar to that presented in Sect. 4 of Bacon
et al. (2001). A brief discussion of the software pipeline is pre-
sented in Aldering et al. (2006) and is updated in Sect. 2.1
of Scalzo et al. (2010). SN 2011fe is an unusual target for SNIFS
and its associated data reduction software pipeline. The bright-
ness of the SN itself and the small amount of time that the target
was above the horizon imposed constraints on integration time.

1 http://snfactory.lbl.gov
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Table 1. Observing log for SNIFS spectra of SN 2011fe.

t − texpl
a t − tmax

b UTC date MJDc Photometricityd Exp. time (s) Airmass Seeing (′′)
2.6 −15.2 2011 Aug. 26.3 55 799.3 • (4) 2 × 300 1.87 2.24
3.5 −14.3 2011 Aug. 27.2 55 800.2 • (1) 2 × 300 1.74 1.04
4.5 −13.3 2011 Aug. 28.2 55 801.2 • (3) 2 × 300 1.76 1.29
5.6 −12.2 2011 Aug. 29.3 55 802.3 • (1) 2 × 250 1.87 1.01
6.5 −11.3 2011 Aug. 30.2 55 803.2 • (1) 2 × 250 1.82 0.98
7.5 −10.3 2011 Aug. 31.2 55 804.2 • (3) 2 × 250 1.81 0.94
8.5 −9.3 2011 Sep. 01.2 55 805.2 • (1) 2 × 250 1.88 1.09
9.5 −8.3 2011 Sep. 02.2 55 806.2 • (2) 2 × 250 1.83 1.95

10.6 −7.2 2011 Sep. 03.3 55 807.3 ◦ (1) 2 × 250 2.07 1.88
11.5 −6.3 2011 Sep. 04.2 55 808.2 • (4) 2 × 250 1.87 2.07
12.5 −5.3 2011 Sep. 05.2 55 809.2 • (1) 2 × 250 1.88 1.21
16.5 −1.3 2011 Sep. 09.2 55 813.2 • (3) 2 × 250 2.08 1.53
17.5 −0.3 2011 Sep. 10.2 55 814.2 • (3) 2 × 250 1.94 0.99
18.5 0.7 2011 Sep. 11.2 55 815.2 • (3) 2 × 250 1.95 1.15
19.5 1.7 2011 Sep. 12.2 55 816.2 • (4) 2 × 250 1.99 1.24
20.5 2.7 2011 Sep. 13.2 55 817.2 • (4) 2 × 250 1.98 0.96
21.5 3.7 2011 Sep. 14.2 55 818.2 • (1) 2 × 250 2.17 1.94
24.5 6.7 2011 Sep. 17.2 55 821.2 ◦ (3) 2 × 300 2.18 1.01
26.5 8.7 2011 Sep. 19.2 55 823.2 ◦ (2) 2 × 250 2.18 1.56
29.5 11.7 2011 Sep. 22.2 55 826.2 ◦ (1) 2 × 250 2.20 1.21
31.5 13.7 2011 Sep. 24.2 55 828.2 • (2) 2 × 300 2.34 1.06
34.5 16.7 2011 Sep. 27.2 55 831.2 ◦ (2) 2 × 250 2.36 1.19
36.5 18.7 2011 Sep. 29.2 55 833.2 ◦ (3) 2 × 250 2.60 1.37
39.5 21.7 2011 Oct. 02.2 55 836.2 ◦ (1) 2 × 250 2.75 1.51
41.5 23.7 2011 Oct. 04.2 55 838.2 ◦ (1) 2 × 350 2.79 1.68
91.9 74.1 2011 Nov. 23.6 55 888.6 ◦ (4) 1 × 250 2.25 1.29
94.9 77.1 2011 Nov. 26.6 55 891.6 ◦ (3) 1 × 250 2.04 1.08
96.9 79.1 2011 Nov. 28.6 55 893.6 ◦ (3) 2 × 250 2.05 1.91
99.9 82.1 2011 Dec. 01.6 55 896.6 ◦ (4) 3 × 250 2.10 1.35

104.9 87.1 2011 Dec. 06.6 55 901.6 ◦ (6) 3 × 300 2.16 0.93
106.9 89.1 2011 Dec. 08.6 55 903.6 ◦ (6) 3 × 300 1.91 1.24
114.9 97.1 2011 Dec. 16.6 55 911.6 ◦ (7) 2 × 300 1.71 1.38

Notes. In the case of multiple consecutive observations in a single night, the phases, dates and airmass correspond to the middle of the first
exposure, while the seeing is the average value. (a) Days relative to the date of explosion derived by Nugent et al. (2011b): MJD 55 796.696.
(b) Phase, observer-frame days relative to B-band maximum light: MJD 55814.51. (c) JD – 2 400 000.5 (d) • photometric, ◦ non-photometric,
(#) number of standard stars observed during the night and used for atmospheric extinction and telluric absorption correction.

This affects our ability to use our standard multi-filter photo-
metric channel for flux calibration on non-photometric nights.
Also, some observations were obtained using interrupt time lim-
ited to ∼1 h which did not allow for execution of more than
one standard star observation needed for optimal calibration.
Together, these factors limit the accuracy of our flux calibration
of SN 2011fe, despite the brightness of the target. We will thus
elaborate on the data reduction discussion given in Scalzo et al.
(2010) and on modifications needed in order to flux calibrate the
observations presented here.

Following standard low-level processing, CCD frames from
both SNIFS channels are mapped into (x, y, λ) datacubes.
Spectra are extracted from these using a chromatic spatial point-
spread function (PSF) assuming spatially flat background, thus
removing most of the host galaxy light as part of the sky. Host
galaxy light contamination was evaluated using a background-
subtracted stack of 5 × 60 s CFH12k R-band exposures of
the host galaxy of SN 2011fe (M101), which was photomet-
rically calibrated using SDSS r-band observations of the same
region. Several SNIFS acquisition images were stacked and as-
trometrically aligned to the CFH12k stack in order to determine
the location of SN 2011fe within the CFHT image. The mean
r-band host galaxy surface brightness, inside the SNIFS FOV
centered around the SN, equals 22.15 mag arcsec−2 and is al-
most flat, with structured residuals in the order of r ∼ 23 mag

inside 1′′ diameter apertures. The remaining background struc-
tural effects are thus considered negligible with respect to the
brightness of SN 2011fe, so the detailed host galaxy subtraction
method described by Bongard et al. (2011) was not necessary.

The extracted spectra are next merged and truncated to the
final wavelength range of 3300−9700 Å. Flux calibration is per-
formed using an instrumental flux solution derived from all spec-
trophotometric standard stars observed during the same night,
and a mean atmospheric extinction computed from 6 years of
SNIFS data (Buton et al. 2013). Observations of multiple stan-
dard stars were not always possible, particularly on interrupt
nights. This limits a proper nightly extinction computation, so
for the sake of consistency we use the mean extinction law on
all nights. In this particular framework, the precision of the flux
calibration depends on the number of standard stars observed per
night, but not on their airmass distribution.

During non-photometric nights, any achromatic (grey) dif-
ferential atmospheric attenuation between the observations
of SN 2011fe and the standard stars is accounted for using si-
multaneous observations of field stars, through the SNIFS multi-
filter photometric channel. Because SN 2011fe was very bright,
relatively short exposure times were used to avoid saturation of
the spectrograph, so the number of field stars visible at all epochs
under very different attenuation conditions is small. After detec-
tion of the objects in the multi-filter field, the object catalogs
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were manually inspected to insure proper star selection and
to prevent inaccurate inter-epoch astrometric and photometric
alignments, which are performed using a modified version of
the SuperNova Legacy Survey photometry code (poloka, Astier
et al. 2006). The flux ratio between each exposure and a refer-
ence exposure (with the best seeing) equals the integral of the
convolution kernel needed to degrade the reference image PSF
into the “photometric frame” of the other image. This night-to-
night variation in the brightness of the field stars, normalized
by observations on photometric nights, provides the photomet-
ric scaling between fields and is used as a per-exposure grey
flux correction to the mean atmospheric extinction, thus allow-
ing absolute flux calibration. Seeing and night photometricity
were assessed using quantitative analyses of SNIFS guider video
frames acquired during our exposures, along with deglitched
CFHT Skyprobe data (Cuillandre et al. 2002), attenuation es-
timates from the instrumental flux solution and photometric ra-
tio computations (cf. Sect. 5 of Buton et al. 2013), and infrared
satellite imagery.

The flux-calibrated spectra were corrected for telluric ab-
sorption using a nightly average spectrum determined using
standard star observations. While consistent with the errors,
this correction is nevertheless imperfect, and some (very small)
glitches are visible in the spectra, especially for later phases at
λ > 9000 Å. Milky Way dust extinction along the line of sight
is corrected assuming E(B − V) = 0.0088 mag (Schlegel et al.
1998) and an extinction law with RV = 3.1 (Cardelli et al. 1989;
O’Donnell 1994). No extinction correction for dust in the host
galaxy is applied (see Sect. 3.2). Multiple spectra obtained the
same night were merged using a variance-weighted mean.

2.3. Spectral time series and synthesized photometry

The final spectrophotometric time series of SN 2011fe is de-
picted in Fig. 1. The time series possesses a number of out-
standing qualities, beyond the extremely high signal-to-noise
ratio (S/N), despite the calibration challenges. Each spec-
trum spans the entire ground-based optical wavelength win-
dow. Excluding an inconvenient four day gap, daily sampling
is achieved on the rising side of the light curve. Even though
SN 2011fe observations were performed on non-standard con-
ditions when compared to the typical SNIFS target, our observ-
ing strategy and calibration procedure do an excellent job of re-
moving atmospheric artifacts. These features, combined with the
cosmological utility of SN 2011fe as a “normal” SN Ia, should
make these data a highly useful resource.

Synthetic light curves were generated by integrating the
product of each spectrum with a set of non-overlapping top-hat
filters with perfect photon transmission in the following wave-
length ranges: 3300−4102 Å, 4102−5100 Å, 5200−6289 Å,
6289−7607 Å, and 7607−9200 Å, respectively UBVRISNf . This
filter set avoids the split between both SNIFS spectrograph chan-
nels but is contiguous otherwise. For convenience these mea-
surements are given in the Vega magnitude system by applying
zero-points computed from the latest Hubble Space Telescope
(HST) spectral observation of Vega (Bohlin 2007), available
from the CALSPEC database2. The synthesized photometry is
listed in Table 2, along with the integrated flux over the whole
SNIFS optical window. For ease of comparison with other SNe,
we also present synthetic light curves created using the latest

2 ftp://ftp.stsci.edu/cdbs/current_calspec/alpha_lyr_

stis_005.fits

photonic responses and zero-points given by Bessell & Murphy
(2012, BM12), which are denoted as BVRIBM12 in Table 2. After
interpolation of those filter responses into 10 Å steps using cu-
bic splines, our integrator agrees at the 0.001 mag level with the
colors measured by Bessell & Murphy (2012) using the afore-
mentioned Vega spectrum and the zero-points derived by these
authors.

The achromatic absolute flux calibration accuracy for each
night as estimated by the calibration pipeline is shown in
the σ column of Table 2. This value takes into account the er-
rors of the spectral extraction using the chromatic spatial PSF,
estimated from the mean scatter of flux calibrated standard star
observations during all the photometric nights of the SNfactory
data set, as well as the errors of the instrumental flux solution,
the mean atmospheric extinction and the photometric ratio com-
putations. The main contributions are the achromatic extraction
uncertainty of 0.03 mag and 0.02 mag empirically found for
bright and faint standard stars (Buton 2009), and a 0.03 mag
additional uncertainty on non-photometric nights due to the pho-
tometric ratios usage (Pereira 2008). The chromatic spatial PSF
flux extraction efficiency was evaluated on residual spectra, ex-
tracted from the PSF-subtracted datacubes by performing aper-
ture photometry centered at the position of the SN and within
a radius of 3σ seeing. The median missing flux for all expo-
sures, on the 5 broad-band filters of the SNfactory filter set, was
found to be below the half-percent level for all bands except
for USNf , where it is ∼0.7%. A <∼1% residual color effect is also
discernible, when comparing BSNf with the other bands at high
airmasses (>2.7), and is due to the fact that at such atypically
large airmass, the atmospheric differential refraction (ADR) is
so large that too much light is projected out of the SNIFS FOV.
The contribution to the total error from both residual chro-
matic effects is much smaller than that from the absolute flux
calibration.

2.4. SALT2 fit

The UBVRSNf light curves were simultaneously fitted using
SALT2.2 (Guy et al. 2010, SALT2 henceforth), for estimation
of the date of maximum light and assigning phases to the ob-
servations (relative to maximum light). The publicly available
SALT2 spectral model3 seems to attain the (synthesized) B peak
slightly before phase 0, which is a nuisance when we use it for a
precise determination of the date of maximum light of our light
curve. The shift needed to be applied to the fitted date of maxi-
mum, in order for it to match with phase 0 in B, was determined
empirically to be ∆DayMaxB ≈ −0.7 d. The SALT2 code used
here was modified to take this shift into account.

For a coherent treatment of the SNfactory filter set by
SALT2, which uses a BD+17 4708 based magnitude system,
the following zero-points are added to the BD17-snls3.dat
magnitude system configuration file: 9.787, 9.791, 9.353, 9.011,
and 8.768; which represent BD+17 4708’s synthetic magnitudes
with relation to the Vega spectrum, in UBVRISNf respectively.
Equivalently, if we intend to use SALT2 to fit light curves syn-
thesized using the UBVRIBM12 photonic responses, the zero-
points to be added to the configuration file are 9.709, 9.902,
9.469, 9.163, and 8.843. It should be stressed that every SALT2
fit result presented here is in the “standard” SALT2 UBVRI mag-
nitude system, allowing direct comparison with the literature.

3 http://supernovae.in2p3.fr/~guy/salt/download_

templates.html
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Fig. 1. SNIFS spectrophotometric time series of SN 2011fe from −15 to 100 days relative to B-band maximum light. Breaks in the axis on the right
indicate gaps and changes to the observing cadence. The first break corresponds to a four-day gap in daily cadence before maximum. The second
marks the change from daily to alternating two/three day cadence. The final break is a 50 day hiatus imposed by lack of accessibility to the target
from Mauna Kea.
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Fig. 2. SN 2011fe synthesized light curves using the UBVRISNf filter set. Filled and open symbols stand for photometric and non-photometric
nights respectively. The results of a SALT2 simultaneous fit of UBVRSNf in the phase range −16 < t < +25 d are shown as solid lines, along with
the corresponding residuals (SALT2 – SNIFS) on the lower panel. The shaded areas represent the SALT2 model error. The residuals for the first
points of USNf and BSNf fall outside the panel, and the rms on the residuals for each band ignores the first 2 points. The break in the time axis
corresponds to the ∼50 day gap in follow-up during which SN 2011fe was not visible during the night from Hawaii. Note the change of scale of
the extended time axis covering the late observations.

This magnitude system is based on the Bessell (1990) filter
transmissions, shifted to match Landolt (1992) observations.
If we use instead the magnitude system based on the BM12
transmissions, the effect on the fitted parameters is very small,
and completely within the quoted uncertainties.

The fit was performed using all available observations within
four weeks of maximum light, including the very first one, which
falls just outside the default SALT2 phase range of −15 < t <
+45 d. Early observations are deweighted by the SALT2 error
model. Simply omitting the first four observations (phases <
−12 d) results in a shift in the date of maximum of −0.018 d,
well inside the quoted error.

The light curves, fits and corresponding residuals can be
seen in Fig. 2 (for a comparison with light curve results already
published on the literature see Sect. 3.1). The fitted B maxi-
mum of 9.94 ± 0.01 mag was reached on 2011 September 10.5.
The best-fit SALT2 parameters are x1 = −0.206 ± 0.071, c =
−0.066 ± 0.021 (see Table 3 for a full summary of extracted
photometric and spectroscopic parameters). Excluding USNf-
band data from the fit, we obtain a negligible shift for the

date and magnitude at maximum, and x1 = −0.149 ± 0.096,
c = −0.061 ± 0.027. The light curve shape parameters are typ-
ical of a “normal” (if slightly blue) SN Ia: the median values
for the x1 and c distributions of the nearby (z ≤ 0.1) SNe Ia
used by Conley et al. (2011) are respectively −0.249 and −0.026
(J. Guy, priv. comm.). The V-band absolute magnitude (assum-
ing µ = 29.04 ± 0.19, Shappee & Stanek 2011) at B peak,
MmaxB V = −19.05 ± 0.19 mag matches perfectly the average
found by Riess et al. (2009, −19.06 ± 0.05 mag).

The rms of the residuals of the four fitted filters, ignoring
the first two exposures due to the large discrepancies with the
SALT2 model (cf. Sect. 4.2), are respectively 0.06, 0.03, 0.04
and 0.04 mag. The points that deviate the most from the fit are
those for phases t < −10 d, showing the inadequacy of the
SALT2 model for such early phases. Nevertheless, the exposure
of night MJD 55 805 (t ∼ −9 d, cf. Fig. 2) seems to present a
systematic error in its flux calibration of ∼0.1 mag, since it is
brighter than we would expect based on observations on neigh-
boring nights.
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3. Analysis

3.1. Light curve comparison

The optical light curves of SN 2011fe published by different au-
thors allow us to assess the reciprocal precision of multiple in-
dependent observations of this SN, and ultimately the benefits
of using SNe Ia spectrophotometry for synthetic light curve cre-
ation. We use for these comparisons the first set of SNfactory
observations, up to MJD 55 840. For every comparison light
curve provided by other followup campaigns, the approach used
to compute the residuals with respect to the reference SNIFS is
the same: a light curve is synthesized from our spectrophoto-
metric time series in the same passband as the comparison light
curve, and then fit using Gaussian processes (as implemented
by scikit-learn; Pedregosa et al. 2011) employing a squared
euclidean correlation model weighted by measurement errors.
The fitted model is then used to evaluate the synthesized SNIFS
light curve at the same observation dates of the comparison light
curves. The magnitude residuals are always reference (SNIFS)
minus comparison. Positive or negative residuals thus mean that
the comparison observation is respectively brighter or fainter
than the reference.

We start with a brief comparison with the space-based
Swift/UVOT observations by Brown et al. (2012, B12), be-
fore performing an extensive comparison with the three ground-
based photometric followup compaigns who published observa-
tions of SN 2011fe: Richmond & Smith (2012, RS12), Vinkó
et al. (2012, V12) and Munari et al. (2013, M13). This trio of
light curves and residuals with relation to synthesized SNIFS
photometry using BM12 passbands and zero points, are shown
in the two upper panels of Fig. 3. While a quick look at the super-
posed light curves may give the impression of a good agreement
between all experiments, a careful study of the residuals shows
that this is not always the case. The median and normalized me-
dian absolute deviation (nMAD) of the residuals between all the
experiments are summarized in the matrices shown in the lower
two panels of Fig. 3. These matrices relate the statistics of the
residuals (observational bias and scatter) between a specific data
set and all the other ones, where each row uses a common refer-
ence and each column represents a different comparison data set.
The bias and scatter matrices are not perfectly (anti-)symmetric
since that the interpolation of the light curve depends on the time
sampling and measurement errors of the reference data set, al-
lied to the fact that the nMAD is less dependent on outliers. The
statistics of the residuals with relation to SNIFS, plotted on the
second panel of Fig. 3, can be read from the topmost row of each
matrix.

3.1.1. Brown et al. (2012)

B12 present measurements in several UVOT filters, of which
only b and v (Poole et al. 2008) fully overlap with the SNIFS
wavelength range. Unfortunately both filters saturated before
maximum light, and as such our comparison is limited to phases
t < −8 d and +18 < t < +25 d. We use the most recent UVOT
effective area curves and zero points (Breeveld et al. 2011) and
integrate our spectra in Fν. This approach was validated us-
ing a Vega spectrum, from which we found exactly the same
zero points as reported by Breeveld et al. (2011). We found a
clear bias on the residuals, whose median values are −0.14 and
−0.20 mag respectively for b (with comparison dates only at
t < −8 d) and v, with no evident correlation with magnitude. This
bias also seems to be present for the bluer filters (cf. Sect. 3.3).

The cause for this effect is not clear. The photometric calibra-
tion of UVOT is a notoriously difficult endeavor (Poole et al.
2008), and the fact that the instrument nears the saturation limit
for SN 2011fe could point to problems in the coincidence loss
or aperture corrections. S -corrections (Suntzeff 2000) may also
play a role, since Brown et al. (2012) use the Hsiao et al. (2007)
template to convert the observed count rates into flux, while
these template spectra do not exactly match the observed ones
at early phases (cf. Sect. 4.2).

3.1.2. Richmond & Smith (2012)

RS12 present BVRI observations coming primarily from the
Rochester Institute of Technology (RIT) observatory. These ob-
servations are the most extensive and consistently calibrated
from the full AAVSO followup sample used by Tammann &
Reindl (2011). The biases for VRI are small and within the
quoted errors of the synthetic photometry presented in this work,
while the scatters are smaller or similar to the ones found for the
SALT2 fit. The B-band however shows a large bias with rela-
tion to SNIFS observations (∼0.1 mag), due to an S -correction
problem with the calibration of RS12. That is evidenced by the
unusually large color coefficient derived by the authors for this
filter (0.24 ± 0.04), and by the fact that when using the RS12
B-band light curve as reference (second row of the first matrix),
we find large biases with relation to every other data set. The
CCD used in the RIT observatory has a very pronounced quan-
tum efficiency (QE) drop in the B-band wavelength range, which
explains this effect. Using CALSPEC spectra for stars with sim-
ilar colors to the ones from the PG1633+099 standard field used
by RS12 for their calibration, the BM12 passbands convolved
by the KAF−1600 CCD QE curve, and an atmospheric extinc-
tion model (pyExtinction; Buton et al. 2013) based on typical
atmospheric values for the RIT site, we obtain a b − v color co-
efficient of 0.31 ± 0.10, while that ignoring the QE effect gives
−0.07 ± 0.08. The QE convolved passbands also improve the
correlation of the B-band synthetic photometry with the instru-
mental bSN − bVega, after inversion of the color correction per-
formed by RS12. Differential ADR between a blue SN Ia and red
reference stars will also affect filter photometry at some level,
especially at the high airmasses of SN 2011fe observations. The
authors’ derived values for the B-band date of maximum, peak
magnitude and decline rate are then naturally different from ours,
being greater by approximately 1 day, 0.05 mag and 0.14 respec-
tively. We point out that the same values derived by Tammann &
Reindl (2011) using the full AAVSO sample are perfecly com-
patible with those found in the present work.

3.1.3. Vinkó et al. (2012)

V12 published BVRI photometry obtained at the Konkoly
Observatory. The BI bands are more compatible with SNIFS ob-
servations than their RS12 counterparts, but this is not the case
for VR. The CCD that was used has a less steep QE curve in the
bluer wavelengths, and is thus less prone to S -correction prob-
lems as shown by the smaller bias for the B-band, still ∼0.04 mag
fainter than the SNIFS photometry. This bias does not seem to be
present if we use M13 (cf. 3.1.4) instead as the reference light
curve, which leads us to think that the bias is affected by the
quality of the interpolated light curve, and its dependence on

4 Vinkó et al. (2012) attribute this difference to a probable misprint,
and find ∆m15(B) = 1.12 ± 0.05 using RS12 data. Fitting the same data
with SALT2 we find 1.17 ± 0.04.
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Fig. 3. First panel: comparison of synthesized BVRI SNIFS light curves of SN 2011fe, using BM12 passbands and zero points, with published
photometry from Richmond & Smith (2012, RS12), Vinkó et al. (2012, V12) and Munari et al. (2013, M13). Second panel: residuals between
all light curves and the SNIFS interpolated light curve, whose uncertainty is represented as the gray shaded region. Third & forth panel: median
and normalized median absolute deviation of the residuals for each combination of reference (row) and comparison (column) light curves. The
statistics of the residuals shown in the second panel, with SNIFS as reference, are on the topmost row of each matrix. The RCIC filters used by
M13 are not directly comparable to RI from RS12 and V12.

individual point measurement errors. Globally, V12 data shows
some tension when used as reference, especially with SNIFS for
BVR. The scatter of the residuals with relation to SNIFS is of
the order of 0.05 mag for all bands, which is higher than RS12,
especially for the redder filters. The B-band date of maximum
and decline rate obtained by V12 using MLCS2K2 are in accord
with our own.

3.1.4. Munari et al. (2013)

Finally, M13 published BVRCIC photometry obtained using sev-
eral telescopes of the Asiago Novae and Symbiotic stars col-
laboration (ANS; Munari et al. 2012). They acknowledge the

importance of S -corrections when doing SNe Ia photometry
with multiple instrumental setups: in addition to accurate photo-
metric calibration sequences (Henden et al. 2012), M13 imple-
ment a light curve merging method that uses phase-dependent
zero points for each telescope, found via a global χ2 minimiza-
tion per band. For the comparisons with the RCIC photometry,
which is different from that synthesized using BM12’s RI, we
used the Landolt (1992) passbands adjusted to photon count
transmission, in accord with the standard star catalogs used for
calibration by Henden et al. (2012). M13 do not publish indi-
vidual measurement errors, but present instead the calibration
error for each band. This error is smaller than the merged light
curve individual night scatter, when multiple observations are
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available. We thus average all same night observations, and use
as a conservative error the error on the mean of those same ob-
servations added quadratically to the corresponding band cali-
bration error. The error for single observation nights is set to
the average of the errors of all multiple observation nights. The
B-band bias and scatter with relation to SNIFS are the lowest of
the three photometric data sets considered, attesting to the qual-
ity of their calibration procedure: M13 is a very good reference
for all the B data sets not affected by S -correction problems.
The biases in the other bands are comparable and do not exceed
∼0.02 mag. The observational scatters are slightly larger for VI
probably due to outliers in one of the 3 merged telescope data
sets. The B-band date of maximum and peak magnitude found
by M13, for which they do not quote any error estimate, are very
close to our own (within 0.2 d and 0.02 mag), while the decline
rate is perfectly compatible within our estimated error.

The synthetic light curves derived from the spectrophotomet-
ric time series presented in this paper were compared with those
in the literature. Most of the data sets have the smallest residual
biases in V , and show an intrinsic scatter of 0.02−0.03 mag for
all bands. The typical scatter between data sets comes mostly
from calibration issues, and is of the order of 0.03−0.06 mag,
similar to the SALT2 fit residuals and with no difference when
the comparison is made between purely photometric data sets
or with SNIFS. This highlights a major benefit of the SNfactory
data, which is at the same time impervious to S -correction prob-
lems due to its spectophotometric nature, and of photometric
quality comparable to traditional photometric followup data sets,
even under the extreme observational conditions pertaining to
SN 2011fe.

3.2. Interstellar absorption in M101

Estimates of reddening by the host galaxy may be obtained from
either photometric or spectral data. We consider our photomet-
ric data first. Folatelli et al. (2010) reapplied the procedure used
by Lira (1996) and Phillips et al. (1999) and derived an intrin-
sic color law for the “tail” of SN Ia light curves, and for maxi-
mum light using pseudocolors (the difference between the mag-
nitudes of two bands at each band’s date of maximum). Their
color law uses measurements on the CSP photometric system,
which we synthesize from our spectra using the filters and zero-
points given by Stritzinger et al. (2011). The light curves ob-
tained are interpolated using SALT2 and two independent fits
on BVCSP. We measure ∆m15(BCSP) = 1.056 ± 0.035 and obtain
E(B−V)max = 0.002±0.062 mag, by applying Eq. (3) of Folatelli
et al. (2010). We added 0.060 mag in quadrature to the error, to
account for the dispersion of the fit by Folatelli et al. (2010).
Applying their Eq. (2) to the three spectra whose phase is +30 <
t < +80 d with respect to VCSP maximum, we find a weighted
mean and standard deviation of E(B−V)tail = 0.038±0.045 mag.
Each individual measurement error was increased in quadrature
by the dispersion of the corresponding fit, 0.077 mag. Both val-
ues are compatible and agree with the trend found by Folatelli
et al. (2010) between the difference of both measurements and
E(B−V)max (upper-left panel of their Fig. 12). Using a weighted
mean of these estimates, and assuming they are independent, we
find 〈E(B − V)host〉 = 0.026 ± 0.036 mag for the reddening due
to dust on the line of sight to SN 2011fe in M101. This is com-
patible with the value (0.03 ± 0.06 mag) found by Tammann &
Reindl (2011) using SN Ia intrinsic colors derived empirically
by Reindl et al. (2005).

Spectroscopically, we measured simultaneously the equiva-
lent width of Na  D for the Milky Way (MW) and M101 using

fixed Gaussian profiles with a doublet ratio of 2 :1. We obtain
respectively EW(Na  D)MW = 10+22

−46 mÅ and EW(Na  D)host =

−8+18
−56 mÅ, with a 95% confidence limit at 162 mÅ. The lat-

ter is consistent with the value found by Nugent et al. (2011b)
using HiRES (45 ± 9 mÅ) and both results are also compati-
ble with high resolution measurements by Patat et al. (2013),
who find 38 ± 5 mÅ and 47 ± 2 mÅ respectively. Using the em-
pirical relation proposed by Poznanski et al. (2012) to derive
the dust extinction from the D1 + D2 Na  D lines, we obtain
E(B−V)host = 0.014± 0.003 mag, in accord with our photomet-
rically derived value. Here we find only a statistical uncertainty,
as the systematic errors are difficult to quantify.

In conclusion, we confirm there is little evidence for sig-
nificant extinction of SN 2011fe by dust in its host galaxy.
Therefore, no reddening corrections are performed on the SNIFS
spectra, other than for MW extinction.

3.3. Bolometric light curve and 56Ni mass

To construct a bolometric light curve of SN 2011fe, we com-
bine SNIFS optical spectrophotometry with ultraviolet (UV) and
near-infrared (NIR) SN Ia spectral templates.

The UV template (1600−3400 Å) was constructed from
25 HST STIS spectroscopic observations of SN 2011fe, encom-
passing phases −15 ≤ t < +24 d. All observations are part of
the proposal GO-12298 (Ellis 2009) and are publicly available
from the HST archive. All spectra were taken using the 52×0.2′′

long-slit aperture and one of the UV (G230L or G230LB) or the
G430L gratings, together covering ∼1600−5700 Å. Same-night
observations were averaged, and spectra from different gratings
merged together by averaging over their common wavelength
range. The ensemble was cut between 1700−3400 Å and set to
decrease linearly to zero flux at 1600 Å. Reduction artifacts iden-
tified as big isolated “spikes” in the spectra were removed. A
multi-phase SN 2011fe UV template was then created, by linear
extrapolation of the time evolution of the flux per wavelength
bin, for the original 25 phases plus a null spectrum at −20 d, to
represent the pre-explosion phase. For each phase of SN 2011fe
we intend to reproduce, the template is (achromatically) flux
normalized with respect to the SNIFS spectrum at their com-
mon wavelength range (3300−3400 Å), in order to account for
miscalibrations of the HST data. The median of the residuals
of synthetic photometry performed on the final template, with
respect to the measurements reported by Brown et al. (2012)
for Swift/UVOT uvw2, uvm2 and uvw1, are respectively: −0.22,
−0.21 and −0.20 mag. These values are similar to what was
found in 3.1.1, once again implying that the UVOT SN 2011fe
measurements suffer from large biases. These residuals should
be taken with caution however, since they are very dependent
on the blueward flux distribution of the HST spectra, where
the noise is high and our template is therefore less accurate.
Nevertheless, since the UV flux of a normal SNe Ia represents
only a small fraction of the total flux (cf. Fig. 4), the impact of
using a crude UV template for the bolometric flux will be mod-
est. The variance of the template is constructed so that we have
a 0.03 mag error on the full integrated UV flux.

For the NIR (9700−24 000 Å), the Hsiao et al. (2007) SN Ia
spectral template was used as a starting point. After extrapola-
tion to each phase, the template is chromatically warped in order
to match the SN 2011fe JHK observations of Matheson et al.
(2012) from WIYN/WHIRC. A quadratic spline, constructed
from the ratio of observed over synthetic photometry for each
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Fig. 4. Phase evolution of the ratio of flux in the ultraviolet
(1600−3400 Å) and near-infrared (9700−24 000 Å) to total bolometric
flux for SN 2011fe. The dashed lines represent cubic spline fits.

of the effective wavelengths of the three WHIRC filters, is used.
The variance is constructed from a flat error estimation and
warped chromatically in a similar way, in order to match the
Matheson et al. (2012) measurement errors. The median residu-
als and scatter of the final NIR template with relation to obser-
vations are at or below the half percent level.

The bolometric flux is obtained by integrating the full wave-
length range 1600−24 000 Å of the UV + SNIFS + NIR spec-
tra. The evolution of the ratio of UV and NIR flux to total flux
is shown in Fig. 4. The UV flux accounts for a few percent
of the total flux with a maximum contribution of about 13%
attained five days before B-band maximum. It then decreases
steadily to reach about 2% at t > +20 d. The NIR contribu-
tion starts at about 15% at very early phases and declines to 5%
around 10 days after B maximum, increasing once again to reach
15−20% at the time of the secondary maximum in the NIR
(t ∼ 30 d), that our data did not sample.

In order to study the time evolution of integrated filter pho-
tometry relative to the bolometric flux, we simulated the ratio
to total flux of individual or combined optical passbands, us-
ing the BM12 throughputs. For the full phase range considered
here, the individual band with the least scatter on the ratio of
bolometric flux is I, even if the mean ratio to total flux is small
(7.3%±2%). The mean flux ratio on V is higher while keeping a
relatively small scatter (15.7%±3.1%), similar to what was seen
by Wang et al. (2009) for SN 2005cf. If we sum fluxes of multi-
ple bands, the most promising combinations are those including
bands from both extremes of the optical window, namely UVI
(36.7% ± 1.3%) and URI (38.0% ± 1.5%). The scatter of the
URI combination decreases below the percent level if one lim-
its phases to t < 15 d. The best non-U combination is BI, with
mean ratio and scatter of 32.1% ± 1.9%. Assuming the relative
normality of SN 2011fe, these ratios can thus be used to compute
estimates of total bolometric flux from near maximum optical
measurements of a typical SN Ia.

The distance-corrected (Shappee & Stanek 2011) bolomet-
ric luminosity is presented in the last column of Table 2, and
the bolometric flux is plotted in Fig. 5, along with the inte-
grated flux over the full SNIFS optical window. A t2 power law
was fitted to our first three observations (inset of Fig. 5), un-
der the assumption that the luminosity dependence is dominated
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Fig. 5. Bolometric light curve for SN 2011fe (filled red circles). The
open circles represent the integrated flux over the full SNIFS wave-
length range and the dashed line is a cubic spline fit for determination
of the date of maximum. The inset is a zoom of the area marked by a
dashed box, where a quadratic rise is fit to the first 3 nights of SNIFS
observations. The vertical dotted lines mark the time of observations
presented by Nugent et al. (2011b).

by the evolution of the photosphere surface area (Riess et al.
1999; Goldhaber et al. 2001; González-Gaitán et al. 2012; Piro
2012) until about five days after the explosion. We find an ex-
plosion date (MJD) t0 = 55 796.81 ± 0.13, where the ∼3 h pre-
cision is due to the lack of earlier SNIFS observations. The
value is compatible with the one found by Nugent et al. (2011b)
(55 796.696 ± 0.003) using g-band observations which start two
days before the SNfactory ones. The goodness of the fit de-
creases if we include the fourth night of SNIFS observations,
supporting the hypothesis that the t2 model is only valid until
∼5 d after the explosion. By letting the exponent of the power
law float we find a best-fit exponent of 2.21 ± 0.51 and t0 =
55 796.47 ± 0.83. This is a fully constrained fit with 3 param-
eters on 3 points, and earlier observations would be needed for
better precision. The former (t2) analysis made using the VBM12
band yields t0 = 55 796.68 ± 0.12, in closer accordance with the
PTF value, the one found by Brown et al. (2012) when using the
v band of UVOT (55 796.62 ± 0.03), and by Vinkó et al. (2012)
(55 796.70 ± 0.16) using R-band observations. The derived data
of explosion thus seems to be dependent on the wavelengths that
are included in the bolometric flux.

By fitting a cubic spline to the bolometric light curve in
the phase range −9 < t < +15 d, we find the date of maxi-
mum bolometric luminosity and derive a bolometric rise time
τr, bol = tmax, bol− t0 = 16.58±0.14 d, where we use the explosion
date found with the bolometric flux and the t2 power law, and
assume an error on the determination of the date of maximum of
0.06 d, as with the SALT2 fits. Using the date of B-band maxi-
mum from Sect. 2.4, we obtain τr, B = 17.70±0.14 d, 1.1 d more
than the bolometric rise time and compatible with the SN Ia sam-
ple of Contardo et al. (2000), who found both rise-times to be
within 2 days. One should notice that those authors used pseudo-
bolometric light curves from integrated UBVRI, most closely
matched by our SNIFS integrated flux, from which we find a
date of maximum 0.5 d later than τr, bol and hence closer to τr, B.
Employing similarly integrated SNIFS data, Scalzo et al. (2012)
found a difference of ∼1 d for a sample of overluminous SNe Ia.
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Our stretch-corrected τ′
r,B
= 18.27 ± 0.14 d is in agreement with

the median value found by González-Gaitán et al. (2012) for the
SNLS sample when using SALT2 (18.16 ± 0.44 d).

The maximum bolometric luminosity of SN 2011fe obtained
from the spline fit is Lmax,bol = (1.17 ± 0.04) × 1043 erg s−1.
This can be used along with the light curve rise-time to com-
pute the 56Ni mass synthesized in the explosion. Different au-
thors used different rise-time estimates, either from (pseudo)
bolometric or integrated band light curves. As already shown,
these estimates will differ slightly, thus impacting the computed
56Ni mass. We chose to use our bolometric rise time τr, bol. Using
Eqs. (3) and (4) of González-Gaitán et al. (2012), which re-
produce Howell et al. (2009) and use γ ≡ α = 1.2 ± 0.2, we
find M56Ni = (0.44 ± 0.08) × (1.2/α) M⊙. The α dependency is
stated explicitly due to its large influence on the final 56Ni mass
(Scalzo et al. 2010), and its uncertainty was propagated in the
calculations. If one assumes α = 1.0 ± 0.2 (Arnett’s rule) as in
Stritzinger et al. (2006), Wang et al. (2009) and Hayden et al.
(2010), we obtain M56Ni = 0.53 ± 0.11 M⊙. This value is com-
patible with the amount of 56Ni mass that the explosion models
used by Röpke et al. (2012) were set up to produce (∼0.6 M⊙).

3.4. Spectral indicators

Several spectral indicators defined using maximum light spec-
tral features were measured for the SN 2011fe spectrum closest
to B maximum light: theRSi depth ratio and theRCa andRSiS flux
ratios (Nugent et al. 1995; Bongard et al. 2006); the R642/443 flux
ratio (Bailey et al. 2009); the Ca  H&K (Walker et al. 2010),
Si  λ4131 (Bronder et al. 2008; Arsenijevic et al. 2008; Chotard
et al. 2011), Si  λ5972 & λ6355 (Hachinger et al. 2006; Branch
et al. 2006, 2009) and C  λ6580 (cf. Sect. 3.6) equivalent
widths. The S  λ5640, Si  λ6355 (Benetti et al. 2004, 2005;
Hachinger et al. 2006) and C  λ6580 feature velocities were
also measured for all of the spectra for which the features were
detectable. For most of these spectral indicators (all except RSiS
and R642/443), a precise estimate of the extrema wavelength and
flux positions enclosing the feature or defining the velocity is
needed in order to make a proper measurement. This was done
by automatically measuring the maximum/minimum flux of the
smoothed spectra in a given wavelength range, and confirming
each measurement visually. The uncertainties on each of these
values were derived using a Monte Carlo procedure that takes
into account the impact of the method used to select the feature
boundaries, the extrema wavelength and flux positions, as well
as the small contribution of the photon noise. A detailed descrip-
tion of the measurement method with the corresponding results
on a large part of the SNfactory data set will be presented by
Chotard et al. (in prep.).

The values of these measurements made on the spectrum
closest to maximum light appear in Table 3, while the phase
evolution of the expansion velocity of S , Si , C  and the
pseudo-equivalent width of C  λ6580 are plotted in Fig. 6.
The velocity gradient of Si  λ6355, as defined by Benetti
et al. (2005), was computed using a linear least squares fit for
−2 < t < +25 d overplotted on Fig. 6, and we find v̇ =
59.6±3.2 km s−1 d−1. The velocity evolution of S  λ5640, which
Benetti et al. (2004) suggests is an effective probe of the true
photospheric velocity, is similar to that observed by those au-
thors for SNe 1998bu, 1994D and 1990N. It decreases from
∼12 000 km s−1 at −15 d to approximately 8000 km s−1 at +10 d,
passing through ∼9500 km s−1 at maximum.

Using these spectral indicators and the light curve de-
cline rate (cf. Table 3) we place SN 2011fe within the SN Ia
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Fig. 6. Phase evolution of the expansion velocities of S  λ5640,
Si  λ6355, C  λ6580 (top) and the pseudo-equivalent width of
C  λ6580 (bottom). A linear fit for the post-maximum velocity gradient
of Si  λ6355 is overplotted as a red line.

classification schemes proposed by Benetti et al. (2005) and
Branch et al. (2006), as seen in Fig. 7. From this comparison,
SN 2011fe seems to be a spectroscopically “core normal” SN Ia
whose expansion velocity rate of change lies close to the sepa-
ration between the “low” and “high” velocity gradient groups as
defined by Benetti et al. (2005, v̇ = 70 km s−1 d−1). It is also a
“normal” SN Ia according to the Wang et al. (2009) definition,
based on the Si  λ6533 expansion velocity at maximum (cf. top
panel of Fig. 6).

3.5. SYNAPPS fitting

We analyze the spectral time series of SN 2011fe with the help
of the highly parameterized SYNAPPS fitting code (Thomas et al.
2011b). The objective is to identify ions by their spectroscopic
signatures taking line-blending into account. The main radiative
transfer assumptions underlying SYNAPPS are: spherical symme-
try, a sharply-defined blackbody-emitting pseudo-photosphere,
pure-resonance line transfer under the Sobolev approximation,
with line opacity parameterized radially according an exponen-
tial functional form and per line assuming Boltzmann excitation.
SYNAPPS combines this parameterized spectrum synthesis cal-
culation with a parallel non-linear optimization framework to
reduce the need for tedious interactive adjustment of fit param-
eters and to assure more systematic sampling of the parameter
space. The assumptions are simple but sufficient for our imme-
diate purpose; a detailed abundance tomography analysis with
more sophisticated tools will be the subject of future work.
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Early, at-peak, and two weeks post-peak fits to SNIFS data
appear in Fig. 8. Extreme late-time data (after +70 d) are ar-
guably more difficult to analyze with SYNAPPS as its physi-
cal assumptions are less applicable then. The evolution of the
spectral features follows the usual pattern of normal SNe Ia.
Early on, strong contributions from O , Mg , Si , S , and Ca 
are detected. C  λ6580 and C  λ7234 are detected with high
confidence. High velocity components for Si  and Ca  fea-
tures are needed to achieve a good fit in the first spectrum. By
maximum light the high velocity features have weakened and
only photospheric-velocity opacity components are needed. The
C  λ6580 feature is reproduced by SYNAPPS to some extent at
maximum, but the fit is not perfect. At about two weeks after
maximum, the spectrum is dominated by lines from Fe . We
find evidence that some Cr  and/or Co  may be present in the
spectrum at this point, though Parrent et al. (2012) did not invoke
it in their analysis. In all other respects we confirm the analysis
presented by Parrent et al. (2012).

3.6. Carbon signatures

The spectra of SN 2011fe contain signatures of unburned
carbon from the earliest observations through maximum

(Cenko et al. 2011; Parrent et al. 2012). Carbon in SN Ia ejecta
is most robustly detected using C  λ6580 absorption signa-
tures in pre-maximum spectra (Thomas et al. 2007; Parrent et al.
2011; Thomas et al. 2011a; Folatelli et al. 2012; Silverman &
Filippenko 2012; Blondin et al. 2012). High S/N, mostly nightly
cadence, and proper treatment of telluric absorptions allow us to
trace the detailed evolution of relatively weak C  λ6580 and also
λ7234 in the SNIFS time series (Fig. 9). Both signatures man-
ifest quite clearly in the earliest spectrum, and gradually fade
away. C  λ6580 is just barely detectable in the +3.7 d spectrum,
and absent afterward. After −5.3 d, it becomes harder to clearly
identify the absorption associated with C  λ7234.

In Fig. 6, the blueshift at absorption minimum is plot-
ted. The velocity measurements are compared to the ones ex-
tracted from Si  λ6355 and S  λ5640. At all phases, the mea-
sured C  velocity is smaller than that measured from the Si 
feature, and tracks that of the S  line more closely. This off-
set could be sensitive to how strong the Si  line is relative
to the other two − increasing line opacity in expanding atmo-
spheres (leaving other variables fixed) tends to blue-shift absorp-
tion minima (e.g. Jeffery & Branch 1990). The plot suggests that
unburned material is present at roughly the same velocities as
freshly synthesized intermediate mass element ejecta. The car-
bon appears to extend from 15 000 km s−1 (blue absorption edge
in the first spectrum) down to 8000 or 9000 km s−1.

We extract a pseudo-equivalent width for the C  λ6580 ab-
sorption feature and plot it in Fig. 6 as well. Folatelli et al. (2012)
suggest that the pseudo-equivalent width of this feature may in-
crease and then decrease with time. This behavior was detected
by Silverman & Filippenko (2012) in SN 1994D, but the peak
was not well-sampled. The daily follow-up cadence allows us to
explore the evolution of this quantity in detail in SN 2011fe. The
equivalent width at first decreases for two days, increases back to
roughly the same value, and then decreases again. This behavior
was strongly correlated with the velocity evolution in SN 1994D
(Silverman & Filippenko 2012) but here no such correlation is
detected.

4. Discussion

The analysis of the SNIFS spectrophotometric time series con-
firms that SN 2011fe is a “textbook case” SN Ia. The light
curve shape and color parameters are close to those of a fidu-
cial SALT2 SN Ia (Table 3 summarizes these and other perti-
nent parameters derived for SN 2011fe in the previous sections).
The early and near-maximum spectra exhibit typical strong low-
to-intermediate-mass ion signatures (O , Mg , Si , S , Ca )
at typical SN Ia ejection velocities. Neither the presence of
C  nor high-velocity Ca  absorption (Mazzali et al. 2005)
are considered particularly unusual. As expected, iron-peak el-
ement signatures dominate at late times as the photosphere re-
cedes deeper into the ejecta. Furthermore, there is little evidence
for substantial extinction due to dust in M101 along the line
of sight.

The high cadence of observation, broad wavelength range,
high S/N, and good calibration make the data set presented here
not only an asset for studying SN Ia physics in detail, but also for
simulations and SN cosmology systematic error analysis. In this
section, we use our observations of SN 2011fe to consider a few
fundamental questions about the conventional analysis of SNe Ia
in those areas. This gives us an opportunity to demonstrate some
generically useful features of the data.
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4.1. Comparisons with other SNe Ia

Figure 10 compares selected SNIFS observations of SN 2011fe
with some of SNF20080514-002 (Aldering et al. 2008) and
SN 2009ig (Kleiser et al. 2009). Here we normalize the mean
flux between 3500 and 7500 Å in each spectrum involved, and
overlay matched phases. The relative flux as a function of phase
is not preserved, but this allows us to compare spectral features.
These two SNe Ia are selected for comparison because they have
been identified previously as basically “normal” SNe Ia (Thomas
et al. 2011a; Foley et al. 2012a).

SNF20080514-002 and SN 2011fe are a good match at all
phases compared, but they are not identical twins (Fig. 10a).
The agreement is best redward of 4000 Å, in terms of what fea-
tures are present and their morphologies. For example, both ob-
jects have strong C  λ6580 absorption notches early on (see in-
set, near 6300 Å). The double notch S  features near 4700 Å
and other small-scale features are also matched well. In con-
trast, however, the −10.2 d spectrum of SN 2011fe exhibits a
very slight high-velocity Ca  infrared triplet absorption that is
weaker or absent from the corresponding SNF20080514-002
spectrum. This is mirrored in the near-UV where the Ca  H&K
absorption feature extends to higher velocity in SN 2011fe than
in SNF20080514-002. In fact, at this phase the spectra blue-
ward of 3800 Å are markedly dissimilar. Five days later, the
morphologies of the near-UV spectra appear to have converged
together. About three weeks past maximum, some overall color
difference is apparent between the two SNe, but again the spec-
tral features are quite similar.

There is substantial evidence in the literature for greater di-
versity in the near-UV properties of SNe Ia than in the optical

(Ellis et al. 2008; Brown et al. 2010; Milne et al. 2010; Cooke
et al. 2011; Wang et al. 2012; Foley et al. 2012b). The near-UV
behavior depicted in Fig. 10a supports the idea that this extends
to the time domain as well. Increased diversity in the near-UV at
early times relative to later phases seems plausible from a phys-
ical standpoint. This region of the spectrum is particularly sen-
sitive to the composition, density, and temperature of the outer
layers of the ejecta, and at early times the spectrum forms in
these layers.

SN 2009ig (Fig. 10b) provides an excellent foil for
SN 2011fe. Foley et al. (2012a) noted the relatively high
blueshifts of absorption features in its spectra, and here we can
see the contrast with the more typical blueshifts exhibited by
SN 2011fe. In the earliest spectrum we clearly see the system-
atically higher velocity absorptions of Ca  H&K and infrared
triplet and Si  λ6355 in SN 2009ig. The blue edges of these
features weaken with time, but overall the absorption lines re-
main faster in SN 2009ig than in SN 2011fe. An inset compares
the region of the spectrum around the C  λ6580 notch in the
first spectrum of either SN. A robust notch is seen in SN 2011fe,
but any C  absorption in SN 2009ig at the same phase is much
weaker (Parrent et al. 2011; Foley et al. 2012a).

The above meta-comparison demonstrates a key benefit of
the dense temporal sampling of our SN 2011fe spectrophotome-
try, that it is a trivial matter to find SN 2011fe spectra to compare
to spectra of other SNe at practically exactly the same phase.
This should be a highly useful feature of the data set for other
researchers who wish to contrast their observations with a clas-
sic, normal SN Ia in a systematic way.
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Fig. 9. Evolution of C  λ6580 and λ7234 features in the spectral
time series of SN 2011fe. Two axes depicting blueshift with respect
to 6580 Å and 7234 Å are overlaid, with velocities given in units of
103 km s−1. C  λ6580 begins as a notch which gradually recedes in
velocity and weakens progressively until it is difficult or impossible to
reliably identify at +6.7 d. C  λ7234 follows a similar evolution, but
disappears by −1.3 d.

4.2. Comparisons with spectral surface templates

Here we examine how well the color and detailed spectral evo-
lution of SN 2011fe are described by spectral surface (λ, t)
templates used for conventional light curve fitting and K- and
S-corrections. Such templates should do well at describing
“archetypical” SNe Ia. Our default expectation is that the tem-
plate spectra should have high fidelity to the “ground truth” time

Table 3. Relevant parameters for SN 2011fe derived from this work.

Parameter Value
Photometry

x1 −0.206 ± 0.071
Color −0.066 ± 0.021
Stretch a 0.969 ± 0.010
∆m15 B b 1.103 ± 0.035
tmax U 55 813.13 ± 0.06
tmax B 55 814.51 ± 0.06
tmax V 55 816.25 ± 0.06
tmax R 55 816.06 ± 0.06
tmax I 55 812.55 ± 0.06
Umax/UmaxB

c 9.49 ± 0.02/9.52 ± 0.02 mag
Bmax 9.94 ± 0.01 mag
Vmax/VmaxB

9.98 ± 0.02/9.99 ± 0.01 mag
Rmax/RmaxB

10.02 ± 0.04/10.04 ± 0.03 mag
Imax/ImaxB

10.30 ± 0.11/10.32 ± 0.09 mag
Mmax U −19.55 ± 0.19 mag
Mmax B −19.10 ± 0.19 mag
Mmax V −19.06 ± 0.19 mag
Mmax R −19.02 ± 0.19 mag
Mmax I −18.74 ± 0.22 mag
〈

E(B − V)host photo

〉

0.026 ± 0.036
E(B − V)host spectro 0.014 ± 0.003
t0 bolometricd 55 796.81 ± 0.13
t0 Vd 55 796.68 ± 0.12
τr bolometric 16.58 ± 0.14 d
τr B 17.70 ± 0.14 d
Lmax

bol
(1.17 ± 0.04) × 1043 ergs s−1

M56Ni (0.44 ± 0.08) × (1.2/α) M⊙
Spectroscopy

RSi 0.26
RCa 1.27
RSiS 1.32
R642/443 0.73

pEW (Ca  H&K) 97.62 ± 11.35 Å
pEW (Si  λ4131) 15.33 ± 0.07 Å
pEW (Si  λ5972) 17.21 ± 2.19 Å
pEW (Si  λ6355) 96.67 ± 0.53 Å
pEW (C  λ6580) 0.56 ± 0.17 Å
v̇ (Si  λ6355) 59.6 ± 3.2 km s−1 d−1

Notes. All dates are MJD. Magnitudes are on the “standard” SALT2
magnitude system, allowing direct comparison with the literature.
Absolute magnitudes are computed using the distance modulus to M101
given by Shappee & Stanek (2011). All spectral flux ratios and pseudo-
equivalent widths are derived at maximum light. The photon noise
derived uncertainties for the flux ratios are below the percent level.
(a) Derived using Eq. (6) of Guy et al. (2010). (b) Derived using the
fitted SALT2 light curve model. (c) Observed magnitude at the time of
B-band maximum. (d) Derived assuming a t2 power law.

series, that of SN 2011fe. The comparison allows us to gauge
the level of that fidelity, and identify transient or systematic defi-
ciencies in the templates themselves. We begin by examining the
agreement between true and template-synthesized color curves
and then take a closer look at the agreement at the fine spectral
level.

B − V , V − R, and V − I color curves of SN 2011fe, synthe-
sized from SNIFS spectrophotometry (Sect. 2.3) up to 40 days
past explosion, using BM12 passbands and zero points, ap-
pear in Fig. 11. Color curves synthesized from standard tem-
plates (Nugent et al. 2002; Hsiao et al. 2007), corrected to the
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Fig. 10. Comparison of selected epochs of SN 2011fe with SNF20080514-002 (left, panel a)) and SN 2009ig (right, panel b)). All observations
were obtained with SNIFS. Insets in each panel show the region around the C  λ6580 absorption notch (5800−6800 Å rest-frame) in the earliest
pair of spectra compared.

stretch and observed colors at peak luminosity, are shown for
comparison.

The observed B − V color curve closely follows the Hsiao
template starting at about −10 d, while the match with the
Nugent template is only good after about −5 d and diverges
slightly starting at +5 d. For very early epochs (before −10 d)
neither template seems to be a good match.

In the case of the V − R color evolution, SN 2011fe matches
reasonably well with the Hsiao template after maximum light,
while earlier phases differ significantly. Interestingly, the Nugent
template shows a large deviation from the Hsiao template at the
same phases that the Hsiao template differs from the SN 2011fe
observations; notably the “bumps” at −10 d and (to a lesser ex-
tent) +5 d. While this difference is not as pronounced as the one
between both templates, one could argue that in the small sam-
ple of SNe Ia used to construct the Nugent et al. (2002) tem-
plate, there are spectra whose time evolution is closer to that of
SN 2011fe than the average SN Ia spectral time series repre-
sented by the Hsiao et al. (2007) template. This appears to be
confirmed by the fact that the two SNe Ia that SN 2011fe is most
similar to spectroscopically (SN 1992A and SN 1994D, accord-
ing to Nugent et al. 2011b) are those contributing the most spec-
tra to the Nugent template, along with SN 1989B.

The evolution of V − I is similar to that of V −R. After max-
imum light, the data agree rather well with the Hsiao template,
with the Nugent template being a better match from +15 d on-
wards. At earlier phases the observations display a significant
systematic departure from any of the templates, being closer to
the Nugent template at about −10 d. From both this color curve
and the previous, it is apparent that the second SNIFS spectrum
(MJD 55 800) has a problem at redder wavelengths, being fainter
than we would expect it to be. This systematic error (∼−0.03
and ∼−0.04 mag for RI respectively) is close to the statistical
uncertainty for the flux calibration of that night and seems to be
due to extraction problems, not with the SN itself but rather with
the sole standard star used for calibration.

The “fitted” SALT2 color curves and error bands are also
plotted in Fig. 11. For these, we can see that the fitted colors
are accurate throughout all of the phases after −5 d, but start to
break away from the observations at phases <∼−10 d for B−V and
before −5 d for both color curves using the redder parts of the
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Fig. 11. Synthetic color curves of SN 2011fe from SNIFS spectropho-
tometry. Both spectral templates from Nugent et al. (2002); Hsiao
et al. (2007) are corrected to the observed stretch and peak colors. The
SALT2 curves are derived from the fitted light curves on the different
bands. The error bars on the SN 2011fe values are smaller than the plot
symbols.

spectra. For the latter, the fits are systematically too red, though
the observations are within the quoted model errors. This is not
unexpected since the SALT2 model is trained on both nearby
and high-z SNe Ia observations, with the former often lacking
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observations at very early phases, and the latter being affected
by low S/N for the redder bands due to quantum efficiency drops
and atmospheric extinction effects.

Next we consider agreement at the fine spectral level.
Figure 12 is a comparison of six representative SNIFS observa-
tions of SN 2011fe with two SN Ia spectral surface templates
available in the literature, that from Hsiao et al. (2007) and
SALT2. The rapidly changing spectral features during the rise
in luminosity to peak are the most interesting to consider, so
four spectra leading up to maximum are shown. Observations
after peak brightness are represented by the spectra at +11.7 and
+23.7 d.

The Hsiao template spectra were warped as in Foley et al.
(2012a), in order to emulate their usage in K- or S-correction
computations. For each phase the template spectrum is nor-
malized by a cubic spline fitted to the five ratios of synthetic
UBVRISNf fluxes between the template and our spectrum for that
same phase. In this way the template is forced to match the ob-
served broad-band colors of SN 2011fe.

The SALT2 spectra, on the other hand, are created directly
from the template using the light curve fit parameters (x0, x1
and c) found in Sect. 2.4, without any additional warping over
wavelength or time. Thus, the projected spectrum from SALT2
is what it predicts the underlying SN spectrum looks like without
modification. No scaling in flux is added to improve the agree-
ment, even cosmetically. The SALT2 model 1σ error is depicted
as the gray shaded region in each panel of Fig. 12. The lower
plot in each panel shows the percent residual differences between
each template and the observations.

Though there are both transient and persistent artifacts in the
residuals, a general trend is also evident. The agreement between
the templates and SN 2011fe improves as maximum light is ap-
proached. Near maximum, where the population of SNe Ia avail-
able for constructing either template is very well sampled, the
discrepancies are relatively smaller. After this point, glitches in
the residuals become larger again. We note that the residuals are
decidedly not the result of a bias induced by comparing the spec-
tra to templates scaled by synthetic photometry, the high S/N of
the observations limits this effect to less than 1%.

We start by examining the agreement between SN 2011fe
and both templates at phases t < −10 d. The disagreement be-
tween the projected SALT2 spectrum in Fig. 12 and SN 2011fe
at −15.2 d is at first striking. The SALT2 error model strongly
deweights this observation (and others at the earliest phases,
see Sect. 2.4), so the mismatch is not ultimately catastrophic.
To an extent, this suggests that these early epochs are under-
utilized in modeling SNe Ia for cosmological applications to-
day. By −12.2 d, the template shows signs of converging toward
SN 2011fe but both the estimated errors and residuals remain
large. The Hsiao template is not a particularly good match to
SN 2011fe at these phases either. In particular, it seems to sys-
tematically underestimate the depths and widths of the stronger
absorption features. The template is based on a comparatively
small number of spectra at early phases: 13 spectra with phases
between −15 and −10 d, compared to 50 spectra or more in each
5-day bin from −10 to +15 d. The template is obviously much
more susceptible to biases in the input sample before −10 d.

SALT2 systematically under-estimates the flux at wave-
lengths redward of about 7500 Å, at all phases. Setting aside
the case of −15.2 d, the SALT2-predicted flux at these wave-
lengths always appears to be smaller than the true value, and
the shape of the broad Ca  infrared triplet feature is poorly re-
constructed. The warped Hsiao template seems to have higher
fidelity to SN 2011fe at these wavelengths than SALT2 in all

but the first two spectra shown. While there are similarly sized
offsets at the bluest wavelengths, they are not either systemati-
cally low or high as at the red end.

Interestingly, at all phases where the bellwether Si  λ6355
absorption is unblended and easily discernable in the observed
spectrum, it corresponds to a prominent, isolated, coherent fea-
ture of the residuals. The same applies to the Ca  H&K feature.
Discrepancies in feature strength, width, and blueshift are all to
blame. Even at maximum light, the residuals relative to SALT2
are larger than the model error in certain places (by factors of
several at some wavelengths) while the integral of those residu-
als in the photometric band considered remains small. This em-
phasizes the difficulty in extracting accurate spectral templates
by combining spectra with photometry, and the usefulness of
spectrophotometric SN follow-up for this purpose. In the last
spectrum, we see that most of the features are reconstructed at
the right wavelength, but the emission profiles in either template
are too low or too high.

Considering the SALT2 residuals, it at first seems plausible
that discrepancies such as those noted here are symptoms of in-
completeness in the sample used to create the template. Merely
expanding the sample would then ameliorate any resulting er-
rors. This suggestion is certainly applicable to the earliest obser-
vations, but seems less reasonable closer to maximum light. The
fact that the SALT2 template spectrum at −0.3 d very closely re-
sembles that of a normal SN Ia suggests that quantity and qual-
ity of the underlying sample are not the only issues. Rather, it
seems plausible that additional information in the form of one
or more model parameters (beyond light curve shape and color)
are needed to null out coherent residuals associated with major
spectral features, in particular those originating in the Ca  H&K
and Si  λ6355 features (see also Chotard et al. 2011). It seems
quite plausible that in these features the residuals arise from ve-
locity mismatch, and that if spectra were used to constrain the
template fit, the contribution to the photometric correction error
could be reduced. Of course, spectrophotometric measurements
eliminate the problem entirely.

It is important to acknowledge that comparing templates de-
signed to stand in for archetypical SNe Ia to SN 2011fe may
suggest an optimistic outlook in the context of light curve fit
systematics. On the other hand, it provides a near best-case or at
least typical scenario. To contrast, we refer the reader to a similar
comparison of SN 2009ig and the Hsiao et al. (2007) template by
Foley et al. (2012a). In that particular case, the discrepancies in
spectral evolution presented were portrayed as severe. We note
that we performed the same projected SALT2 residuals analysis
as depicted in Fig. 12 for SN 2009ig, and find the same kinds
of residual structures with often larger but at times smaller mag-
nitude than is seen in SN 2011fe. A more systematic analysis
of spectral surface templates is underway and will be presented
elsewhere (Saunders et al., in prep.).

4.3. Detecting C II in SN Ia spectra

Since SNe Ia are likely the thermonuclear incineration of
carbon-oxygen white dwarfs, estimates of the total mass and spa-
tial distribution of unprocessed carbon in SN ejecta provide a
way to constrain the explosion mechanism. Pure turbulent defla-
gration models predict that a large amount of unprocessed car-
bon may remain after explosion (e.g., Gamezo et al. 2003; Röpke
& Hillebrandt 2005; Röpke et al. 2007). Models where this defla-
gration is followed by a detonation phase consume much of the
remaining carbon (e.g., Höflich et al. 2002; Kasen et al. 2009).
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Fig. 12. Comparison of six different phases of SN 2011fe (black line) with the Hsiao et al. (2007) (black dashed lines) and SALT2 (red line
with grey error model) SNe Ia spectral surface templates. The Hsiao et al. (2007) spectra are warped to match the observed broad-band colors
of SN 2011fe. SALT2 spectra are created directly from the template using the light curve fit parameters. The lower panels plot the percent residuals
of each template with relation to the observed SN 2011fe spectra.
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Fig. 13. Effect of noise at various phases on the C  λ6580 absorption notch. The top row depicts the neighborhood of the feature as observed by
SNIFS. Each successive row simulates progressively noisier observations, with the S/N per Å labeled at right. The red vertical line depicts the
center of the C  notch to guide the eye. Early observations are no guarantee of a C  detection even if it is there at lower S/N but generally the
feature becomes harder to discern with time as the notch amplitude decreases. Wavelength and flux scales depicted are the same in each panel.

Oxygen signatures in the photospheric phase are less useful, be-
cause oxygen is both a fuel and product in the explosion.

The high quality of the SNIFS time series and the clear pres-
ence of C  λ6580 provide us with the opportunity to explore
some questions about the efficiency of carbon detection in SN Ia
spectra. SN 2011fe gives us a “ground truth” C  λ6580 detec-
tion at high S/N needed to simulate the impact of noise and spec-
trograph resolution on this principal carbon indicator. The fea-
ture manifests as a small notch or small-amplitude depression
in flux, so both noise and resolution are important factors in its
(positive) detection. Parrent et al. (2011) briefly explore the ef-
fect of noise, but only on a single illustrative example spectrum.
Here we perform simulations at several phases, especially later
than −15 d which is more typical for initial SN Ia follow-up.
Specifically, we are interested in simulating quick analyses done
by observers attempting to assess whether C  λ6580 is present
in freshly obtained spectra, as is commonly described in astro-
nomical circulars.

Figure 13 demonstrates the effect of lowering the S/N in
five pre-maximum spectra of SN 2011fe where C  λ6580 is
clearly evident in the SNIFS data. The real observations of the
C  λ6580 region, adopted as effectively perfect, appear in the
top row of panels in the figure. The same spectrum is shown on
each subsequent row with gradually decreasing S/N (given as
S/N per rest-frame Å in the neighborhood of the carbon notch).
At a S/N of 10 per rest-frame Å (bottom row), the C  notch
is completely obscured at the native SNIFS extraction binning
(2.38 Å). Overall, the figure suggests that relatively low S/N may
be tolerable at early times for making a correct carbon detection,
because the feature’s signal is strongest then. Positive identifica-
tion becomes more difficult as the feature fades away. Indeed, it
is hard to make a case that the C  λ6580 notch is clearly present
at −1.3 d at any simulated S/N.

Binning the data can recover the feature, but at the cost of
effectively smoothing the data, as shown in Fig. 14. Simulations

generated as in Fig. 13 are binned by a factor of eight. This
is particularly detrimental at the earliest phases and, somewhat
surprisingly, at the lowest S/N. The small wavelength scale of
the feature means that it is susceptible to contrast losses if the
data are simply binned by too large a factor. We suggest that
binning may help improve confidence in more marginal C  de-
tections at low S/N, but not always. Also, systematic spectral
feature modeling (e.g., Thomas et al. 2011a) may eventually pro-
vide a quantitative approach.

Finally, Fig. 15 depicts simulated data as before, but with
the resolution degraded to R ∼ 100. The top row again shows
the SNIFS spectra without any noise added, but with a Gaussian
filter applied. Only a single noisy realization is plotted here,
since it is clear from the top row of the figure that at this res-
olution the C  λ6580 feature is obliterated nearly completely
at all phases. Unless careful modeling is used, it is doubtful
that a positive carbon detection would be made at any phase.
A characteristic “break” at about 6250 Å at the earliest phase
in the simulated spectrum may be a useful signature, but could
be indistinguishable from normal variation in the morphology of
Si  λ6355 features.

The above reinforces the somewhat obvious fact that con-
structing an accurate descriptive census of carbon in SN Ia ejecta
requires both high S/N and moderately high resolution. Earlier
is better than later, but blue-shifted C  λ6580 notches “blend”
more readily with the Si  λ6355 absorption at lower S/N. Lower
resolution robotic integral field spectrographs, such as the SED
Machine (Ben-Ami et al. 2012), are an excellent way to provide
prompt broad classifications and phase estimates for SNe, but
are unlikely to directly contribute to a carbon census in SNe Ia.
This will fall to higher resolution spectrographs with larger aper-
tures that can trigger on early SN Ia alerts from first-response
screening that such instruments as the SED Machine provide.
Real-time forward modeling of features that includes instrumen-
tal effects may be critical to make the most of such data.
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Fig. 14. Same as Fig. 13 but rebinned by a factor of eight (bin size ∼19 Å). Rebinning noisy data may improve confidence in C  λ6580 detection
in some cases.

Fig. 15. Same as Fig. 13 but with the spectral resolution degraded to R ∼ 100. The top row depicts the smoothed input to the simulation, which
nearly completely destroys the C  signature at all epochs. At the earliest phase a “break” in the shape of the Si  λ6355 feature can be seen near
6250 Å. The break signature may be a way to detect C  at lower spectral resolutions and binning than our observations here, but only at the earliest
phases.

Given the difficulties inherent in translating early discov-
ery into early spectroscopic follow-up of SNe Ia, it seems
quite possible that photospheric-velocity carbon signatures at the
earliest phases may be anything from common to ubiquitous.
Considering also that C  line strengths vary from object to ob-
ject and as a function of phase (e.g., Parrent et al. 2011; Thomas
et al. 2011a), the clearest route to a proper census is also the
most challenging: orchestrating discovery and follow-up on the
same or next night for day-old SNe Ia. This remains far from rou-
tine for wide-field surveys (such as PTF). High-cadence surveys
targeting nearby galaxies (e.g., the Lick Observatory Supernova
Search, Filippenko et al. 2001) may slowly build up a sample
of bright objects. For now, it seems wise to consider the current
rate estimates from the literature (Parrent et al. 2011; Thomas
et al. 2011a; Folatelli et al. 2012; Silverman & Filippenko 2012;
Blondin et al. 2012) to be lower limits.

The qualitative study presented here highlights the useful-
ness of high S/N, flux calibrated time series to study detection
systematics of narrow and weak spectral features. Our data are a
natural input for systematics study simulations where the accu-
rate shape of the SN pseudo-continuum is important. Using any

of the current templates for the same purpose will yield biased
results, since they are by nature capturing an average behavior,
tuned to be useful in a different context.

5. Conclusion

We have presented a new atlas of spectrophotometry
of SN 2011fe, a photometrically and spectroscopically normal
SN Ia. SN 2011fe is not the typical SNfactory target, and hence
its calibration route is not the standard one used for the bulk of
the SNfactory data set. Difficulties encountered were the result
of short exposure times and very high airmass. Still, the attained
level of calibration, high S/N, and observing cadence make this
data set extremely useful for a variety of science applications.

The SALT2 fit performed on synthesized light curves shows
SN 2011fe to have attained a B-band maximum of 9.94 ±
0.01 mag on MJD 55814.51 ± 0.06, with “standard” lightcurve
shape parameters (x1 = −0.206 ± 0.071, c = −0.066 ± 0.021).
The residual scatter when compared with published SN 2011fe
photometry is comparable to the errors estimated for the flux
calibration, and of the same order as the SALT2 fit residuals
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and the scatter between independent photometric followup cam-
paigns. Reddening due to dust in the host galaxy is found to
be very moderate and in accordance with independent spectro-
scopic determinations. An ultraviolet + optical + near-infrared
template was built from SNIFS data and public UV spectroscopy
and NIR photometry, to construct a bolometric light curve. From
it we derive a date of explosion t0 = 55 796.62 ± 0.13 in the as-
sumption of a t2 luminosity evolution for the very early phases,
with a rise-time τr = 16.58 ± 0.14 d and an inferred 56Ni mass
of (0.44 ± 0.08) × (1.2/α) M⊙.

The analysis of spectral indicators shows SN 2011fe to be
a spectroscopically core-normal SN Ia, on the lower side of
the separation between the HVG and LVG groups as defined
by the rate of change of the expansion velocity of Si  λ6355
(59.6 ± 3.2 km s−1 d−1). The evolution of spectral features is
typical of a normal SN Ia, with low to intermediate-mass el-
ements dominating the early spectra, and iron-peak signatures
strengthening after maximum light. High-velocity Ca  and Si 
are needed to explain the early spectra, but these weaken by
maximum light. C  λ6580 and C  λ7234 are detected in pre-
maximum spectra, and our high S/N observations and daily ca-
dence allow us to follow the evolution of these features very
closely as they fade: apparently unburned carbon extends as deep
as 8000 km s−1 in some normal SNe Ia.

The SNIFS time series possesses a number of features that
should make it highly useful for interpreting other SNe Ia, inves-
tigating systematic errors in traditional light curve analysis, and
making forecasts for new instruments’ sensitivities to detecting
physically important features.
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