Spectrophotometry in the galactic supernova
 remnants RCW 86, 103 and Kepler

Elia M. Leibowitz* Department of Physics and Astronomy and the Wise Observatory, Tel Aviv University, Israel

1. J. Danziger European Southern Observatory, Karl-Schwarzschild-Str. 2, 8046 Garching, West Germany
 supernova remnants (SNR) RCW 86, 103 and Kepler are presented. The measurements were made with an angular resolution of about 4 arcsec in a number of different positions in each object. We also present the integrated

 discussed in the context of abundances and shock conditions.

1 Introduction

Many spectrophotometric studies of supernova remnants have been carried out in the last few years (e.g. Miller 1974; Kirshner \& Chevalier 1977; Fesen \& Kirshner 1980; Blair, Kirshner \& Chevalier 1981; Dopita, Mathewson \& Ford 1977; D'Odorico \& Sabbadin 1977). Those of extragalactic objects measure the spectrum of an entire optical remnant or of a large fraction of it, although it is clear that much information about an SNR is lost when
 SNRs, for example those by van den Bergh, Marscher \& Terzian (1973), reveals the extreme

 approaching the level of accuracy attainable by the observations.

> In some Galactic SNRs the observational angular resolution now possible corresponds to a linear dimension at the remnant close to that estimated for a single filament. While a zone in the nebula with such a two-dimensional extension is still far from the ideal filament, because of the lack of resolution in the radial direction, the unknown geometry and the interaction with neighbouring hot filaments, it is nevertheless closer to the model than the whole nebula. One of us (JD) has initiated a program of spectroscopic observations at high spatial resolution in SNRs. Here we report the results of the observations in three Galactic sources, RCW 86, 103 and Kepler's SNR.
E. M. Leibowitz and I. J. Danziger

2 Observations

 The spectra forming the basis of this study were obtained with the image-dissector-scanner attached to the Boller and Chivens spectrograph at the Cassegrain focus of the $3.9-\mathrm{m}$ AngloAustralian telescope. Our spectra have a nominal dispersion of $170 \AA \mathrm{~mm}^{-1}$ and an effective resolution of about $10 \AA$, the entrance aperture being $3.5 \times 3.5 \mathrm{arcsec}^{2}$. Flux calibration was achieved by observing white-dwarf standards (Oke 1974) on the same night through the same aperture. A standard atmospheric extinction curve was assumed.The line strengths, especially involving the deconvolution of blended lines, were measured with a program developed at ESO and based on the CERN MINUIT program. This allowed
 data containing a maximum of five lines. Such a combination of functions was necessary to

 blend, etc) and observing the dependence of the inferred line-intensities on them. Some

 within a few per cent, the expected value of 3 , without assigning this value to the blend a

 are marked in the tables with brackets. The estimated error in the measured $\mathrm{H} \beta$ flux is 10 per cent.

3 Results

As examples, Figs 1, 2 and 3 are intensity tracings of the spectra of one of the brightest knots in each of our three objects. The spectral resolution in the original data is better than that seen in the figures, where the wavelength scale is compressed.

The main observational results are presented in Tables 1, 2 and 3. In each table the emission-line intensities for the different positions indicated in Plates 1,2 and 3 are given relative to $I(\mathrm{H} \beta)=100$; they have been corrected for interstellar reddening as described in Section 4. For each position we give the value of c - the reddening parameter, i.e. the logarithm of the extinction at $\mathrm{H} \beta$. The original results, namely the observed intensities outside the Earth's atmosphere, can be reconstructed by applying the formula $\log I^{\circ}(\lambda)=$

KEPLER

[^0]
 $\stackrel{\circ}{\circ}$

ヨ
高 気
Mg $]$
ヨ ヨ ت ヨ
当
E
シ

6
$\stackrel{\infty}{\sim}$
B응NN
$\infty \infty$
〇9）
n
m
ल

ヨ
$\stackrel{\infty}{\sim}$
$+$
$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{ }{\sim}$

ふ〇〇〇のニ

옥

m సे
$\mathrm{m} \stackrel{8}{3}$
च $\quad \rightarrow \stackrel{\infty}{\square}$ 入

－各尺
モ
かたかの
클

寻
可末気 Ξ

 the values of $f(\lambda)$ that were used in our reddening correction. The tables also give the
In Table 4 we present integrated spectra of our three SNRs. The lines include all of those that were identified in at least two different positions in one of the objects. The numbers given in the table were obtained in the following way: for each line a weighted sum of the intensities outside the Earth's atmosphere over all the observed points was taken. The weights are the absolute fluxes of $\mathrm{H} \beta$ measured at each point and given in Tables 1,2 and 3. The spectrum of each source obtained in this way is a good approximation to the spectrum that would have been measured had the object been spatially unresolved, for example if the remnant was observed in an external galaxy. A reddening correction was then applied as in Tables 1, 2 and 3. A similar integration was performed over the observations for the other sources in Table 4, except for CTA 1 and Vela for which the intensities at only one position in the source are given. The reddening correction parameter for each nebula is also given in Table 4.
4 Discussion
 true, unreddened $\mathrm{H} \alpha / \mathrm{H} \beta$ line ratio in all spectra has the value of 3 and by using the Galactic reddening law derived by Whitford (1958) and given by Osterbrock (1974). The value 3 for the $\mathrm{H} \alpha / \mathrm{H} \beta$ ratio is consistent with a large range of shock models (Raymond 1979; Shull \& McKee 1979). It approximates a representative value for this ratio in the radiative

 insensitive to reddening are of the order of $100 \mathrm{~km} \mathrm{~s}^{-1}$ or larger (see below). In this velocity

 and the temperature in the hydrogen recombination zone may reach 15 per cent in the relative intensity of red/blue lines that lie in the opposite extremes of the spectral range in our spectrograms.
4.2 GENERAL SPECTRAL CHARACTERISTICS
The spectra presented in Table 4 enable one to note a few characteristics of the overall spectra of the three SNRs in our program and to compare them with other Galactic remnants.
(1) A common characteristic of the three SNRs is the small value of the [S II] 6717/6730 line ratio, much less than 1 , reaching in Kepler the lowest value of 0.49. This implies high densities in the $S_{\text {II }}$ regions, of the order of $10^{3} \mathrm{~cm}^{-3}$. In Dopita's (1977) diagnostic diagrams, Kepler's SNR (for example) lies in the regime of a post-shock temperature $T_{2}>10^{5} \mathrm{~K}$ and a pre-shock density $N_{1}>10^{3} \mathrm{~cm}^{-1}$.
 General considerations of the physical conditions near a shock front (Osterbrock \& Dufour 1973) and most of the published models (Raymond 1979; Shull \& McKee 1979) imply that shock velocities of $\sim 100 \mathrm{~km} \mathrm{~s}^{-1}$ or higher are required to produce this line. Furthermore,

281
(3) Kepler's SNR and RCW 103 have large $\left[\mathrm{NII}_{I I}\right] / \mathrm{H} \beta$ ratios of the order of 7 , while in RCW 86 this ratio is ~ 3 (in our notation, a symbol of an ion in a line-intensity ratio represents the sum of all the lines of that ion observed in the spectrum). Daltabuit, D'Odorico \& Sabbadin (1976) and D'Odorico \& Sabbadin (1976) have noted in Galactic SNRs a correlation between the [N_{II}]/H α ratio and the density parameter [$\mathrm{S}_{\text {II }}$] 6717/6730 ratio, and also between the $[\mathrm{N} I] / \mathrm{H} \alpha$ ratio and the diameter of remnants.
With the help of the intensities presented in Table 4, one is able to show that these correlations are due, at least partially, to an abundance effect of nitrogen. Consider, for example, Kepler's SNR with the high ratio of $\left[\mathrm{N}_{\text {II }}\right] / \mathrm{H} \beta=7.13$ on one hand and IC 443 with $\left[\mathrm{N}_{\mathrm{II}}\right] / \mathrm{H} \beta=2.28$ on the other. We now compare the value of the ratio $\left[\mathrm{O}_{\mathrm{III}}\right] /\left[\mathrm{O}_{1}\right]=2.26$ in Kepler with the value 1.79 in IC 443. In the range of shock velocities $100 \leqslant v<200 \mathrm{~km} \mathrm{~s}^{-1}$, the higher the value of the $\left[\mathrm{O}_{\mathrm{III}}\right] /\left[\mathrm{O}_{1}\right]$ parameter, the larger is the fraction of the O^{++} ionization zone; the singly-ionized species occupy a smaller region in the emitting filament.

 IC 443 , tends to strengthen this expectation. The much larger $\left[\mathrm{N}_{\text {II }}\right] / \mathrm{H} \beta$ value in Kepler implies therefore a higher abundance of nitrogen in this nebula. We arrive at the same

(4) A few $\left[\mathrm{Fe}_{\text {II }}\right]$ and $\left[\mathrm{Fe}_{\text {III }}\right]$ lines have been measured in our three objects and their intensities are given in Table 4. The three SNRs, RCW 86, 103 and IC 443 have identical spectra of $\left[\mathrm{Fe}_{\text {II }}\right]$. The two latter remnants have also the same $\left[\mathrm{Fe}_{\mathrm{III}}\right]$ spectra whereas the

 the intensity of the corresponding lines in the other three remnants. We may add that the iron spectrum of Kepler is virtually identical to that of the LMC SNR N49 (Osterbrock \& Dufour 1973). In the spectrum of the Vela filament only two Fe lines have been measured

 nebula only the [$\mathrm{Fe}_{\mathrm{III}}$] line at $\lambda 4658$ has been recorded.
All the differences in the relative intensities of the iron lines among the sources in Table

(5) The reddening that we have derived from RCW 86 corresponds to a visual extinction

 in the direction of the Galactic centre. We can therefore use the mean value of the interstellar visual extinction to make a crude estimate of the distance to this object. With an average extinction per unit length in the Galactic plane of $0.8 \mathrm{mag} / \mathrm{kpc}$ and a scale height of absorption above the Galactic plane of 140 pc (Allen 1973) we obtain $d=3.2 \mathrm{kpc}$. This value coincides with the distance adopted by Clark \& Caswell (1976) on the basis of the $\Sigma-D$ relation.
The visual extinction to RCW 103 implied by our reddening value is $A_{\mathrm{v}}=4.5 \mathrm{mag}$, whereas Dopita et al. (1980) obtain 3.8 mag , and Westerlund (1969b) 3 mag by the OB association method. The kinematic distance derived from radial velocities of radio $21 \cdot \mathrm{~cm}$ (1976) adopt $d=8.7 \mathrm{kpc}$ on the basis of the $\Sigma-D$ relation. The extinction distance that can be derived from our value of A_{v} is 6.6 kpc .
The distance to Kepler has been discussed by Danziger \& Goss (1980) and is based in part on reddening derived with the spectrophotometric data discussed here. That estimate of the visual absorption, $A_{\mathrm{v}}=3.5$, remains the most direct one in a part of the sky that has patchy
obscuration. A distance of 3.2 kpc implied by that value in conjunction with a rediscussion obscuration. A distance of 3.2 kpc implied by that value in conjunction with a rediscussion
of historical data remains the most attractive.
4.3 DETAILED SPECTROSCOPY

4.3.1 RCW 86

From the values of the reddening parameter c given in Table 1 we see that the extinction varies across the image of the nebula. Part of the apparent variation is due to the observational errors in the value of the $\mathrm{H} \alpha / \mathrm{H} \beta$ ratio, and to differences between true values of this ratio and the assumed one of three. These, however, cannot account for the entire range of the c-values, in particular for the outstanding value of 0.06 in point 10 . It seems that at this interstellar matter. van den Bergh (1971) has suggested that such holes are present in the foreground of the Cas A SNR.
We observe in Table 1 that some of the major spectral line intensities vary considerably from point to point. For example in point 1 we find $\left[\mathrm{O}_{\mathrm{III}}\right] / \mathrm{H} \beta=0.6$ as compared to 6 in point 5 . The $\left[\mathrm{N}_{I I}\right] / \mathrm{H} \beta$ and the $\left[\mathrm{S}_{I I}\right] / \mathrm{H} \beta$ ratios are much more uniform across the remnant. These observations at present lack a detailed physical understanding. In all points $6717 / 6730<1$, indicating, according to Dopita's (1977) and other models, a pre-shock density larger than $100 \mathrm{~cm}^{-3}$
The important lines of $\left[\mathrm{O}_{\text {II }}\right]$ at $\lambda 3727$ have not been observed by us in RCW 86, so a
direct estimate of the abundances in the filaments seems to be impossible. We also find that

 (1979) may roughly represent the filaments observed in our points $3-10$. This model assumed a shock velocity of $100 \mathrm{~km} \mathrm{~s}^{-1}$ and a pre-shock density of $100 \mathrm{~cm}^{-3}$
The spectrum of point 1 in RCW 86 is more difficult to understand. At this point the [$\mathrm{Sil}_{\text {I }}$] density parameter $6717 / 6730$ as well as the $[\mathrm{NiI}] / \mathrm{H} \beta$ ratio have values similar to

Spectrometry in galactic supernova remnants 283 those at the other points, but the $\left[\mathrm{O}_{\text {III }}\right] / \mathrm{H} \beta$ ratio is significantly smaller. According to all
The spectrum of RCW 86 by Dopita et al. (1980) is quite similar to our spectrum at point except that our blue [SII] lines have twice the intensity measured by Dopita et al.
 explain why our $\left[\mathrm{S}_{\mathrm{II}}\right]$ line strengths are on average lower. One point almost in common to the two studies (our position 3, Ruiz position A) shows reasonable agreement, although the Ruiz Balmer decrement appears anomalous. Her conclusion, that variations in the [$\left.\mathrm{N}_{\mathrm{II}}\right] / \mathrm{H} \alpha$ ratio imply variations in abundance of nitrogen, may be premature in view of our observed variations of the electron temperature implied by variations in the [$\mathrm{N}_{\text {II }}$] 5755/6584 ratio

4.3.2 RCW 103

 their measurements, a comparison of their measurements might be made with our integrated spectrum. Inspection of Table 4 of this paper and table 1 (c) of Dopita et al. shows that the two spectra are indeed similar. Dopita et al. have analysed in great detail the spectrum of RCW 103 and have derived the abundances of elements in this nebula, along with many others. In view of the similarity of their spectrum to most of ours, their analysis is applicable to our spectra.
We have one observational point in the northern wisp of RCW 103, namely point 1 , while the other four are in the southern, major nebulosity of this remnant (see Plate 2). Point 1 is also slightly peculiar in its spectrum. Inspection of Table 3 reveals that both the $\left[\mathrm{O}_{\mathrm{HI}}\right]$ and
the $\left[\mathrm{N}_{\text {II }}\right]$ lines are significantly fainter than in the southern nebula. The lack of measurements of the [$\mathrm{O}_{\text {II }}$] $\lambda 3727$ doublet at this point makes it difficult to determine the physical nature of their differences.
RCW 103 deserves further attention in view of the recent discovery of a compact X-ray
 neutron star at the centre of the gaseous remnant, one might expect, in analogy with the Crab SNR, that radiation from the vicinity of the neutron star is also contributing to the excitation of the nebula, or at least to the parts immediately surrounding the neutron star.
Three of our six observational points in Kepler's SNR can be identified to a good approximation with three of the knots of van den Bergh \& Kamper (1977). A comparison of Plate 3 with fig. 2 of these authors shows that our point 1 is in knot 26 , point 3 is in knot 3 and U! I- s ury 08 I - јо кұ!
 Kepler SNR. Here again, part of this variation is probably due to the observational errors in the line intensities and to variations in the intrinsic value of the $\mathrm{H} \alpha / \mathrm{H} \beta$ ratio. Some of these
 at this point is only a few arcsec south of position 1 , yet the difference in the derived visual extinction to these two points is 2 mag . Although the Kepler SNR is in a region of strongly
varying obscuration, evident on SRC Schmidt plates, it seems that the outstanding extinc-

$B<14.0$ within 10 arcmin of Kepler's SNR , the maximum reddening is $E(B-V)=0.9$. The sharp gradient in the extinction over an angular separation of a few arcsec may indicate
 of the emitting remnant. Such cloudy interstellar matter was proposed by McKee \& Cowie
 as the observable optical and X-ray SNRs. In fact, with a few general assumptions, we may obtain an estimate to the dimensions of the cloudlet that obscures point 2 . We assume that $\Delta c \sim 1$, and that the difference between the reddening to point 2 and the general reddening to the remnant is due to absorption in the cloudlet. The extinction in magnitude of light transmitted through an absorbing medium of length D_{a} is $A=1.086 N_{\mathrm{g}} \sigma D_{\mathrm{a}}$, where N_{g} is the density of the scattering or the absorbing particles and σ is the extinction cross-section. We write $N_{\mathrm{g}}=\gamma N$, where N is the density of gas particles in the absorbing cloud and γ is the
 Assuming that the grains in the cloudlet have the general average properties of dust in the Galaxy, we take from Allen (1973) $\gamma=7 \times 10^{-13}$ and $\sigma \simeq 10^{-9}$. The visual extinction in the cloudlets is $A=2 \mathrm{mag}$, hence $D_{\mathrm{a}}=850 / N \mathrm{pc}$. Taking for the pre-shock density the value
The absorbing material responsible for $\Delta c=1$ in point 2 can also be the near end of the interstellar inhomogeneity, whose far side is now being heated by an approaching shock, giving rise to the observed spectrum in this point. For an assumed velocity of $100 \mathrm{~km} \mathrm{~s}^{-1}$ it will take $\sim 8000 \mathrm{yr}$ for the shock to 'eat' its way through the dark cloud.
The interpretation of the spectrum of point 2 as the emission from a plasma heated by a consistent results with other known parameters of the remnant. For we can write expressions for F for two limiting cases

(i) A shock with a single recombination event per emitting hydrogen atom (ii) A shock with multi-recombination events.

In case (i), each hydrogen atom in the emitting filament undergoes one recombination event that gives rise to a transition into the $n=2$ energy level of the atom, with the emission of one Balmer photon. In this case N_{B}, the number of Balmer photons emitted per second, is equal to the number of hydrogen atoms that are passing in one second through the shock front or through the fore-running ionization front (we thank the referee for bringing this point to our attention). Therefore $N_{\mathrm{B}}=N_{\mathrm{H}} S v$, where $N_{\mathrm{H}}=N$ is the pre-shock density (of hydrogen atoms), S is the area of the shock front (in a plane parallel approximation) and v is the shock velocity. From radiative recombination theory (Brocklehurst 1971), the number of emitted $\mathrm{H} \beta$ photons is $N_{\beta}=\eta N_{\mathrm{B}}$, where $\eta \sim 1 / 6$.
 graph defines a surface area s at the source that is emitting into our instrument. Since we

 use of Dopita's (1977) diagnostic diagrams (see below).
In case (ii), each hydrogen atom in the emitting filament undergoes more than one transition into the $n=2$ energy level. These multi-recombinations follow ionizations that are due either to collisions in the hot plasma or to the UV radiation field emanating from the shock

 uoIssnos!p Ino jo fSOW `əาeu! regarding this point remains unchanged, however. The second possibility is clearly consistent
While in case (i), most of the Balmer emission comes from a rather narrow hydrogen recombination zone in the filament, in case (ii) we observe hydrogen radiation from the
 of D_{e}, the dimension of the radiating plasma along the line-of-sight. The observed flux is

$\frac{\alpha_{\beta} N_{\mathrm{e}}^{2} V}{4 \pi d^{2}} \times 10^{-\mathrm{c}}$

where α_{β} is an effective recombination rate (in energy units) for the emission of the $\mathrm{H} \beta$
We are assuming a filling factor $f=1$ in the volume radiating into our entrance aperture. We have

$\frac{z^{2} N}{I} \times \frac{J^{\circ} x}{J^{\Perp} \downarrow} \times{ }_{0} 0 I={ }^{2} G$

From Osterbrock (1974) we take $\alpha_{\beta}=10^{-25} \mathrm{erg} \mathrm{cm}^{3} \mathrm{~s}^{-1}$. This is the value of the effective recombination rate in the density range of $10^{2}-10^{6} \mathrm{~cm}^{-3}$ and at a temperature of $(1-1.5) \times 10^{4} \mathrm{~K}$. We thus find

$D_{\mathrm{e}}=\frac{4.5 \times 10^{5}}{N^{2}} \mathrm{p}$

и! łou s! əпןел S!
 (see, for example, Dopita 1977).
If the material behind the advancing front has not had the time to recombine, the value of D_{e} is the depth into the cloud that has been reached by the shock since it started to
 200 years ago. Considering the roughness of our assumptions this is in very good agreement with the known age of Kepler's SNR.
The picture is not inconsistent with the discovery by van den Bergh \& Kamper (1977) of

 Kepler, we first note the very low value of the [S S_{1}] 6717/6730 line ratio. The lowest value

 the other observed points.
Using Pradhan's (1978) collision parameters for the ground configuration of $\mathrm{S}_{\text {II }}$ and
 implies $N_{\mathrm{e}} /\left(T_{\mathrm{e}}\right)^{1 / 2}=45$, where N_{e} is the electron density and T_{e} is the electron temperature

286 E. M. Leibowitz and I. J. Danziger

Abstract

shock temperature $>10^{5} \mathrm{~K}$. In fact, according to Dopita's diagrams the value 0.51 of the [SII] density ratio in point 3 , for example, is irreconcilable with the value of $I(5007)$ / $I(3727)=0.2$ measured at the same point. So far, to our knowledge, no model for

So far, to our knowledge, no model for SNR has been published which yields a value of the $6717 / 6730$ ratio as low as observed in Kepler. The closest is model FF of Raymond observed spectra in Kepler since it is in disagreement with other important observed line into heat at the shock front is not enough to maintain a large O^{++}zone. For reasons discussed in Section 4.2, however, we believe that an abundance effect is indicated. Indeed, if one examines the $\left[\mathrm{N}_{\mathrm{II}}\right] / \mathrm{H} \alpha$ ratios in all the SNRs in Table 4 , one sees a tendency for smaller (younger) remnants to have stronger [N_{II}] lines. This may be an abundance effect resulting from nitrogen-enriched material, ejected before (as quiescent mass loss) or during the explosion, being diluted with swept-up interstellar material.

A proper analysis of the spectra of the filaments in Kepler's SNR and the derivation of the abundances of the elements in this nebula must await the computation of models that include the range of line intensities and ratios presented in Table 3. Meanwhile it is instructive to compare the spectrum of Kepler with the spectra of Herbig-Haro objects obtained by Dopita (1978) and successfully compared with his models. We see that HHI and his Model 1 suggest that a model for Kepler might be possible with a high pre-shock density ($\sim 200-$ $300 \mathrm{~cm}^{-3}$), an increased nitrogen abundance ($\times 3.5$) and an increased shock velocity ($>110 \mathrm{~km} \mathrm{~s}^{-1}$) to produce the strong [$\mathrm{O}_{\mathrm{III}}$] lines.

5 Conclusions

Spectra of a few different regions in the three Galactic SNRs RCW 86, 103 and Kepler have been presented. All three objects are characterized by large electron densities in the
 intense emission lines of [$\mathrm{O}_{\mathrm{III}}$] and [$\mathrm{N}_{\text {II }}$]. In all three objects the interstellar or the circumstellar extinction varies from point to point in the nebula, particularly in RCW 86 and in
Kepler. These two sources exhibit also significant variations in their spectral appearance in different points.
We believe that the data presented in Tables 1, 2 and 3 may serve to test theoretical models of SNR filaments. In particular it is interesting to know whether the spectral variations observed in RCW 86 and in Kepler can be interpreted as resulting from variations other physical parameters in one and the same remnant.

Acknowledgments

References

Allen, C. W., 1973. Astrophysical Quantities, 3rd edn., Athlone Press, London.
Blair, W. P., Kirshner, R. P. \& Chevalier, R. A., 1981. Astrophys. J., 247, 879.
Brocklehurst, M., 1971. Mon. Not. R. astr. Soc., 153, 471. contributions to this work.

$\stackrel{\infty}{\infty}$
Spectrometry in galactic supernova remnants
Bychkov, K. V. \& Pikel'ner, S. B., 1975. Soviet Astr. Lett., 1, 14.
Caswell, J. J. \& Robinson, B. J., 1974. Aust. J. Phys., 27, Caswell, J. L., Murray, J. D., Roger, R. S., Cole, D. J. \& Cooke, D. J., 1975. Astr. Astrophys., 45, 239. Caswell, J. L., Murray, J. D., Roger, R. S., Cole, D. J. \& Cooke, D. J., Daltabuit, E., D'Odorico, S. \& Sabbadin, F., 1976. Astr. Astrophys., 52, 93.
Danziger, I. J. \& Dennefield, M., 1976. Publ. astr. Soc. Pacific, 88, 44.
D'Odorico, S. \& Sabbadin, F., 1976. Astr. Astrophys., 50, 315.
D'Odorico, S. \& Sabbadin, F., 1977. Astrophys. J. Suppl., 28, 439.
Dopita, M. A., 1976. Astrophys. J., 209, 395.
Dopita, M. A., 1977. Astrophys. J. Suppl., 33, 437.
Dopita, M. A., 1978. Astrophys. J. Suppl., 37, 117.
Dopita, M. A., D'Odorico S \& Benvenuti, P 1980.
Dopita, M. A., D'Odorico, S. \& Benvenuti,
Dopita, M. A., Mathewson, D. S. \& Ford, V
Dopita, M. A., Mathewson, D. S. \& Ford, V.
Fesen, R. A. \& Kirshner, R. P., 1980 . Astroph
Fesen, R. A. \& Kirshner, R. P., 1982. Astrophys. J., 258, 1.
Fesen, R. A., Blair, W. P., Kirshner, R. P., Gull, T. R. \& Parker, R. A. R., 1981. Astrophys. J., 247, 148.
Kirshner, R. P. \& Chevalier, R. A., 1977. Astrophys. J., 218, 142.
Miller, J. S., 1974. Astrophys. J., 189, 239.
Minkowski, R., 1959. Paris Symposium

[^0]: Plate 3. Reproduction of photograph of Kepler (van den Bergh et al. 1973) showing positions of the
 aperture. North is at the top and east on the left.

