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Abstract

1.5 to 4 million hectares of land burns in wildfire across the United States each year, contributing 

to post-fire erosion, ecosystem degradation and loss of wildlife habitat. Unmanned Aircraft 

Systems (UAS) and sensor miniaturization offer a new paradigm, providing an affordable, safe, 

and responsive on-demand tool for monitoring fire effects at a much finer spatial resolution than is 

possible with current technology. Using spectroscopic analysis of a variety of live as well as 

combusted vegetation samples to identify the spectral separability of vegetation classes, an optimal 

set of spectra was selected to be utilized by machine learning classifiers. This approach allows 

high resolution mapping of wildland fire severity and extent.
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1. Background

Earth’s wildlands are an important part of our home planet, providing habitat for around 6.5 

million species according to the United Nations Environment Program (Mora, 2011). In the 
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United States (US) and elsewhere, wildlands contribute to energy development, recreational 

and spiritual opportunities for humans, and provide irreplaceable ecosystem services 

including clean water, nutrient cycling, pollination, and forage and browse for animals. 

Large expanses of the wildlands in the US have evolved with fire and depend on periodic 

wildfires for health and regeneration (Aplet, 2010). Effective management of wildfire and 

prescribed fires is an essential critical step toward healthy and sustainable wildlands. A 

quantitative understanding of the relationships between fuel, fire behavior, and the effects on 

human development and ecosystems can help land managers develop nimble solutions to US 

wildfire problems.

Fire ecology enables managers to study temporary environmental changes by accounting for 

the pronounced change that wildland fire effects on an ecosystem. The emerging field of 

ecoinformatics promises to provide the methodologies and tools needed to acquire, analyze 

and manage the growing amounts of complex ecological data available from the immense 

volume of data available in very high spatial resolution imagery which can be acquired with 

small unmanned aircraft system (sUAS), providing actionable knowledge of the effects of 

wildland fire for ecosystem management.

Current methods for acquiring imagery which can be utilized for assessing fire effects rely 

on satellites, which in the case of Landsat have a spatial resolution of 30 meters (NASA, 

2016). Monitoring Trends in Burn Severity (MTBS) is a national project within the US to 

map fire severity and extent from Landsat data with records going back to 1984. However, 

this project only maps wildland fires greater than 400 hectares in the western US and greater 

than 200 hectares in the eastern US (Eidenshink, 2007; Sparks, 2015). As a result, much of 

the body of fire history contained in fire atlases omit the spatial extent of small and moderate 

sized fires (Morgan, 2014). These smaller fires can account for 20 percent of the total area 

burned across a landscape, which is also the most ecologically diverse of the total area 

burned (Hamilton, 2015). Accurate historical record of fire history is necessary in order to 

determine departure of current fire frequency from historic fire frequency, a key metric for 

determining ecosystem resilience (WFLC, 2014). Current methods for image acquisition 

have also included the utilization of manned aircraft, but for the purposes of obtaining post 

fire imagery, manned aircraft is much more expensive than sUAS, costing as much as 10 

times more to operate (USGS, 2015) as well as usually being prioritized as a resource on 

large active fires, precluding their availability to acquire post-fire imagery.

Vegetation structural characteristics that influence wildland fire effects vary at scales that are 

less than the 30 meter resolution data available from the Landsat satellites. The ability to 

acquire higher resolution ecological data at the same or smaller scale than vegetation has the 

potential of increasing the accuracy of remotely sensed data (Holden, 2010). Pixels are the 

smallest unit that can be addressed in an image, each pixel containing a single value for each 

band in the image (Chang, 2016). Higher resolution images contain greater pixel density for 

a given area while lower resolution images utilize fewer pixels to represent the same area. 

Higher resolution enables objects to be represented spatially by multiple pixels, which 

collectively contain the spatial extent of the object (Chuvieco, 2016). Lower resolution 

satellite imagery pixels will commonly contain multiple heterogeneous objects, with the 

spectral reflectance of the pixel being influenced by each of the objects within the spatial 
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extent of the pixel (Sridharan, 2013). The combined spatial reflectance from the 

heterogeneous objects will cause the resulting pixel value to contain an aggregate value 

which may not adequately depict any of the objects within the pixel’s spatial extent.

2. Remote Sensing with sUAS

The proliferation of small unmanned aircraft system technology has made the procurement 

and use of remotely sensed data a viable possibility for many organizations that could not 

afford to obtain such data in the past. Knowledge imparted by tools and methods being 

developed through this effort will enable wildland managers to establish data-informed 

strategies for recovery of burned areas. After a wildland fire has been suppressed, sUAS with 

an attached multispectral or hyperspectral image acquisition unit can enable wildland 

managers to obtain fire effects information in a timely, safe, and cost-effective manner. 

Unlike manned aircraft or satellites, sUAS can be deployed at nearly any time or location, 

including adverse conditions or topography where human life would be at risk, enabling a 

cost effective and timely method for mapping both the extent of the fire and severity of the 

burned area. These data can be utilized in developing the recovery plan for the fire impacted 

area and updating existing spatial data to reflect the current state of the vegetation and fuels 

within the fire perimeter.

2.1. Spatial Resolution

Current regulations by the US Federal Aviation Administration require that sUAS in the US 

must be flown at altitudes not exceeding 120 meters (400 ft) above ground level (AGL). 

Flying at such low altitudes ensures that sUAS acquired imagery will be hyperspatial, that is, 

where the pixel size is smaller than individual objects in the image (Sridharan, 2013). 

Commonly, hyperspatial (sub-decimeter) imagery allows the acquisition of very small, but 

ecologically significant features such as white ash (Kokaly, 2007). The presence of increased 

amounts of white ash has been found to be significantly correlated with increased surface 

fuel consumption, providing an indication of high fire severity (Hudak, 2013).

The DJI Phantom 4, a commonly available sUAS comes with a digital camera that has a 

horizontal field of view of 94 degrees, acquires twelve megapixel images with 3000 rows by 

4000 columns of pixels. Aerial imagery acquired by a Phantom 4 while flying at an altitude 

of 120 meters AGL has a spatial resolution of 6.4 centimeters per pixel. Objects that are 

wider than that pixel resolution will be discernible in the acquired hyperspatial imagery as 

shown in Figure 1a. Black regions of the image are areas that were burned. Small lines and 

patches of white within the burned area are white ash from sagebrush which was fully 

combusted by the fire. Linear features are fire containment lines dug by a bulldozer.

Features that are easily identified in hyperspatial imagery are lost in low resolution 30 meter 

LANDSAT satellite imagery, being aggregated into more dominant neighboring features. 

Figure 1b shows the same scene as the preceding image, but resampled to 30 meter spatial 

resolution having 48 pixels aligned in 6 rows by 8 columns. If smaller objects need to be 

detected in imagery acquired by a sUAS, higher spatial resolution can be achieved by 

reducing the altitude of the sUAS.
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2.2. Spectral Resolution

Machine learning based analytics use spectral reflectance to identify a variety of classes of 

vegetative features in images from which actionable knowledge can be derived. Spectral 

responses between 300 and 2500 nanometers (nm) can be used to differentiate between 

different image features such as white and black ash (Lentil, 2006) as well as other features 

of interest to fire managers such as bare earth and vegetation type (Rango, 2009). 

Development of analytics which can examine hyperspectral imagery will allow utilization of 

individual spectra as small as 10nm which offer the most information for extraction of 

classes of interest for fire ecology from sUAS data.

Most commercially available sUAS can be equipped to take aerial imagery with an onboard 

digital camera, a multi-spectral sensor with three bands capturing visible light in the blue, 

green and red spectrum ranging from 400 nm to 700 nm (Lebourgeois, 2008). More recently, 

miniaturization of hyperspectral sensors has enabled them to be carried onboard small 

sUAS, offering a more affordable and accessible means by which to acquire hyperspectral 

aerial imagery.

3. Spectroscopy

In order to establish whether classes of interest in mapping wildland fire severity are 

adequately distinct to enable machine learning analytics to distinguish between the classes, it 

was necessary to acquire a spectral library with which we established class spectral 

separability. Our research efforts include mapping of wildland fires in a variety of ecosystem 

types common to the interior northwestern US. Consequently, we found it necessary to build 

a spectral library in order to assure our spectroscopic analysis consisted of samples of 

burned and unburned vegetation common to our study region.

3.1. Vegetation Collection

In building a spectral library suitable for our spectroscopic analysis for wildland fire, it was 

necessary to collect both burned and unburned vegetative samples of species common to the 

northwestern US. This necessitated the inclusion of a biologic distribution of species across 

the four life forms of interest (conifer, deciduous, shrub and herbaceous) as well as both 

white and black ash. Collection of biologically diverse samples for inclusion in the library 

was facilitated by the close proximity of our research team located in Nampa, Idaho, USA to 

ecologically diverse ecosystems across montane southern Idaho, ranging from the xeric 

Owyhee Mountains to the mesic upper Payette River watershed.

3.1.1. Collection Methods—Maintaining consistent reflectance of the samples from 

collection of the sample to measurement of reflectivity in our lab was critical to ensuring the 

integrity of our data. If vegetative samples are kept moist and refrigerated, foliar moisture 

can be maintained which will ensure retention of chlorophyll and resulting reflectivity for up 

to three days (Richardson, 2002). Toward this end, when vegetative samples were collected, 

the cut end of the sample was wrapped in a moist paper towel and the sample was placed in 

a plastic bag as soon as possible. Additionally, the sample was refrigerated at the earliest 

opportunity. All vegetative samples were run through the spectrophotometer within 48 hours 
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of collection to ensure that the measure of reflectance remained consistent to what would be 

found with live uncut vegetation.

Reflectance measurements on white and black ash indicated that unlike unburned vegetation, 

spectral reflectance did not degrade over time, allowing for us to focus on measuring 

reflectance of unburned vegetative samples prior to running samples of burned organic 

materials which were not temporally sensitive through the spectrophotometer.

3.2. Spectrometry

Reflectance is a ratio of radiant flux emitted (radiance) to radiant flux received (irradiance) 

(Schaepman-Strub, 2006), which we measured with a Cary 100 UV-Vis spectrophotometer 

manufactured by Agilent Technologies equipped with a diffuse reflectance accessory. The 

spectrophotometer measured the diffuse spectral reflectance which occurs when light 

reflects off rough surfaces (Jewett, 2008) of the vegetation and ash samples. Resulting 

spectra are a measure of directional-hemispherical reflectance (Schaepman-Strub, 2006) 

from 190 to 900 nanometers (nm) with a resolution of one nm. In addition to measuring 

diffuse reflectance of both black ash and white ash samples, a variety of samples were 

measured for each of the life forms of interest (conifer, deciduous, shrub and herbaceous). In 

order to ensure biologic diversity of the samples, we collected 70 samples of a variety of 

species across each of the vegetation and ash classes.

When measuring the reflectance of each vegetative sample, three specimens were prepared 

from the sample for measurement with the spectrophotometer. A mean filter was applied to 

the reflectance measurements for the sample, averaging the reflectance values from the 

specimens into spectrum with a spectral resolution of 5 nm, thereby smoothing and reducing 

noise in the spectral data (Van Aardt, 2000). Each spectrum is identified by its midpoint, and 

that wavelength is used as the independent variable.

3.3. Spectroscopic Analysis

Analysis of spectral separability of the classes of interest for wildland fire severity involved 

both visualization of the data by plotting spectral mean of each class as well as utilization of 

the Student T-test to determine spectral separability between the classes by spectrum.

3.3.1. Data Visualization—To get an initial visualization of the data we had collected, 

we plotted results from each sample on a line graph. In order to simplify the visualization of 

the results, we calculated the mean reflectance along with the standard deviation for each 

class of interest from the spectral data of samples collected in each class. The mean 

reflectance as well as the standard deviation for each class was then graphed in a line plot 

shown in Figure 2.

Examination of the class mean reflectance shows complete spectral separation of black ash 

from white ash, with a minimum difference of 15 percentage points between the means at all 

the spectra across the entire spectral extent measured. This spectral separability between 

black ash and white ash will greatly assist classifiers in being able to distinguish between 

where the fire burned with lower severity (as evidenced by black ash) from where the fire 

burned with higher severity (as indicated by the existence of white ash).
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Additional investigation of the mean reflectance of the classes of interest shows that there is 

spectral separation between the means of black ash and the vegetative classes in the visible 

and near infrared spectrum above 350 nm. This separation bodes well for the ability of 

development of machine learning classifiers to differentiate between black ash and 

vegetative classes utilizing spectral reflectance.

3.3.2. T-Test to Establish Class Separability—A T-test is a statistical hypothesis 

test which returns a decision as to whether samples taken from two populations show that 

the populations are statistically different from each other. This statistical test has been used 

to assess whether differences in spectral reflectance between species of trees are statistically 

significant. (Roberts, 2004)

T-Test Explanation and Setup.: For every sample collected, we have a spectroscopy graph, 

where reflectance (R) is plotted against wavelength (λ). Suppose we examine our data 

which has been resampled at a spectral resolution of five nm which takes the form of the 143 

values

R190, R195, R200, …, R895, R900 .

We examine this reflectance by wavelength data for the samples of both classes. For each of 

the 143 wavelength values 190nm,195nm,…,900nm we perform on the R-levels a T-test for 

the difference in mean. For each of the 143 different T-tests, the null hypothesis is that there 

is no significant difference between the reflectance levels of Class A (e.g. black ash) and 

those of Class B (e.g. white ash) – that any difference between the mean reflectance level of 

the samples of Class A and the mean reflectance level of the samples of Class B is due to 

chance. The P-value obtained is this chance – the probability of the observed difference 

occurring under the assumption of the null hypothesis. This P-value indicates the minimum 

significance level at which the null hypothesis can be rejected; that is, the minimum 

significance level at which we can assert that there is in fact a difference between Class A 

and Class B at that particular wavelength. Thus we have a collection of P-values P190, P195,

…, P900 describing the minimum significance level for distinguishing Class A and Class B 

at the respective wavelengths, which we refer to with the notation P(λ).

T-Test Analysis Results.: Two tailed T-tests were run to determine dissimilarity between 

the black ash and vegetation classes in addition to the black ash and white ash classes. P(λ) 

for pairs of classes at each spectra were graphed in relation to a significance level. Spectrum 

where the P(λ) curves are below the significance level, indicate spectrum where the classes 

are dissimilar, indicating a set of optimal spectrum for classifiers to consider when 

classifying pixels by spectral signature in order to most accurately determine which class the 

pixel belongs to.

P(λ) for black ash and white ash remains below a significance level of 0.005 for the entire 

spectral extent, from 200 through 900 nm as shown in Figure 3. This indicates that across all 

of the spectra, we have very high confidence that white and black ash are separable, which is 

beneficial for utilization by classifiers for identifying low fire severity as indicated by the 
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existence of black ash as opposed to high fire severity as marked with the presence of white 

ash. The P(λ) curve for black ash and vegetation exceeds a significance level of 0.04 in the 

ultra-violet spectrum (200–350 nm), but remains below the significance level for the rest of 

the spectral extent (350–900 nm). This shows that both the visible (390–700 nm) and the 

near infrared spectrum (700–900 nm) will be well suited for utilization by classifiers for 

spectral identification of burned pixels (as noted with the existence of black ash) from 

unburned vegetation.

In observing P(λ) between canopy (conifer and deciduous) and surface (shrub and 

herbaceous) vegetation classes in Figure 3 we can detect separability with a significance 

level of 0.1 between the canopy and the surface classes in the spectra between 450 nm and 

700 nm as evidenced by all the P(λ) curves falling below a significance level of 0.1 in those 

spectrum. Additionally, from 525 nm to 700 nm the P(λ) between the conifer and surface 

classes fall below 0.055, and the P(λ) between deciduous and surface classes fall below 0.05 

between 575 nm and 700 nm indicating higher confidence of separability within the spectra 

where P(λ) is very near or below a significance level of 0.05. While these results do not 

show the same confidence of separability as found between the black ash and vegetation as 

shown in Figure 3, they still show spectral separation between the canopy and surface 

lifeforms within the visible spectrum.

While the P(λ) curves between the canopy and surface fuels exceed the significance level of 

0.1 for the spectrum between 700 and 900 nm, it is interesting to note that as the P(λ) curves 

progress from 700 to 900 nm, they are very steadily decreasing, dropping below a 

significance level of .05 by 775 nm between the herbaceous and canopy classes. It would be 

interesting to see if a spectrophotometer with a greater spectral extent had been available 

whether P(λ) would have dropped below the significance level for the canopy and shrub 

classes as they progressed further into the near infrared spectrum. If so, that would have 

indicated value in using the near infrared spectrum in differentiating between the vegetative 

classes of interest (Van Aardt, 2000).

3.3.3. Transformation of Hyperspectral Data to Color Channels—The spectral 

separation found between the classes between 450 and 700 nm is also the range color 

cameras are able to capture, showing promise for classifiers being able to distinguish 

between all the classes of interest using the red, green and blue bands available in multi-

spectral color images. In order to assess the impact this data has on the prospect of using 

color imagery for mapping wildland fire, we resampled the hyperspectral data to the spectral 

sensitivity of a typical color camera in order to assess the separability of the classes from 

color imagery such as could be acquired with color cameras that are commonly mounted on 

a sUAS.

In order to derive muli-spectral data typical of color imagery from our hyperspectral data, 

we created a model of a typical color from the spectral sensitivity data from the cameras 

mentioned by Jiang (2013) which was measured at 10 nm spectral resolution. We averaged 

the spectral sensitivity curves of the set of cameras into a single set of sensitivity curves 

indicative of the spectral sensitivity of the red (570–670 nm), green (500–570 nm) and blue 

(420–500 nm) channels of a typical camera as shown in Figure 4. These bands from our 
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typical camera model (TCM) were then used to obtain a weighted average of each of our 

spectral samples into red, green and blue channel values that are representative of the 

reflectance of that species in color imagery. The mean as well as the standard deviation of 

the samples from each class are shown in Figure 5. The color reflectance values for the 

samples were then run through the T-tests in the same manner as mentioned previously for 

the hyperspectral data. Looking at the results of the T-tests between the classes in the color 

channels as shown in Figure 6, black ash shows high confidence of separability with both 

white ash and the vegetation samples with a significance level of 0.001 as was seen with the 

hyperspectral data. The vegetation classes show separability with the surface and canopy 

classes P-values dropping below a significance level of 0.05 in each of the color bands with 

the exception of conifer in the blue band which has separability with a P-value of 0.06 shrub 

and 0.07 with herbaceous.

4. Application

The separability between classes established with the T-tests shows potential for enabling 

the development of machine learning based analytics which utilize spectral reflectance to 

differentiate between ash and vegetation classes for mapping wildland fire severity and 

extent. In particular, the low P-values across the same spectra captured by common digital 

cameras illustrates the potential of establishing class separability with a multispectral color 

image containing red, green and blue bands.

In order to test the applicability of these findings, we trained machine learning classifiers 

developed by our team with examples of black ash, white ash and surface vegetation shown 

in Figure 1a. The classifier used those training examples to classify the rest of the image into 

unburned vegetation, low severity fire where the classifier detected black ash and high 

severity fire as evidenced by the existence of white ash. Our analytics then utilized image 

processing tools we developed to clear up the resulting fire severity image by performing 

object enhancement, edge smoothing and noise reduction utilizing common morphological 

algorithms. The resulting fire severity image is shown in Figure 7 where:

• black indicates pixels the classifier labeled as unburned vegetation

• grey corresponds to areas that burned with a low intensity as evidenced by the 

existence of black ash

• white corresponds to spots that burned with high intensity as evidenced by white 

ash that resulted from fully combusted sagebrush

5. Conclusion

The T-test results show good class separability in the visible spectrum between black ash, 

white ash, the canopy vegetation as well as the surface vegetation classes. Additionally, the 

near infrared spectrum also shows promise for class separability between white ash, black 

ash and the vegetation classes. The P-values above 750 nm indicate spectral separability 

between the canopy and herbaceous vegetation classes in the near-infrared spectrum. The P-

value trends between the canopy and shrub vegetation class approaching the upper bound of 

the spectral extent of this study indicate the potential of separability between the canopy and 
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shrub vegetation classes further into the infrared spectra past the spectrum measured by our 

spectrophotometer. The T-test results did not show good intra-class separability in the 

ultraviolet spectra below 450 nm.

Class separability found in the visible and infrared spectrum can be utilized in the 

development of machine learning analytics by identifying and utilizing only spectra that 

provide good separability between classes, thereby excluding spectra that do not provide 

information as to class separability. The class separability we found in the near infrared 

spectrum indicate that there would be benefit to using a sensor that can record spectral 

reflectance both in the visible and the near infrared spectrum, particularly if the spectral 

extent of the sensor extends past 900 nm. The P(λ) trends we observed between the canopy 

and surface vegetation classes approaching 900 nm continued further into the near infrared 

spectrum, again establishing separability between the canopy and surface vegetation classes 

further into the near infrared spectrum.

Determination of spectral separability was found between all the classes of interest for 

mapping wildland fire severity in the visible spectra (450–700 nm). This separation was 

found both with hyperspectral data (Figure 3) as well as multi-spectral color data (Figure 6) 

transformed from the hyperspectral data using the TCM. These results show promise for 

being able to map wildland fire severity using the color digital cameras that come stock on 

many sUAS, as they detect reflected light in three bands covering that same 450 to 700 nm 

spectra (Chang, 2016).

Our data and analysis indicate that an ordinary three-band color camera will provide enough 

information. The additional spectral resolution (about 20 nm per band) provided by a 

hyperspectral imager does not seem to provide enough additional relevant information to 

justify the cost of the instrument and the added computational burden to exploit that 

information. There may be potential use for a hyperspectral sensor in the longer wavelengths 

of the near infrared spectrum (900–5000 nm) due to the variation across smaller spectrum in 

that range, where it appears that the P(λ) curves may drop below the significance level (Van 

Aardt, 2000). However, our study did not explore this spectral range.

5.1. Future Work

This effort was part of a larger ongoing research project at Northwest Nazarene University 

developing analytics for mapping wildland fire effects from hyperspatial sUAS imagery 

using machine learning and image processing. The goal of the research project is to enable 

the acquisition, analysis and management of hyper-resolution imagery for mapping burn 

severity in a more responsive, affordable and safe manner than is possible with current 

methods. This includes the development and calibration of image acquisition, processing 

and classification tools within our fire effects analytics, leveraging the results of these 

conclusions to focus the analytics on spectra with the best class separability. Current 

research topics being explored include:

• Post-fire image acquisition methods over wildland fire burns in montane 

ecosystems with varying topography and vegetation types. This effort is being 

conducted in cooperation with the Boise National Forest in southern Idaho, USA.
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• Investigation of the applicability of image texture (Haralick, 1973) as an 

additional input with color image bands for improving machine learning 

accuracy for mapping wildland fire effects (Hamilton, 2017).

• Evaluation of the ability of increased spatial resolution to improve mapping of 

wildland fire effects by assessing machine learning accuracy when using 

hyperspatial (sub-decimeter) as opposed to low resolution (30 meter) imagery.

• Assessment of a variety of machine learning algorithms for mapping wildland 

fire effects. Algorithms currently being evaluated include Support Vector 

Machines, k-Nearest Neighbor, Artificial Neural Networks and Decision Trees.

While the results of the analysis described are promising for class separability in the visible 

spectrum, additional research is needed looking at class spectral reflectance in the near and 

shortwave infrared spectrum which could not be measured by the spectrophotometer that 

was available. Near and shortwave infrared have been shown to hold promise for wildland 

vegetation species identification, (Van Aardt, 2000), fire severity mapping (Lentile, 2006) 

and vegetation health (Lasaponara, 2006). This warrants further investigation of the 

utilization of those spectra for establishment of class separability for hyper-resolution 

mapping of wildland fire severity.
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Figure 1 –. 
(a) Image of a rangeland study area acquired with a Phantom 3 Professional sUAS flying at 

120 meters AGL with a spatial resolution of 6.4 centimeters per pixel. (b) Same scene 

resampled to 30 meter resolution with six rows and eight columns of pixels.
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Figure 2 –. 
(a) Mean reflectance for black ash, white ash, conifer, deciduous, shrub, and herbaceous. (b) 

Mean reflectance for black and white ash (solid line) with plus and minus one standard 

deviation (dotted lines). (c) Mean reflectance for canopy lifeforms (conifer and deciduous) 

with plus and minus one standard deviation. (d) Mean reflectance for surface lifeforms 

(herbaceous and shrub) with plus and minus one standard deviation.
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Figure 3 –. 
Burn severity image showing unburned vegetation (black), low intensity burn (grey) and 

high severity burn (white).
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Figure 4 –. 
Typical camera model spectral sensitivity curves for red, green and blue channels.
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Figure 5 –. 
(a) Mean reflectance in red, green and blue channels of the TCM for black ash, white ash, 

conifer, deciduous, shrub, and herbaceous classes. TCM channels are centered on the 

wavelength with the peak spectral sensitivity of the corresponding TCM channel. (b) Mean 

reflectance for black and white ash (solid line) with plus and minus one standard deviation 

(dotted lines). (c) Mean reflectance for canopy lifeforms (conifer and deciduous) with plus 

and minus one standard deviation. (d) Mean reflectance for surface lifeforms (herbaceous 

and shrub) with plus and minus one standard deviation.
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Figure 6 –. 
T-test results for classes of color band reflectance as modeled from the TCM.
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Figure 7 –. 
Burn severity raster generated by machine learning classifier from image in Figure 1a. Black 

indicates unburned vegetation, grey corresponds to low intensity as evidenced by the 

existence of black ash and white represents spots that burned with high intensity as 

evidenced by white ash.
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