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Abstract 

 

Binding of the competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-
leucine) to the aminopeptidase from Aeromonas proteolytica (AAP) was examined by both spectroscopic and 
crystallographic methods. Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], 
and [ZnCo(AAP)] enzymes recorded in the presence of bestatin revealed that both of the divalent metal ions in 
AAP are involved in binding bestatin. The electron paramagnetic resonance (EPR) spectrum of the 
[CoCo(AAP)]−bestatin complex exhibited no observable perpendicular- or parallel-mode signal. These data 
indicate that the two CoII ions in AAP are antiferromagnetically coupled yielding an S = 0 ground state and 
suggest that a single oxygen atom bridges between the two divalent metal ions. The EPR data obtained for 
[CoZn(AAP)] and [ZnCo(AAP)] confirm that bestatin interacts with both metal ions. The X-ray crystal structure of 
the [ZnZn(AAP)]−bestatin complex was solved to 2.0 Å resolution. Both side chains of bestatin occupy a well-
defined hydrophobic pocket that is adjacent to the dinuclear ZnII active site. The amino acid residues ligated to 
the dizinc(II) cluster in AAP are identical to those in the native structure with only minor perturbations in bond 
length. The alkoxide oxygen of bestatin bridges between the two ZnII ions in the active site, displacing the 
bridging water molecule observed in the native [ZnZn(AAP)] structure. The M−M distances observed in the 
AAP−bestatin complex and native AAP are identical (3.5 Å) with alkoxide oxygen atom distances of 2.1 and 1.9 Å 
from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen atom of bestatin is coordinated to 
Znl at a distance of 2.3 Å. In addition, the NH2 group of bestatin, which mimics the N-terminal amine group of an 
incoming peptide, binds to Zn2 with a bond distance of 2.3 Å. A combination of the spectroscopic and X-ray 
crystallographic data presented herein with the previously reported mechanistic data for AAP has provided 
additional insight into the substrate-binding step of peptide hydrolysis as well as insight into important small 
molecule features for inhibitor design. 

 

Aminopeptidases catalyze the hydrolysis of a wide variety of N-terminal amino acids from proteins and 
polypeptide chains (1−3). Most enzymes in this group have broad substrate specificities and are widely 



distributed in both plant and animal tissues (2). Their biological and medicinal significance is extensive because 
of their many roles in the degradation of proteins and biologically active peptides, including hormones. The 
importance of understanding the reaction mechanism of aminopeptidases is underscored by their central role in 
several disease states including stroke, diabetes, cancer, HIV, bacterial infections, and neuropsychiatric disorders 
associated with the dysregulation of glutamatergic neurotransmission, such as schizophrenia, seizure disorders, 
and amyotrophic lateral sclerosis (ALS) (4−6). Recently, it has been shown that several naturally occurring 
hydroxyethyl isostere dipeptide metalloaminopeptidase inhibitors (i.e., bestatin, leuhistin, and actinonin) inhibit 
matrix degradation and invasion of extracellular matrixes by fibrosarcoma cells as well as decrease HIV viral load 
(6, 7). For these reasons, several metallopeptidases have become the subject of intense efforts in inhibitor 
design (8−13). 

Aminopeptidases that have dimetallic active sites can be split into two distinct groups based on their active site 
structures (8). The first group includes the leucine aminopeptidases from bovine lens (blLAP),1 porcine kidney, 
tomato, and Escherichia coli (PepA) (Figure 1), while the second group contains the leucine aminopeptidases 
from Aeromonas (Vibrio) proteolytica (AAP) (14) and Streptomyces griseus (SAP) (Figure 1A) (15). AAP, while not 
a specific pharmaceutical target at this time, contains a dinuclear active site that is superimposable on the vast 
majority of dinuclear metallopeptidases that are potential pharmaceutical targets such as SAP, the d-
aminopeptidase from Bacillus subtilis (DppA), the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase 
(DapE), the argE-encoded N-acetyl-l-ornithine deacetylase (ArgE), the carboxypeptidase 
G2 from Pseudomonas sp. strain RS-16 (CPG2), and glutamate carboxypeptidase II (GCP-II), sometimes referred 
to as N-acetylated-α-linked-acidic dipeptidase (NAALADase) (8, 14−17. AAP has been structurally characterized 
to 1.8 Å resolution (1AMP) (18), but recently, its structure was determined to 1.2 Å resolution (19, 20). In both 
structures, AAP was shown to contain a single globular domain with a centrally located mixed β sheet 
sandwiched between α helices. The cocatalytic active site contains a (μ-aquo)(μ-carboxylato)dizinc(II) core with 
a terminal carboxylate and histidine residue at each metal ion resulting in symmetric coordination spheres for 
the two active site ZnII ions (Figure 1B). Both ZnII ions reside in distorted tetrahedral coordination geometries 
with a Zn−Zn distance of 3.5 Å. A glutamate residue, Glu151, forms a hydrogen bond with the bridging water 
molecule, while the second oxygen atom is 3.4 Å from the Ne of His97, which is a ligand to Zn1. 



 
Figure 1 Schematic representations of the blLAP and AAP active sites and the AAP−LPA complex. 
 

Aminopeptidase inhibitors with boronic acids (21−23), chloromethyl ketones (24), phosphonic acids (25−27), 
hydroxamate (28−30), and α-hydroxyamide (24) functional groups have been previously studied. Peptide 
analogue aminopeptidase inhibitors of microbiological origin have not been examined in detail. One of these, 
bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) is a naturally occurring dipeptide isolated from 
cultures of Streptomyces olivoreticuli (31). Bestatin has been shown to be a competitive, slow-binding inhibitor 
of both blLAP and AAP with 𝐾𝐾i∗ values of 1.3 and 18 nM, respectively (32−34). For all known aminopeptidases, X-
ray crystallographic data of a bestatin-bound analogue has only been reported for blLAP (35). The X-ray crystal 
structure of the [ZnZn(blLAP)]−bestatin complex revealed that the N-terminal amino group coordinates to Zn2, 
while the alkoxide moiety bridges between the two ZnII ions in the blLAP active site. Interestingly, the backbone 
carbonyl oxygen of bestatin is not bound to the dinuclear metal center in blLAP but is, instead, hydrogen-
bonded to the positively charged terminal amine of an active site lysine residue. 

In an effort to gain insight into the structure of AAP in the Michaelis complex, we have studied the binding of the 
competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) to AAP 
using both spectroscopic and crystallographic methods. The spectroscopic and X-ray crystallographic data 
presented herein combined with the previously reported mechanistic data for AAP (14) provide additional 
insight into the substrate-binding step of peptide hydrolysis and important features for inhibitor design. 



Materials and Methods 
Enzyme Purification.  
All chemicals used in this study were purchased commercially and were of the highest quality available. The 
aminopeptidase from Aeromonas(Vibrio) proteolytica was purified from a stock culture kindly provided by 
Professor Céline Schalk. Cultures were grown according to the previously published procedure (36) with minor 
modifications (37) to the growth media. Purified enzyme was stored at 77 K until needed. 

Spectrophotometric Assay.  
AAP activity was measured by the method of Prescott and Wilkes (36) as modified by Baker et al. (22). In this 
assay, the hydrolysis of 0.5 mM l-leucine p-nitroanilide (l-pNA) (10 mM Tricine at pH 8.0) was measured 
spectrophotometrically at 25 °C by monitoring the formation of p-nitroaniline. The extent of hydrolysis was 
calculated by monitoring the increase in absorbance at 405 nm (Δε405 value of p-nitroaniline of 10 800 M-1 cm-1). 
One unit is defined as the amount of enzyme that releases 1 μmol of p-nitroaniline at 25 °C in 60 s. Depletion of 
enzyme- bound zinc or cobalt was prevented by the addition of 0.1 mM ZnSO4 or CoCl2 to the buffer. The 
specific activity of purified ZnII-bound AAP was typically found to be 120 units per mg of enzyme. This value is 
identical to that reported by Prescott and Wilkes (36). Enzyme concentrations were determined from the 
absorbance at 280 nm with the value ε280 = 41 800 M-1 cm-1 (38). The accuracy of this value was checked by the 
Edelhoch method (39−41) using a 5:13:2 molar ratio mixture of N-acetyl-l-tryptophanamide/Gly-Tyr-amide/l-
cysteine to model AAP. The molar absorptivity determined from this method, ε280 = 43 950 M-1 cm-1 for AAP 
solubilized in 6 M guanidine hydrochloride, was in excellent agreement with the previously reported value by 
Prescott et al. (38). 

Electronic Absorption and Electron Paramagnetic Resonance (EPR) Samples.  
[CoZn(AAP)] and [ZnCo(AAP)] were prepared by dialysis for 72 h at 4 °C against 10 mM 1,10-phenanthroline 
monohydrochloride (o-phen) in 50 mM Hepes buffer at pH 7.5 (42). AAP was then exhaustively dialyzed against 
metal-free (chelexed) 50 mM HEPES buffer at pH 7.5. Any remaining metal ions were estimated by comparing 
the activity of the apo enzyme with a sample that had been reconstituted with ZnII. AAP incubated with o-phen 
typically had less than 5% residual activity after dialysis. Enzyme concentrations for UV−Vis and EPR samples 
were typically 1−2 mM. All buffers contained 20% 2-propanol to prevent aggregation at high protein 
concentrations (43, 44). Metal insertion was effected by the direct addition, with efficient mixing, of 1 equiv of 
MCl2 (where M = Co or Zn; ≥99.999% CoCl2, Strem Chemicals, Newburyport, Massachusetts; 99.999% ZnCl2, 
Aldrich) followed by an incubation period for 30 min at 20−25 °C. The second metal was then inserted in the 
same manner, and the electronic absorption spectrum was recorded prior to freezing in liquid nitrogen for EPR 
spectroscopy. A 5-fold excess of bestatin was introduced onto the inside side wall of an EPR tube, and the 
enzyme sample was introduced above this as a plug of ∼2 cm in length. As earlier work has demonstrated by 
optical methods (45), violently flicking the above system facilitates rapid and efficient mixing of the reagents and 
rapid freezing was achieved by plunging the tube into a beaker of a mixture of liquid and solid methanol over 
liquid nitrogen. These same EPR samples were then used to record electronic absorption spectra of the 
AAP−bestatin complex. 

Spectroscopic Measurements.  
All spectrophotometric measurements were performed on a Shimadzu UV-3101PC spectrophotometer equipped 
with a constant temperature holder and a Haake (Type 423) constant-temperature circulating bath. The use of 
200-μL, 1-cm path-length microcuvettes (QS, Hellma) stoppered with rubber septa facilitated the recording of 
the optical spectra under anaerobic conditions. Subtraction of the absorption spectrum of apo AAP from those 
of the substituted enzymes was performed using Shimadzu UV-3101 software. Low-temperature dual-mode EPR 



spectroscopy was performed using a Bruker ESP-300E spectrometer equipped with an ER 4116 DM dual-mode X-
band cavity and an Oxford Instruments ESR-900 helium-flow cryostat as described previously (15). Background 
spectra recorded on an EPR tube containing buffer were aligned with and subtracted from experimental spectra 
as in earlier work (45). All AAP EPR samples contained 20% 2-propanol by volume. Signals because of oxygen 
were occasionally observed in both EPR modes. These signals routinely disappeared upon raising the 
temperature in the helium cryostat to 125 K for 5 min and recooling. All spectra were recorded at a modulation 
frequency of 100 kHz and modulation amplitude of 1.26 mT (12.6 G) with a sweep rate of 10 mT s-1. Parallel- and 
perpendicular-mode EPR spectra were recorded at microwave frequencies of about 9.37 and 9.65 GHz, 
respectively; precise microwave frequencies were recorded for individual spectra to facilitate g alignment. Other 
EPR recording parameters are specified in the figure captions for individual samples. EPR simulations were 
carried out using XSophe (46). 

Crystallization.  
AAP was cocrystallized with bestatin using the crystallization conditions reported for the native enzyme (18). 
Briefly, purified AAP (10 mg/mL) in 10 mM Tris at pH 8.0, 10 mM KSCN, 0.4 M NaCl, and a 4-fold molar excess of 
bestatin was crystallized by vapor diffusion using 100 mM Tris at pH 8.0, 100 mM KSCN, and 4.5 M NaCl as the 
precipitating solution. Crystals with dimensions 0.7 × 0.4 × 0.4 mm were obtained in 2 days and were shown to 
be isomorphous with the native crystals. The crystals belong to space group P6122 with the following until cell 
dimensions:  a = b = 107.8 Å, c = 102.6 Å, α = β = 90°, γ = 120°, and one monomer per asymmetric unit. 

Data Collection and Processing.  
Diffraction data were collected at 4 °C on an R-axis IIC area detector system mounted on a Rigaku RU-200B 
rotating anode generator operating at 45 kV and 120 mA. One crystal was used for the entire data collection 
period. The exposures for 25 min were taken with an oscillation step size of 0.5°. A 0.3-mm collimator was used, 
and the crystal−detector distance was 100 mm. The diffraction data were integrated and scaled using HKL 
software (47). Data collection and refinement statistics are outlined in Table 1. The data were collected with an 
extremely high redundancy; 94.2% of the reflections were measured 4 times or more. A total of 33% of the 
observed reflections were measured 9−12 times. Because the data are so redundant, the Rmerge values were 
raised artificially. With greater redundancy, the correlation between I and Iavg becomes lower and 
the Rmerge increases. The Rmerge in the outer shell (2.07−2.0 Å) was 68.3%, and the overall Rmerge was 14.8%. 
The Iavg/σ(I)avg was 3.0 in the outer resolution shell. 

Table 1:  Data Collection and Refinement Statistics 

Crystal Data 
space group P6122 
unit cell parameters (Å) a = 107.8 
  b = 107.8 
  c = 102.6 
Data Processing 
number reflections, observed 348 645 
number reflections, unique 24 377 
cuttoff (I/s) 0 
Rmerge

a (overall) (%) 14.8 
completeness, overall (%) 99.0 
highest resolution shell (Å) 2.07−2.0 
Rmerge

a (outer shell) (%) 71.4 
completeness, outer shell (%) 99.8 



Model Refinement 
resolution range (Å) 10−2.0 
cuttoff (F/sF) 0 
R factorb (%) 19.5 
number of reflections 21 037 
Rfree (for 2053 reflections; %) 24.5 
number of protein atoms 2211 
number of zinc ions 2 
number of bestatin atoms 22 
number of water molecules 136 
B factor model individual 
RMSD from ideality   
bond lengths (Å) .006 
bond angles (deg) 1.19 
improper angles (deg) .63 
dihedral angles (deg) 25.6 
residues in most favored positionsc (%) 87.2 

a Rmerge = ∑|Iobs − Iavg|/∑ Iavg.b R factor = ∑|Fobs − Fcalc|/∑|Fobs|.c As determined by PROCHECK. 

Structure Solution and Refinement. Because crystals of the bestatin-inhibited enzyme were isomorphous with 
those of the native enzyme, the phases from the published native structure (access code 1AMP) (18) were used 
as the starting model. In this process, the zinc ions and water molecules were omitted from the original 
coordinate file. All refinement procedures were carried out using the software package X-PLOR (48). An Rfree (49) 
data set was made prior to any refinement using 9% of the total reflections. The initial model was subjected to a 
rigid-body refinement using all reflections in the 20.0−4.0 Å resolution range. Subsequent rounds of positional 
refinement were carried out using higher resolution data incrementally to 2.0 Å resolution. The R factor 
and Rfree at this point were 27.8 and 32.0%, respectively. Difference electron density maps with amplitudes 
2Fobs−Fcalc and Fobs− Fcalc were then calculated and showed clear electron density in the active site for the bound 
inhibitor and the missing ZnII ions. The two zinc ions and several water molecules were added to the model, and 
the model was subjected to further rounds of positional refinement. A model for bestatin was built using Insight 
(Accelrys, Inc.) and fit to the observed electron density. Additional water molecules were added to the model 
using the WATERPICK protocol in X-PLOR. Further rounds of positional refinement as well as overall and 
individual B-factor refinement protocols resulted in a final structure with an R factor of 19.5% and an Rfree of 
24.5%. In addition to the 291 amino acid residues, the final model contained 2 zinc ions, 136 water molecules, 
and 22 atoms of the inhibitor molecule. Simulated annealing omit maps, in which the active site region was 
omitted, were calculated, which confirmed the presence of the bound inhibitor. 

Results 
Electronic Absorption Spectroscopy.  
The electronic absorption spectrum of [CoCo(AAP)] was recorded in both the absence and presence of bestatin 
(Figure 2), and the absorption because of apo AAP was subtracted in both cases. The spectrum recorded in the 
absence of the inhibitor is identical to those previously reported for [CoCo(AAP)] (34) and is characterized by a 
maximum molar absorptivity of ∼95 M-1 cm-1 at 545 nm. Upon the addition of 4 equiv of bestatin, the maximum 
molar absorptivity decreased slightly to ∼80 M-1 cm-1, indicating that the CoII coordination number does not 
change. However, three absorption bands at 495 nm (83 M-1 cm-1), 525 nm (88 M-1 cm-1), and 545 nm (87 M-

1 cm-1) appear upon bestatin binding, indicating that bestatin interacts with the dinuclear active site of AAP. 



 
Figure 2 Electronic absorption spectra of a 1 mM sample [CoCo(AAP)] in 50 mM HEPES buffer, at pH 7.5 and 25 
°C, and 20% 2-propanol by volume, in the absence (—) and presence (- - -) of 4 equiv of bestatin. 
 

Electronic absorption spectra of [Co_(AAP)] and [ZnCo(AAP)] were also recorded in the absence and presence of 
bestatin (Figure 3). Spectra recorded in the absence of bestatin are identical to those previously reported for 
[Co_(AAP)] and [ZnCo(AAP)] after the subtraction of the absorption because of apo AAP (34). When bestatin was 
added to [Co_(AAP)], the maximum molar absorptivity increased from ∼50 to 58 M-1 cm-1 and the broad 
absorption band observed for [Co_(AAP)] was replaced by three, resolved absorption bands at 495 nm (54 M-

1 cm-1), 520 nm (58 M-1 cm-1), and 545 nm (45 M-1 cm-1), similar to the changes observed for [CoCo(AAP)]. On the 
other hand, when bestatin is added to [ZnCo(AAP)], the overall shape of the absorption band did not change but 
the maximum molar absorptivity increased slightly from ∼30 to 35 M-1 cm-1 and the absorption band is blue-
shifted from 530 to 520 nm. 

— 
Figure 3 Electronic absorption spectra of 1 mM samples of [Co_(AAP)] and [ZnCo(AAP)] in 50 mM HEPES buffer, 
at pH 7.5 and 25 °C, and 20% 2-propanol by volume, in the absence (—) and presence (- - -) of 4 equiv of 
bestatin. 
 

EPR Spectroscopy.  
The EPR spectrum of [CoCo(AAP)] is shown in Figure 4. Upon the addition of 4 equiv of bestatin, the 
perpendicular-mode signal observed at 10 K resulting from the two S = 3/2 CoII ions is quenched. Examination of 
the parallel-mode EPR spectrum of [CoCo(AAP)]−bestatin revealed no detectable parallel-mode signal. The EPR 
spectrum of [CoZn(AAP)] and [ZnCo(AAP)] was also recorded with and without added bestatin (Figure 
5). Noticeable differences are present in the spectra of both heterodimetallic forms of AAP upon binding 
bestatin, namely, the appearance of distinct hyperfine splitting in both samples. The spectra of [CoZn(AAP)] and 
[ZnCo(AAP)] were also examined at higher temperatures and powers. The maximum normalized signal intensity 



was observed at low temperatures (∼5 K) and low microwave powers, indicating that the observed signals are 
likely the result of an Ms = |±1/2〉 ground-state transition. The observed signals are distorted by saturation at 
higher powers (≥20 mW) and by relaxation at higher temperatures (≥20 K), and consequently, multiple species 
could not be reliably resolved by subtraction of spectra recorded under different conditions. However, computer 
simulation of the EPR signal exhibited by [CoZn(AAP)]−bestatin (Figure 5) suggests that two species are present. 
One species is axial with no resolved hyperfine structure. The EPR spectrum observed for this species was 
simulated assuming an isotropic g factor and axial zero-field splitting (H = SDS + βBgS; S = 3/2, giso = 
2.25, D ≫ hν, E/D = 0). The second species was highly rhombic and exhibited clearly resolved 59Co hyperfine 
splitting (H = SDS + βBgS + SAI; S = 3/2, I(59Co) = 7/2, giso = 2.38, D ≫ hν, E/D = 0.24, A(59Co) = 8.1 × 10-3 cm-1). On 
the other hand, the EPR spectra of [ZnCo(AAP)] in the absence and presence of bestatin consisted of multiple 
unresolved features. Even so, some clear features are present in the EPR spectrum of the [ZnCo(AAP)]−bestatin 
complex that are absent in the EPR spectrum of [ZnCo(AAP)]. In particular, a high-field shoulder centered 
at geff ∼ 1.78 (3840 G) and a clear hyperfine pattern centered at geff ∼ 7.8 (945 G) suggest the formation of a 
distinct species, with very high rhombicity (E/D ∼ 1/3), low g strain, and modest spin−orbit coupling (greal ∼ 2.4), 
upon the addition of bestatin. 

 
Figure 4 Perpendicular-mode EPR signal of [CoCo(AAP)] in 50 mM HEPES buffer at pH 7.5 in the presence (—) 
and absence (- - -) of 4 equiv of bestatin. All spectra were recorded at 10 K, 0.2 mW, 1.26 mT modulation 
amplitude, and 10 mT s-1 sweep rate with 20% added 2-propanol by volume. 
 

 
Figure 5 (A) Perpendicular-mode EPR spectra of (a) [CoZn(AAP)], (b) [CoZn(AAP)] + bestatin, and (c) computer 
simulation of b. (B) Perpendicular-mode EPR spectra of (a) [ZnCo(AAP)], (b) [ZnCo(AAP)] + bestatin, (c) 



[ZnCo(AAP)], and (d) [ZnCo(AAP)] + bestatin. All spectra were recorded at 10 K, 0.2 mW, 1.26 mT modulation 
amplitude, and 10 mT s-1 sweep rate with 20% added 2-propanol by volume. 
 

X-ray Structure of Bestatin-Bound AAP.  
The X-ray crystal structure of the [ZnZn(AAP)]−bestatin complex was solved to 2.0 Å resolution and is shown in 
Figure 6. Inhibitor binding does not introduce major conformational changes to the overall protein structure. 
The structures of [ZnZn(AAP)] and the [ZnZn(AAP)]−bestatin complex agree with an rms deviation of 0.19 Å for 
the 291 structurally equivalent Cα atoms. Both side chains of bestatin occupy the well-defined hydrophobic 
pocket adjacent to the dinuclear ZnII active site made up of Leu155, Met180, Ile193, Cys223, Tyr225, Cys227, 
Met242, Phe244, Phe248, Tyr251, and Ile255. The leucine portion of bestatin extends back toward Leu155, 
while the phenylalanine ring extends toward Phe244, Tyr251, and Phe248. The C terminus of bestatin forms a 
hydrogen bond with Tyr225 (2.7 Å), while the two Cys residues at the back of the hydrophobic pocket (Cys223 
and Cys227) form a disulfide bond. 

 
Figure 6 Stereo figure of the active site region of [ZnZn(AAP)] with bestatin bound. The His residues that act as 
ZnII ligands have been omitted for clarity. 
 

The amino acid residues ligated to the dizinc(II) cluster in AAP are identical to those in the native structure with 
only minor perturbations to the bond lengths (Table 2; Figure 7). Zn1 of the [ZnZn(AAP)]−bestatin complex 
exhibits a distorted trigonal bipyramidal geometry with the Nε nitrogen of His256 and the alkoxide oxygen atom 
of bestatin making up the axial positions. On the other hand, Zn2 resides in a distorted trigonal bipyramidal 
geometry with the Nε nitrogen of His97 and the N-terminal amine nitrogen atom of bestatin making up the axial 
positions. The angle including Namine−Zn2−Nε is 161°. Glu152 is coordinated in an asymmetric bidentate fashion 
to Zn1 with the additional oxygen atom providing a potential sixth ligand at a distance of 2.3 Å. Similarly, Asp179 
is coordinated to Zn2 in an asymmetric bidentate fashion with the second oxygen atom residing 2.4 Å from the 
metal center, providing a potential sixth ligand. The alkoxide oxygen of bestatin bridges between the two 
ZnII ions in the active site displacing the bridging water molecule observed in the native [ZnZn(AAP)] structure. 
The M−M distance for the AAP−bestatin complex is identical to that in native AAP (3.5 Å) with alkoxide oxygen 
atom distances of 2.1 and 1.9 Å from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen 
atom of bestatin is coordinated to Znl at a distance of 2.3 Å. In addition, the NH2 group of bestatin, which mimics 
the N-terminal amine group of an incoming peptide, binds to Zn2 with a bond distance of 2.3 Å. Two hydrogen 
bonds exist between Glu151 and the bestatin molecule. One of the Glu151 oxygen atoms is 3.0 Å from the 
alkoxide moiety of bestatin, while the second is 3.3 Å from the backbone amide of the inhibitor. Another 
important hydrogen-bonding interaction is also observed between an oxygen atom of Asp99 and the Nδ nitrogen 
of His97 (3.1 Å) forming an Asp-His-Zn triad (50). This distance is longer than those observed in [ZnZn(AAP)] (2.8 
Å), [ZnZn(AAP)]−1-butaneboronic acid (BuBA) (2.7 Å), and [ZnZn(AAP)]−l-leucine phosphonic acid (LPA) (2.9 Å). 



 
Figure 7 Schematic of bestatin bound to [ZnZn(AAP)] showing all distances in angstroms. 
 

Table 2:  Selected Bond Lengths (Angstroms) for the Zinc−Ligand Distances in the AAP−Bestatin Complex 

zinc−ligand distance (Å)     
  native BuBA complex LPA complex bestatin complex 
Zn1−Zn2 3.5 3.3 3.9 3.5 
Zn1−Asp117 O2 2.1 2.2 1.9 2.0 
Glu152 O1 2.0 2.2 2.0 2.3 
Glu152 O2 2.4 2.6 2.4 2.2 
His256 N2 2.3 2.3 2.1 2.1 
H2O 2.3       
BuBA O1   2.5     
BuBA O2   2.7     
LPA O1     1.9   
bestatin O1       2.1 
bestatin O2       2.3 
Zn2−Asp117 O1 2.0 2.1 2.0 2.0 
Asp179 O1 2.1 2.2 2.2 2.2 
Asp179 O2 2.3 2.5 2.4 2.4 
His97 N2 2.3 2.2 2.2 2.2 
H2O 2.3       
BuBA O2   3.0     
BuBA O1   4.4     
LPA O3     2.3   
LPA NH2     2.1   
bestatin O1       1.9 
bestatin NH2       2.3 

 

Discussion 
Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], and [ZnCo(AAP)] enzymes 
recorded in the absence and presence of bestatin suggest that, like the blLAP−bestatin complex (35), both of the 
divalent metal ions in AAP are involved in binding bestatin. The molar absorptivities observed for each active site 
CoII ion are also consistent with five-coordinate metal ions; however, the first metal-binding site is much more 
perturbed than the second. Interestingly, the electronic perturbations observed for [Co_(AAP)] and [ZnCo(AAP)], 



upon the addition of bestatin, are essentially opposite to those observed for LPA binding to CoII-substituted AAP 
(51, 52). The X-ray crystal structure of the [ZnZn(AAP)]−LPA complex revealed that LPA interacts with both metal 
centers, but a single oxygen-atom bridge is absent (Figure 1C) (52). However, the N-terminal amine of LPA binds 
to the second metal center with a bond distance of 2.1 Å. Thus, LPA binds to AAP as an η-1,2-μ-phosphonate 
with one and two phosphonate oxygen atom ligand to the first and second metal ions, respectively, along with 
the N-terminal amine nitrogen atom bound to Zn2. On the basis of these data, the electronic absorption spectra 
of CoII-substituted forms of AAP in the presence of bestatin are consistent with bestatin contributing two 
strongly bound ligands to the first metal ion but only one strong ligand to the second metal-binding site. 

EPR spectra of [CoCo(AAP)] in the absence and presence of bestatin were recorded in both the perpendicular 
and parallel modes. In the absence of bestatin, the perpendicular-mode EPR spectrum reveals an Ms = |±1/2〉 
ground-state transition with an isotropic greal = 2.25 and E/D = 0.095, which accounts for only 13% of the 
expected spin density, suggesting that the two CoII ions are spin-coupled in the majority of enzyme molecules, as 
previously reported (43). A parallel-mode signal is observed at neutral pH but is abolished at pH 10. These data 
were interpreted as being a consequence of there being a weakly bound μ-(H2O) bridge between the metal ions 
in the active site of the resting enzyme and a strongly bound μ-(OH) bridge in the inactive enzyme at high pH 
(20). The addition of bestatin to [CoCo(AAP)] completely abolished the perpendicular-mode signal. These data 
suggest that the two CoII ions in the AAP−bestatin complex are strongly spin-coupling; therefore, bestatin binds 
to both CoII ions. Examination of the [CoCo(AAP)]−bestatin complex in the parallel mode provided no detectable 
signal over a broad range of temperatures and powers. These data suggest that the two CoII ions in AAP are 
antiferromagnetically coupled yielding an S = 0 ground state. On the basis of the reported magnetic properties 
of several μ-aquo or μ-hydroxodicobalt(II) model complexes, one would expect weak to moderately strong 
antiferromagnetic coupling in systems containing a single oxygen-atom bridge (53−55). Conversely, systems 
lacking a strongly bound single atom bridge, such as bis(μ-carboxylato) and tetrakis(μ-carboxylato)dicobalt(II) 
cores, do not exhibit strong antiferromagnetic spin coupling (56−58). Interestingly, the (μ-
phosphonato)dicobalt(II) core of the AAP−LPA complex exhibits ferromagnetic coupling (48, 49). A combination 
of these data suggests that a single oxygen-atom bridge is present in the bestatin−AAP complex that can be 
assigned to bestatin alkoxide group, similar to the blLAP−bestatin structure (35). 

EPR data obtained on heterodimetallic forms of AAP ([CoZn(AAP)] and [ZnCo(AAP)]) serve both to confirm that 
bestatin interacts with both metal ions and to support the contention that a bestatin-derived single oxygen-
atom bridge exists between the CoII ions in solution as well as in the crystalline state. EPR spectra of [CoZn(AAP)] 
and [ZnCo(AAP)] consist of a pH-dependent mixture of two species (44). For each of these heterodimetallic 
forms of AAP, an axial species with low spin−orbit coupling and high g strain dominates at pH 7−8, suggesting 
that the active nucleophile is present as a water molecule. At higher pH, a rhombic species with a high degree of 
spin−orbit coupling and very little g strain, indicated by the well-resolved 59Co hyperfine structure, is the 
dominant species. This species is, therefore, electronically asymmetric and highly geometrically constrained as 
would be expected for a strongly bound bridging ligand such as μ-OH. Upon the addition of bestatin to 
[CoZn(AAP)] and [ZnCo(AAP)], there is clearly an increase in the proportions of the rhombic species exhibiting 
the well-resolved hyperfine structure relative to the poorly resolved axial species. These data indicate that 
bestatin interacts with both metal ions and strongly suggest the replacement of water with a more strongly 
bound ligand such as the alkoxide functionality of bestatin. 

Spectroscopic studies suggest that bestatin bridges between the two active site metal ions of AAP in solution via 
a μ-alkoxide moiety but provides no detailed information regarding any interaction of the N-terminal amine with 
the second divalent metal ion in the active site. To further characterize the binding of bestatin to AAP, the 
enzyme was crystallized in the presence of bestatin and the X-ray crystal structure was determined to 2.0 Å 
resolution (Figures 6 and 7). The AAP−bestatin complex provides structural information that can be used as a 



model for inhibitor design, as well as the enzyme−substrate complex. Like all of the structures reported for 
AAP−inhibitor complexes, the phenyl group of bestatin resides in a well-defined hydrophobic pocket adjacent to 
the dinuclear ZnII active sites (18, 59). This hydrophobic pocket has been shown to be the initial substrate 
recognition and binding point on the enzyme, which constitutes the first step in the catalytic mechanism (60). 
Bestatin binding to AAP does not alter the ZnII−ZnII distance but does change the coordination number of both 
ZnII ions to five coordinate, consistent with the electronic absorption data. 

No active site ligands are displaced upon bestatin binding except the water molecule that bridges the two 
ZnII ions in the wild-type structure. This bridging water molecule is displaced by the alkoxide oxygen of bestatin, 
consistent with EPR data obtained on the [CoCo(AAP)]−bestatin complex. Interestingly, the Zn1−O1 distance is 
2.1 Å, while the Zn2−O distance is 1.9 Å. Therefore, the alkoxide oxygen atom appears to interact more strongly 
with Zn2 than with Zn1, suggesting that Zn2 plays a role in substrate activation as well as stabilization of the 
transition state. The bestatin carbonyl group (O2) binds to Zn1, albeit weakly, with a bond distance of 2.3 Å. 
Surprisingly, the N-terminal amine nitrogen of bestatin (N1) resides 2.3 Å from Zn2, suggesting that it is not 
coordinated or is very weakly interacting with Zn2. These data are consistent with both the electronic 
absorption and EPR data, indicating that the two metal ions in the AAP−bestatin complex are perturbed in a very 
similar manner but that the proportion of the “new” species is much higher for M1 than for M2. The EPR data 
also show that M2 of the AAP−bestatin complex is not as perturbed as M2 in the AAP−LPA complex. A 
comparison to the transition-state analogue inhibitor structure of [ZnZn(AAP)]−LPA suggests that the bestatin 
structure best represents the substrate-binding step and further supports the proposal that carbonyl binding 
occurs before N-terminal amine binding to the dinuclear active site (61, 62). 

The orientation of the N-terminal amine group in the AAP−bestatin structure is similar to the AAP−LPA structure, 
but the electron orbital overlap observed between Zn1 and the N-terminal amine nitrogen atom in the 
AAP−bestatin complex is smaller, resulting in a longer M2−amine−N1 distance. However, the orientation of the 
N-terminal amine of bestatin is distinctly different than that observed for AAP bound by d-
iodophenylalaninehydroxamate (d-IPH) (59). In the d-IPH complex, the N-terminal amine group is not present in 
the active site pocket but instead forms a hydrogen bond with Tyr-225 near the surface of the enzyme at the 
mouth of the active site pocket. Conversely, the N-terminal amine in the LPA complex is coordinated to Zn2 with 
a bond distance of 2.1 Å, while it resides 2.4 Å away from Zn2 in the bestatin structure. Therefore, the inhibitor 
conformation observed in the AAP−d-IPH complex is an inaccurate representation of the actual transition state 
of peptide hydrolysis, i.e., the stereochemistry of the d-IPH inhibitor is incorrect for an actual peptide because 
IPH resides in the d configuration. With this in mind, little mechanistic information can be gleaned from the 
[ZnZn(AAP)]−d-IPH structure because d-IPH is simply acting as a metal chelator, rather than mimicking either 
substrate binding or the transition state of the catalytic reaction. Consequently, any mechanistic conclusions 
derived from the AAP−d-IPH structure likely led to an incorrect assignment for the role of the second metal ion 
in the peptide hydrolysis reaction catalyzed by AAP (37, 43). On the basis of the structures of the AAP−bestatin 
and AAP−LPA complexes, Tyr225 is not involved in the binding the N-terminal amine of the peptide substrate. In 
fact, this residue is not likely involved mechanistically but, instead, may contribute only as another large 
hydrophobic residue used to line the active site pocket. 

Glu151 of the active site pocket has been implicated in the catalytic mechanism based on the close proximity of 
its side chain to the bridging water molecule in the native enzyme (59) and to the bridging phosphonate moiety 
of LPA in the AAP−LPA complex (52). In the AAP−bestatin complex, there are two hydrogen-bonding interactions 
between Glu151 and the inhibitor. One Glu151 oxygen atom is 3.0 Å from the μ-alkoxide moiety of bestatin, 
while the second is 3.3 Å from the backbone amide of the inhibitor. Glu151 appears to be well-positioned to 
function as a proton shuttle in the hydrolytic reaction, where it could be responsible for removing and/or 
delivering the proton that is transferred to the leaving group (63). It should be noted, however, that bestatin 



contains an additional hydroxyl group between the backbone amine and the carbonyl carbon as compared to 
the natural substrate. Therefore, interactions with Glu151 may differ for substrates versus bestatin, but the 
interactions observed in the AAP−bestatin complex suggest that two hydrogen-bonding interactions are possible 
with Glu151. Furthermore, the AAP−bestatin structure suggests that Glu151 can transfer a proton from the 
nucleophilic hydroxide moiety to the new N-terminal amine. Such a proton transfer must occur because the 
newly formed N-terminal amine must leave, at a minimum, as an NH2 group. 

In conclusion, we have spectroscopically and crystallographically characterized the binding of bestatin to AAP. 
Because bestatin has been shown to be an effective drug to inhibit matrix degradation and invasion of 
extracellular matrixes by fibrosarcoma cells as well as decrease HIV viral load in males (6, 7), the binding mode 
of bestatin to AAP provides a structural foundation for inhibitor design. In addition, mechanistic data pertaining 
to the substrate-binding step in peptide hydrolysis can also be gleaned. The data presented herein are 
consistent with backbone carbonyl binding to Zn1 followed by N-terminal amine binding to Zn2. Because AAP is 
80% active with only one divalent metal ion, carbonyl binding likely occurs at Zn1. However, the short Zn2−O1 
bond distance of 1.8 Å suggests that, if a second divalent metal ion is present, it likely assists in the activation of 
the backbone carbonyl, making the carbonyl carbon susceptible to nucleophilic attack. Furthermore, these data 
suggest that Glu151 is the active site acid/base and can transfer a proton to the newly formed N-terminal amine. 
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