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Abstract. We perform for the first time spectroscopic mode identification in the eclipsing binary βCephei star EN (16) Lac.
This mode identification is based upon a time series of 942 line profiles of the He I λλ 6678 Å line in its spectrum. All three
known frequencies f1, f2, f3 of the star are present in the line-profile variations, but we failed to find additional modes. Using
different identification methods we find conclusive evidence for the radial nature of the main mode and for the ` = 2,m = 0
identification of the mode with frequency f2. A unique identification of the third mode is not possible from the spectra, but
we do derive that `3 < 3. Fits to the amplitude and phase variability of the modes imply a rotation frequency between 0.1 and
0.4 c d−1. The star’s rotation axis is not aligned with the orbital axis.
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1. Introduction

Recently, Lehmann et al. (2001, hereafter called Paper I) have
made a very detailed study of the radial-velocity variations of
the eclipsing and spectroscopic binary EN (16) Lacertae (here-
after shortened as EN (16) Lac; HD 216916, HR 8725, spectral
type B2IV). The goal of their study was to disentangle the or-
bital and pulsational velocity variations of this binary such that
more accurate orbital elements could be derived. In the cur-
rent paper we elaborate further on the data presented in Paper I
with the specific goal of analysing the line-profile variations
of EN (16) Lac in full detail. With this study, we hope to settle
the issue of mode identification of the pulsation modes in this
well-studied βCephei star.

EN (16) Lac was the first βCephei star subjected to an as-
teroseismic analysis (Dziembowski & Jerzykiewicz 1996). The
reason for choosing this star as a test case for asteroseismology
is obvious: the star is a single-lined spectroscopic and an eclips-
ing binary with well-known orbital elements, which helps to
constrain the physical parameters of the βCephei-type primary.
Moreover, the primary exhibits multiperiodic pulsations the pe-
riods of which have been studied in quite some detail in the
literature and are known with a high precision. However, gen-
eral agreement on the mode identification was never reached. In
fact, Dziembowski & Jerzykiewicz (1996) rejected some pre-
viously suggested identifications and used their theoretical
modelling as mode identification tool in order to find overall
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? Based on observations gathered with the coudé spectrograph at-

tached to the 2.0 m reflector telescope at Tautenburg Observatory.

agreement between the observed variations and the excitation
models. The seismic application remained limited, however,
precisely due to the lack of unambiguous mode identifications.
A value of 40 km s−1 was assumed for the equatorial rotational
velocity – we come back to this value later on in the paper. It
is not clear to us how important this adopted value is for the
results obtained by Dziembowski & Jerzykiewicz (1996).

Dziembowski & Jerzykiewicz clearly stressed the impor-
tance of updating the mode identifications for EN (16) Lac
from more accurate and preferably high-resolution spectro-
scopic line-profile data. Presently, all attempts to identify the
modes are based upon multicolour photometry and/or radial-
velocity measurements. A problem for the application of such
methods to EN (16) Lac is the fact that the photometric ampli-
tudes of the third frequency vary considerably in time (see, e.g.
Jerzykiewicz & Pigulski 1999) and so the ratio of the radial-
velocity and magnitude amplitude and/or the photometric am-
plitude ratios are uncertain diagnostics to identify this mode.
This has led to different mode identifications in the past, even
by one and the same author. The most recent summary of the
observational attempts of mode identification, together with
a proposal for an “unambiguous” identification of the pulsa-
tional degrees, was written by Chapellier et al. (1995). These
authors come to the conclusion that the three main frequen-
cies 5.9112, 5.8551 and 5.5033 c d−1 correspond to respectively
` = 0, 2, 1 modes.

It is well-known by now that line-profile variations of-
fer the possibility to discover new pulsation modes, which
are hardly or not visible in photometry. Recent examples of
this phenomenon for βCephei stars can be found in Aerts
et al. (1998, βCrucis), Telting & Schrijvers (1998, ω1 Sco),
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Ausseloos et al. (2002, βCentauri) and Schrijvers & Telting
(2002, νCen). For the former example, it was shown convinc-
ingly that the modes detected only in the line-profile variations
so far are also markedly present in space photometry gathered
by the WIRE satellite (Cuypers et al. 2002). These examples
show that an independent search for new modes is warranted in
all line-profile studies.

In this paper, we perform for the first time mode identifica-
tion on the basis of the line-profile variations of EN (16) Lac.
We will subsequently use the results of the current paper in
a future study which is devoted to seismic modelling (Aerts
et al., in preparation). The current paper is organised as follows.
We give a brief description of the data in Sect. 2. A frequency
analysis and the calculation of several line-profile diagnostics
are presented in Sect. 3 while Sect. 4 is devoted to the spectro-
scopic mode identification. Finally, we discuss our findings and
outline our future follow-up study in Sect. 5.

2. Observations

The data we explored for this paper consists of 942 high-
resolution échelle spectra recorded with the coudé spectro-
graph attached to the 2.0 m reflector telescope at Tautenburg
Observatory. For a full description of these data we refer to
Paper I. We have distilled the spectra taken at Tautenburg as
they have by far the highest signal-to-noise ratio. The total time
base of this subset is 474 days, which is considerably shorter
than the full dataset presented in Paper I. The considered spec-
tra were taken during 16 runs, of which most consisted of only
one night during which the star was intensively monitored. The
temporal resolution of the spectra is better than 2% for all
the pulsation modes mentioned in this paper. The wavelength
ranges from 4780 Å–7080 Å.

We entirely focus the line-profile study for mode identifica-
tion on the deepest, least blended line in this wavelength range.
This is the He I λλ 6678.151 Å line. We have shifted the spec-
tra by subtracting the orbital velocity according to the orbital
elements listed as “Solution III” in Table 10 of Paper I.

In order to give the reader a feeling of the line-profile vari-
ability of EN (16) Lac and of the quality of our data we show
in Fig. 1, 30 arbitrarily chosen profiles of the selected He
line. One can see clear line-profile variability characterised by
global asymmetries. Such variability is typical for low-degree
(` ≤ 4) (non-)radial pulsation modes. The line extends over a
total range of some 100 km s−1, while the FWHM of the line
is about 40 km s−1. The latter is therefore an upper limit of the
rotational broadening.

We have determined the equivalent width of the He line and
find that this quantity remains constant to within a few percent.
Moreover, the small variations that occur do not behave peri-
odically.

3. Line-profile diagnostics

3.1. Frequency search

A search for the best multiple frequency solution based on
the known three main frequencies was already presented in

Fig. 1. Arbitrarily chosen line profiles of the He I λλ 6678.151 Å line
in the spectrum of EN (16) Lac superposed onto each other.

Paper I – see Tables 8 and 9 for the outcome. That frequency
search was done using different weighting schemes on the ra-
dial velocities which were derived from several spectral lines in
the spectrum and for spectra of different quality. Overal agree-
ment was found in Paper I with the three well established fre-
quencies f1, f2, f3 and modulation time scales of respectively
76.7 years and 344 and 674 days were proposed. In the fol-
lowing of the paper we adopt the values f1 = 5.9113, f2 =
5.8529, f3 = 5.5026 c d−1 as derived in Paper I for the frequen-
cies.

As the three main modes are clearly present in the radial-
velocity data treated in Paper I, we proceeded here as fol-
lows. We determined the radial velocities of the selected He
line by calculating its first moment (for a definition of the
line moments – see Aerts et al. 1992). We imposed a new fit
for the multiple periodic solution given in Table 8 of Paper I,
considering only the distilled data set described in Sect. 2,
and subtracted it, i.e. we prewhitened not only with the three
main periods, but also with the modulation time scales. We
used P1, P+1 , P

−
1 , P2, P+2 , P3, P+3 (notation of Paper I) for the

prewhitening. These notations P+i and P−i correspond to the ob-
served frequency splitting which gives rise to the time scales
of amplitude modulation for the frequency fi. Subsequently
we searched for new frequencies in the residuals by means
of the different methods. None of the test frequencies reached
a significant amplitude. In particular, we also mention not to
have found evidence of the frequency 7.194 c d−1 suggested by
Jerzykiewicz (1993) from photoelectric observations.

3.2. Amplitude and phase behaviour across
the line profile

Schrijvers et al. (1997) have provided for the first time a sys-
tematic study of the amplitude and phase variability across the
line profile and showed that these quantities are powerful
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Fig. 2. Amplitude and phase behaviour across the He line profile for
the 3 frequencies f1, f2, f3. Upper panel: average line profile; mid-
dle panel: amplitude variability in continuum units for the frequency;
bottom panel: phase behaviour of the frequency in units of π radians
corrected for jumps of 2π. From left to right we shown the plots for
f1 → f3.

diagnostics to analyse non-radial pulsations in stars. We show
the amplitude and phase behaviour according to their formal-
ism for all three modes of EN (16) Lac in Fig. 2. We only plot
the phase behaviour for the frequencies themselves, and not for
their first harmonic, as the latter is not sufficiently well deter-
mined and leads to scattered phase curves. It can be seen from
Fig. 2 that all three modes exhibit clear variability throughout
the whole profile. For all modes the amplitude drops consider-
ably in the line center and the phase curves are very smooth,
showing a well-determined signature. The phase difference
across the profile amounts to 1.0–1.1 in units of π radians for
all three modes. We will use this behaviour across the profile
further on for mode identification.

3.3. Moment variations

The moment method (Aerts et al. 1992; Aerts 1996) is a very
suitable identification method for stars with low-degree modes
(` ≤ 4) and a relatively low rotation rate. Both these con-
ditions apply to EN (16) Lac, as the profiles shown in Fig. 1
are only mildly broadened and do not show any moving sub-
features. We hence determine the moments of the He I line
of EN (16) Lac as they have a high diagnostic value. In the ver-
sions of the moment method for multiperiodic pulsations in the
slow-rotation approximation, the three lowest-order moments
of the line profiles are considered (see e.g. Aerts 1996; Briquet
& Aerts 2003). The observed moments are shown as dots in
Figs. 3–5 for six arbitrarily selected nights. The amplitudes of
the triperiodic fit to the first moment are listed in Table 1.

Mathias et al. (1994) have provided theoretical expressions
for the moments in the general case of a multiperiodic pulsa-
tion with n frequencies. We have determined a fit to the first
moment based upon these expressions for f1, f2, f3. This fit is

Table 1. Amplitudes of the first velocity moment resulting from a fit
to the data for f1, f2, f3. The K-values for these frequencies are also
listed.

Frequency (c d−1) Amplitude (km s−1) K
f1 = 5.9113 2.57 ± 0.07 0.082
f2 = 5.8529 2.71 ± 0.07 0.084
f3 = 5.5026 1.10 ± 0.06 0.095

shown as full line in Fig. 3. However, as already mentioned
above, it was shown very clearly in Paper I that amplitude mod-
ulation occurs in EN (16) Lac, with modulation time scales of
77 years, 344 days and 674 days (see Table 8 of Paper I). The
former time scale is irrelevant for our subset of spectra, but the
latter two may be present in the moment variations. In order to
check this we have determined the fit to the first moment for the
values of f1, f2, f3 and including the two short modulation time
scales. The resulting fit is represented as a dotted line in Fig. 3.
It is clear from this comparison that the short modulation time
scales are indeed present, although they by no means dominate
the time behaviour of the first moment.

In the version of the moment method by Aerts (1996),
which, for a multiperiodic pulsation, is based upon the theory
by Mathias et al. (1994), it is of utmost importance to deter-
mine the theoretical fits to the moments in the best possible
way, as the mode identification is entirely based on the ampli-
tudes of these fits to the moments. This poses a problem in the
case of EN (16) Lac. Indeed, our data only span 474 days and
they are very poorly sampled. Because of this it is not possible
to determine a fit to the moments that includes the periods P+2
and P+3 that correspond to the modulation time scales, as this
would lead to unreliable amplitudes. The reason is that an in-
crease of 2 frequencies in the first moment implies the addition
of 18 frequencies in the second moment and of 38 in the third
moment (see Mathias et al. 1994). Our data are insufficient in
amount and in time spread to fit such a large number of free
amplitudes.

The only strategy to follow in such a case is to consider
only f1, f2, f3 and all the relevant coupling frequencies given in
Mathias et al. (1994) in the fit to the first three moments. Such
a fit to the second and third moment is shown as full line in
Figs. 4 and 5. While such a fit is quite satisfactory for the third
moment (explaining 92% of the observed variance), it is far
from perfect for the second moment (for which “only” 60% of
the variance is explained). For this reason we have used the new
version of the moment method recently proposed by Briquet &
Aerts (2003). In this new numerical version of the mode iden-
tification method one identifies multiple modes simultaneously
and one considers the moment values calculated at each time
of observation instead of the amplitudes of the fits to the mo-
ments. We thus use only the values shown as dots in Figs. 3–5,
and not the amplitudes of the fits shown as full lines. As shown
by Briquet & Aerts (2003), this increases considerably the fea-
sibility and the accuracy of the mode identification for multi-
periodic stars compared to the versions presented in Mathias
et al. (1994) and in Aerts (1996). We refer to Briquet & Aerts
(2003) for a detailed description.



642 C. Aerts et al.: Spectroscopic mode identification for EN (16) Lac

Fig. 3. The observed first moment variations of EN (16) Lac on some
selected nights of intensive monitoring. The dots represent the data
while the full line is a model for the three frequencies f1, f2, f3 listed
in Table 1. The dotted line is a fit which additionally includes the two
shorter modulation time scales given in Paper I.

4. Mode identification

Several ways of identifying modes from line-profile variations
have been proposed in the literature. A recent overview includ-
ing applications can be found in Aerts & Eyer (2000) and for
more detailed descriptions of each of the methods we refer to
the references in that review paper. Basically, two main com-
plementary quantitative and objective methods are available.
We apply them both to our data of EN (16) Lac.

4.1. Identification based on the phase variation

The mode identification method published by Telting &
Schrijvers (1997) is based on the amplitude and phase be-
haviour across the profile. The authors have performed exten-
sive simulation studies and propose a linear relation between
the degree ` of the mode and the phase difference across the
profile for the frequency, and between the azimuthal number m
and the phase difference for the first harmonic of the frequency.
The phase differences across the profile for f1, f2, f3 amount to
respectively 1.06π, 1.10π and 1.20π (see Fig. 2). Applying their
formula to these three phase differences leads to ` = 1 ± 1, i.e.
` < 3 for all three modes.

It should be emphasized that the relation of Telting &
Schrijvers is particularly suited to identify high-degree (` ≥
4) modes in rapid rotators – a situation not encountered for
EN (16) Lac. Hence it is not surprising that its predictive power
for the nature of the modes of EN (16) Lac is limited. The phase
behaviour for the harmonic of the frequencies is too noisy to
be of any use as an estimate for m. On the other hand, the
amplitude and phase behaviour shown in Fig. 2 is very use-
ful to check the validity of particular solutions for the mode
identification, by constructing theoretical profiles and com-
paring their amplitude and phase variation with the observed
ones (for such a detailed modelling application in a βCephei
star with similar line-profile variations as EN (16) Lac, see

Fig. 4. Same as in Fig. 3, but for the second moment, taking into
account all coupling frequencies between f1, f2, f3.

Fig. 5. Same as in Fig. 3, but for the third moment, taking into account
all coupling frequencies between f1, f2, f3.

Telting et al. 1997). We will perform such detailed modelling
of the amplitude and phase behaviour after having obtained
estimates for the wavenumbers by means of another method,
i.e. after having eliminated all unrealistic combinations of the
wavenumbers and having selected the most likely ones.

4.2. Identification based on the moment variations

The moment method has been succesfully applied to several
βCephei stars already (see e.g. Aerts et al. 1994). Despite the
fact that the even moments are always more noisy than the odd
ones, the second moment is a very good diagnostic for evalu-
ating the nature of the azimuthal number m. Indeed, compar-
ing the importance of the frequencies fi and 2 fi allows one to
discriminate between m = 0 and m , 0 (Aerts et al. 1992).
In the former case, the double sine is dominant while this is
not the case for non-axisymmetric modes. This simple rule al-
ready allows us to conclude from the observed variations of
the second moment that the modes with frequencies f1 and f2
in EN (16) Lac are axisymmetric: m1 = m2 = 0. Moreover, in
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the case of EN (16) Lac, it is highly unlikely that the modes
have ` > 2 as we would see more complex line-profile variabil-
ity in that case.

In order to calculate the discriminants for the three modes,
whatever the version of the moment method used, we need to
determine the ratio of the horizontal to the vertical velocity am-
plitude for each of the modes. These so-called K-values are to
a good approximation given by GM/ f 2

i R3 for the three modes
with frequency fi. Accurate estimates for the mass and radius of
EN (16) Lac are available (Pigulski & Jerzykiewicz 1988) and
amount to respectively 9.7 M� and 6.3 R�. The three K-values
are listed in Table 1. Besides these three known numbers we
also need to give the linear limbdarkening coefficient, which,
for the effective temperature of EN (16) Lac (21 530 K; Pigulski
& Jerzykiewicz 1988) and the wavelength 6678 Å, amounts
to 0.21 (Wade & Rucinski 1985).

The overal broadening is about 40 km s−1 (see Fig. 1). One
could try to take into account that EN (16) Lac is a young (age
∼1.3 × 107 years) eclipsing binary of which we know the or-
bital inclination: iorb = 83◦ (Pigulski & Jerzykiewicz 1988).
Assuming a synchronised star, and aligned rotation and orbital
axes, leads to v sin i = 26.2 km s−1. This is not realistic as
the overall pulsational broadening is less than 10 km s−1 (see
Table 1 and Fig. 3). It is therefore clear that the star cannot be
synchronised yet and/or has a rotational inclination very dif-
ferent from the orbital inclination. We therefore did not restrict
the inclination angle nor v sin i.

The moment method in the formulation by Aerts (1996) is
more limited in predictive power as the number of modes in-
creases, as outlined explicitely by Briquet & Aerts (2003). For
reasons mentioned in the previous section, we report here only
the results based upon the new version of the moment method
by Briquet & Aerts (2003). The outcome of their mode iden-
tification is repeated here in Table 2 in order to clarify the dis-
cussion below. In this table, Ap is proportional to the ampli-
tude of the radial part of the pulsation velocity and is fixed by
requesting that the observed amplitude of the first moment is
compatible with the computed one (which contains the fac-
tor Ap). It is expressed in km s−1. Additionally, i is the in-
clination angle; v sin i is the projected rotational velocity, ex-
pressed in km s−1 and σ is the intrinsic line-profile width, also
expressed in km s−1. For the three-dimensional grid of contin-
uous parameters we adopted: v sin i ∈ [1, 40] kms−1 in steps of
1 km s−1, i ∈ [0◦, 90◦] in steps of 5◦ and σ ∈ [1, 20] kms−1 in
steps of 1 km s−1 while all testcases with ` ≤ 3 were calcu-
lated. The lower Σ, the more likely the solution is. In determin-
ing Table 2, we have eliminated solutions for which the modes
with f1 and f2 have the same (`,m), as the frequency values of
these modes are too close to each other for them to differ only
in radial order.

From Table 2 we conclude the following :

– the main mode is axisymmetric, with ` = 0 or 1;
– the second mode is an ` = 2,m = 0 mode;
– the nature of the third mode is unclear, but it is either an
` = 1 or 2 mode.

We point out that the estimation of the continuous parame-
ters is difficult from the moment variations, as outlined by

de Ridder et al. (2002). As a consequence, we are unable to
pinpoint the values for (v sin i, i, σ) with a precision of, let’s
say, several km s−1. In view of the effective temperature of the
star, the σ-value of 19 km s−1 is quite high but we did not want
to be too restrictive in the grid of parameters.

We can eliminate further the solutions labeled as combina-
tions numbers 2, 9 and 10 in Table 2 on astrophysical grounds,
as a radial mode and an ` = 1 do not have so close frequencies
in βCephei models. This, together with the fact that ` < 3 for
all modes, encourages us to try and find the most likely identifi-
cation of the three modes by cross-validation, i.e. by combining
the diagnostics of both identification methods.

4.3. Towards a unique spectroscopic identification?

We have checked the possible combinations of (`i,mi) accord-
ing to the discriminant values listed in Table 2, keeping in mind
that the continuous parameters (v sin i, i, σ) are not accurately
determined by the discriminant (de Ridder et al. 2002). We
have generated theoretical profiles for all acceptable combina-
tions of wavenumbers listed in Table 2. We subsequently de-
termined the amplitude and phase variability across the profile
and compared the outcome with those of the observed spectra
shown in Fig. 2. We have next adapted (v sin i, i, σ) until the
best agreement with the observed curves of Fig. 2 is found for
each of the acceptable combinations for the wavenumbers.

The results of this iterative process are the following :

– all solutions explain well the phase behaviour across the
profile;

– all solutions with `1 = 1, `2 = 2,m1 = m2 = 0 do not
give satisfactory fits to the amplitude variability of the two
dominant modes and can hence be excluded (see full line
in Fig. 6 for a representative case);

– we are unable to discriminate between the ` = 1, 2 solutions
for the third mode;

– for all cases the best agreement is found for v sin i be-
tween 20 and 32 km s−1, for i between 15◦ and 35◦ and forσ
between 8 and 13 km s−1.

Some of the best trial cases are shown in Fig. 6. The fact that
the different line styles are hardly distinguishable prooves that
several solutions are equivalent. We stress that also the com-
bination number 5 is very much alike combination number 3,
and so is acceptable. In addition, also the combinations with
`1 = 0, `2 = 2,m1 = m2 = 0 and `3 = 1,m3 = ±1 are accept-
able, for certain combinations of the continuous parameters.
These additional cases are not shown in Fig. 6 for clarity.

The acceptable intervals for v sin i and i lead to an al-
lowed range for the equatorial rotation velocity of ΩR ∈
[35, 135] km s−1. For the radius estimate of 6.3 R� we therefore
find that the rotational frequency must lie in the interval 0.11–
0.42 c d−1, while the orbital frequency amounts to 0.08 c d−1.
As f2 − f3 = 0.35 c d−1, the `3 = 2 solutions with m3 = ±1,±2
are indeed possible, as are the `3 = 1,m3 = ±1 ones.

In summary, we provide in Table 3 the solutions that lead
to amplitude and phase variabilities which are compatible with
the observed ones. The uncertainty of v sin i and σ for each of
the combinations from the fitting is estimated to be ∼2 km s−1.
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Table 2. The ten best solutions of the mode identification for the three modes of EN (16) Lac as found by Briquet & Aerts (2003). For the
meaning of the symbols, see text.

combination number 1 2 3 4 5 6 7 8 9 10
(`1, m1) (0, 0) (0, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(`2, m2) (2, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (1, 0) (1, 0)
(`3, m3) (1, 0) (2, 0) (2, −2) (2, −2) (2, 2) (2, 2) (2, −1) (2, 1) (1, −1) (1, 1)

A1
p 13.45 13.45 12.10 8.38 12.10 8.38 12.10 12.10 13.45 13.45

A2
p 27.71 29.21 16.80 16.80 16.80 16.80 27.71 27.71 26.29 26.29

A3
p 12.38 11.98 39.99 39.99 39.99 39.99 12.69 12.69 4.82 4.82
i 75 70 25 25 25 25 75 75 70 70

v sin i 38 39 1 1 1 1 6 6 7 7
σ 5 2 19 19 19 19 19 19 19 19
Σ 3.86 3.86 3.87 3.87 3.87 3.87 3.88 3.89 3.90 3.90

Fig. 6. Observed (bullets) and theoretical amplitude and phase behaviour across the He line profile for f1, f2, f3 (from left to right). Upper
panel: amplitude variability in continuum units; bottom panel: phase behaviour in units of π radians corrected for jumps of 2π. The plotted
combinations are: full line: number 4, dashed line: number 7, dashed-dot line: number 8, dotted line: number 1, dashed-dot-dot-dot line:
number 3, as indicated in Table 2, but for optimized values of the continuous parameters.

Although the mode identification for the third mode is not
unique, we are able to conclude from our line-profile analysis
that the rotation axis cannot be aligned with the orbital axis.

5. Discussion

The ultimate goal of performing (spectroscopic) mode identifi-
cation is to use the values of (`,m), together with the frequen-
cies, for an asteroseismic analysis of the star. Indeed, knowing
which modes are excited in the star allows one to fine-tune its
physical parameters, such as the mass, the luminosity, the effec-
tive temperature, the metallicity and the age. To this end, one
needs to check for which values of these parameters the fre-
quencies exactly coincide with the observed ones, taking into

account the effects of rotational splitting. From the set of mod-
els that survive this test one subsequently selects only those
that fulfill the mode identification. Our current paper offers
a fruitfull starting point for such basic seismic modelling of
EN (16) Lac, which is the topic of our subsequent study (Aerts
et al., in preparation).

Ideally, one would hope to refine the modelling to a much
more sophisticated level, as in helioseismology. Indeed, the
modes detected and identified in the Sun are so numerous that
frequency inversion, and hence derivation of the internal be-
haviour of the physical quantities, is possible. We are yet still
far away from this level of precision for massive oscillators
with κ-driven modes, the main reasons being the limited num-
ber of detected modes and their uncertain mode identification.



C. Aerts et al.: Spectroscopic mode identification for EN (16) Lac 645

Table 3. The solutions listed here are those that were found as most
promising from the moment method while they also lead to acceptable
amplitude and phase variabilities. The meaning of the symbols is the
same as in Table 2.

(`1, m1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(`2, m2) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(`3, m3) (1, 0) (2, −2) (2, 2) (1, 1) (1, −1) (2, 1) (2, −1)

i 15 15 15 34 15 35 35
v sin i 20 20 20 32 30 32 32
σ 8 8 8 13 12 13 13

The example of βCru mentioned in the introduction gives us
good hope, however, that future space missions devoted to as-
teroseismology will imply a major step forward in seismic stud-
ies of massive stars.
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