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SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is
decoupled from inter-particle interactions. So far, only indirect evidence for this symmetry exists, and the
scattering parameters remain largely unknown. Here we report the first spectroscopic observation of
SU(N=10) symmetry in *'Sr using the state-of-the-art measurement precision offered by an ultra-stable
laser. By encoding the electronic orbital degree of freedom in two clock states, while keeping the system
open to 10 nuclear spin sublevels, we probe the non-equilibrium two-orbital SU(V) magnetism via Ramsey
spectroscopy of atoms confined in an array of two-dimensional optical traps. We study the spin-orbital
quantum dynamics and determine all relevant interaction parameters. This work prepares for using
alkaline-earth atoms as test-beds for iconic orbital models.
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Symmetries play a fundamental role in the laws of
nature. A very prominent example is SU(N) symmetry as
the source of intriguing features of quantum systems. For
instance, the SU(3) symmetry of quantum chromodynamics
governs the behavior of quarks and gluons. When
generalized to large N, it is anticipated to give rise to a
large degeneracy and exotic many-body behaviors. Owing
to the strong decoupling between the electronic-orbital and
nuclear-spin degrees of freedom [1], alkaline-earth (-like)
atoms, prepared in the two lowest electronic states (clock
states), are predicted to obey SU(N=2/+1) symmetry with
respect to the nuclear spin (/) [2-5]. Thanks to this
symmetry, in addition to their use as ideal time keepers [6]
and quantum information processors [7], alkaline earth
atoms are emerging as a unique platform for the
investigation of high-energy lattice gauge theories [8], for
testing iconic orbital models used to describe transition
metal oxides, heavy fermion compounds, and spin liquid
phases [9], and for the observation of exotic topological
phases [5,10]. Progress towards these goals includes the
production of quantum degenerate gases for calcium [11]
and all stable isotopes of strontium and ytterbium [12,13],
the capability of imaging individual spin components via
optical Stern-Gerlach methods [14], and control of
interactions with optical Feshbach resonances [12,15,16].

Furthermore, the best atomic clock has been produced with
lattice confined Sr atoms [6], and many-body spin
dynamics have been studied directly in that system [17].

However, thus far only indirect evidence for SU(N)
symmetry exists, including inference from suppressed
nuclear spin-relaxation rates [14], reduced temperatures in
a Mott insulator for increased number of spin states [18],
and the changing character of a strongly-interacting one-
dimensional fermionic system as a function of N [19].
Furthermore, these observations are limited to the
electronic ground state. The corresponding ground-state s-
wave scattering parameter, dy,, has been determined from
photo-association [20] and rovibrational spectroscopy
[21], but the excited state-related scattering parameters
remain unknown.

In this paper, we report the first spectroscopic
observation of SU(N) symmetry and two-orbital SU(N)
magnetism in an ensemble of fermionic *’'Sr atoms at pK
temperatures and confined in an array of two-dimensional
(2D) disc-shaped, state-insensitive optical traps [22]. The
axial (Z) trapping frequency vz is ~80 kHz and the radial
(X-Y) frequency vy is ~600 Hz. The SU(N) symmetric spin
degree of freedom is encoded in the 10 nuclear spin states
with quantum number m; (Fig. 1A), and the pseudo-spin %2
orbital degree of freedom in the two lowest electronic



(clock) states ('S, and *Py, henceforth |g) and |e)). Under
typical atomic occupancies (< 20 atoms per disc),
temperatures (1 pK< Tx <7 pK, 7; ~2 pK), and trap
volume, the mean interaction energy per particle is at least
two orders of magnitude smaller than the single-particle
vibrational spacing along any direction. The unprecedented
spectral resolution available with an ultra-stable laser of 1 x
107" stability [23] enables us to accurately probe these
interactions while addressing individual nuclear spin levels.

To the first order approximation, atoms are frozen in the
initially populated motional energy modes and the quantum
dynamics takes place only in the internal degrees of
freedom (spin and orbital) [17,24]. Atoms distributed
among these quantized motional levels are thus analogous
to atoms localized in real-space lattice trapping potentials.
Moreover, the s-wave and p-wave (Fig. 1B) interactions,
which generate the dynamics, couple the atoms without
being overly sensitive to the motional eigenenergies, thus
providing nonlocal interactions when viewed within a
lattice spanned by eigenenergies. This allows us to study
spin lattice models with effective long-range couplings in a
non-degenerate Fermi gas (Fig. 1C). Spin models with
long-range interactions have been implemented in dipolar
gases [25] or trapped ionic systems [26], but our system
has the additional SU(N) symmetry to enrich the many-
body dynamics. By performing Ramsey spectroscopy with
various nuclear spin mixtures, we determine the nuclear
spin independence of the s-wave and p-wave interactions.
Furthermore, we probe the non-equilibrium dynamics of the
orbital coherence, and the results are well reproduced by a
two-orbital SU(N) spin lattice model in quantized motional
eigenenergy space.

Interactions between two “'Sr atoms are governed by
Fermi statistics with an overall antisymmetrization under
exchange in the motional, electronic, and nuclear spin
degrees of freedom (Fig. 1B). Consider a pair of
interacting atoms (j and k) occupying two of the quantized
eigenmodes of the trapping potential, n; and n If the atoms
are in a nuclear spin symmetric state they experience s-
wave interactions only if their electronic state is anti-
symmetric: (leg) — |ge))/V2. We denote the elastic
scattering length characterizing those collisions as agg.
They can collide via p-wave interactions in three possible
electronic symmetric configurations {|gg), |ee), (leg) +
|ge))/V2}, corresponding to the p-wave elastic scattering
lengths bgg, bee, bdy, respectively. In contrast, if the two
atoms are in an anti-symmetric nuclear spin configuration
they experience s-wave collisions under these three
electronic ~ symmetric  configurations,  with  the
corresponding scattering lengths a, g, ae., ady, respectively.
interactions occur in (|eg) —
|ge))/V2, corresponding to the scattering length beg.
These eight parameters characterize elastic collisions at
ultralow temperatures, and SU(N) symmetry predicts them
to be independent of the nuclear spin configuration. Here, N
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is chosen by initial state preparation and can vary from 1 to
10 in ¥Sr (/=9/2). The Hamiltonian that governs these
interactions can be written in terms of orbital-spin 1/2
operators 7" acting on the j-atom’s electronic state,
{e,g}, and in terms of nuclear-spin permutation operators
S™(j), acting on the j-atom’s nuclear spin levels, n, m
€{l,2,... N} as:
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nuclear spin projector operators into the symmetric triplets
(+) and anti-symmetric singlet (-) nuclear spin states,
respectively. Eq. (1) states that if the nuclear spin of the
atoms is in (+) or (-), then they interact according to H* or
H~, respectively. The coupling constants ]ji,k, )(jifk, ij—rk, K]ik
depend on the scattering parameters, a, and b,,, ne{ee, gg,
eg” and eg’}, and the wavefunction overlap of the j and k-
atom’s vibrational modes (See Supplementary Material).
The Hamiltonian commutes with all the SU(N) generators,
S™(j), and is thus invariant under transformations from the
SU(N) group (i.e., SU(N) symmetric). In addition to elastic
interactions, *’Sr atoms also exhibit inelastic collisions.
Among those however, only the e-e ones have been
observed to give rise to measureable losses [27]; we denote
these two inelastic scattering lengths as y,, and B, for s-
wave and p-wave, respectively. We set other inelastic
parameters to zero based on their negligible contributions in
measurements.

We first test SU(N) symmetry in a two-orbital system by
measuring the density-dependent frequency shift of the
clock transition under various nuclear spin population
distributions. We use a Ramsey sequence to measure
interactions [17] under an external magnetic field that
produces Zeeman splittings much larger than the interaction
energy. As shown in Fig. 2A, the sequence starts with all
atoms in |g). Only atoms in a particular nuclear spin state
are coherently excited and interrogated, while atoms in
other states (“spectators”) remain in |g). We denote V'
the number of interrogated atoms, N{°' the number of
spectator atoms, and define a population ratio f =
NFY/Nt  and  the  interrogated  fraction x; =
Nt/ (Vo + VY. We control orbital excitation, p,, by
varying the initial pulse area, ), in 0 < 6; < m. After a free
evolution time, Tf.e = 80 ms, a second pulse of area /2
is applied for subsequent readout. The resonance frequency
shift is recorded as the atomic number in the trap is varied.
We operate with highly homogeneous atom-laser coupling.
Consequently, the p-wave interaction in a fully spin-
polarized sample is dominant [17].

In Fig. 2B, we compare the fully spin-polarized case (m;
= +9/2) against three other scenarios with different spin
mixtures under 7x=6-7 uK. The observed density shifts as a
linear function of p,, when scaled to the same number of

Here, T is the identity matrix, P*



interrogated atoms (NV;°' =4000), show three features: (I)
the linear slope, /, depends only on N;°t, (II) the offset
with respect to the polarized case linearly increases with f;
and (IIT) both / and the offset are independent of how the
atoms are distributed in the nuclear spin levels. The latter is
verified by measuring the same shifts when interrogating
29% of the total population in either +9/2 or +7/2.

To determine the temperature dependence for the density
shift and for additional confirmation of the observed
nuclear spin independence, we interrogate other nuclear
spin states, -9/2 or -3/2, under a lower T ~2 pK, when the
distribution across all spin states is nearly even (Fig. 2C).
The measured density shifts scaled to N;*°* = 4000 are
again similar to each other, providing further direct
experimental evidences for SU(N=10) symmetry. At this
lower Ty, while the slope depends only on NV;°', there is a
smaller offset of the density shift relative to the polarized
case when x; varies. To quantify the 7 dependence, we
plot together all measured ratios, ///,, with /, the linear slope
for the polarized case. We see that (IV) the ratios collapse
into a single value independently of f and Ty for fixed
N yielding I/, = 1.00+0.03 (Fig. 2D). This result
agrees well with the SU(N)-predicted ratio of unity and
verifies this symmetry to the 3% level. We observe that /
decreases only by 10% when Ty is raised from 2 pK to 6
uK, verifying its insensitivity to 7r. We also determine the
excitation fraction where the shift is zero in a spin mixture,
ps , and compare it to that of a polarized sample, p;, (gray
bands, Fig. 2C), under various interrogated spin states
(colors in Fig. 2E). The difference shows the following
features: (V) it collapses onto a single line (for a given Ty
of either 2.3 or 6.5 puK) as a function of f, which provides a
further evidence for spin-independence of the interactions;
(VI) at V' = 0 (fully polarized), the two lines cross each
other at the origin, as expected from the Tk-insensitivity of
the p-wave interactions. For f > 0, the proportionality
constant is finite for 6.5 pK (lower line), and decreases to
almost zero for Tg~2.3 puK (upper line). This near zero
proportionality constant for Tg~2.3 pK indicates an
accidental cancellation of the spectators’ s- and p-wave
interaction effects at this temperature.

In the presence of a large external magnetic field that
produces differential Zeeman splittings much larger than
the interaction energy, those terms in the Hamiltonian that
exchange the population between the occupied spin-orbital
levels are energetically suppressed and the populations of
different spin-orbital levels are conserved. Hence, the
Hamiltonian is dominated by Ising-type interactions that
preserve the spin-orbital population. In this regime the
many-body dynamics for a single trap with V' atoms can be
captured under a collective approximation that replaces the
coupling constants with their corresponding thermal
averages, 0,%].,,”( -0t [24]. For the experimental relevant

case where only V; atoms in spin m; are interrogated and
where NV atoms in the other spin components remain in

lg>, the effective many-body Hamiltonian during Tgeee
simplifies substantially. It consists of two parts, H, + Hj.
The first part, H, = xy*(T?)? + C*T*N, , describes the p-
wave interactions between the interrogated atoms [17,24],
where Te=7 = ¥V ST (YT are collective orbital
operators acting on the JV; interrogated atoms. The density
shift induced by these interactions, Av® = NV (F -
—  [bee’+bgg 3-2bdy 3

cos@, x*), with y*= . ](P)TR and

o = [bee 3—bgg 3]
2

excited atoms N;p,. Here (P)r, corresponds to the
thermal average of the p-wave mode overlap coefficients.
Assuming a Boltzmann distribution of initially populated
radial motional modes, we have (P)r, (Tx)° (insensitive
to Tz) [17]. For a spin polarized sample, the observed
density shifts are well reproduced by theory (solid black
lines in Figs. 2C) based on the same p-wave parameters as
determined in Ref. 17. The second part, Hs = NGAT?,
describes the interactions between the interrogated and
spectator atoms with both p- and s-wave contributions. The
related density shift is Av® = A N, with
A= cHe-F -t _ (adgtagg—2ag4)
2 4

[bdy 3+beg43—2 bgg *] (P)TR, The s-wave thermal average,
(S)rg » decreases with Tras (S)y, Ti
R
This model fully reproduces the experimental
observations as listed in (I-VI) and shown in Fig. 2. To
quantitatively compare with the experiment, we perform a
Poissonian average of the atom number across the 2D traps
and use the average excitation fraction to account for the
two-body e-e losses [17,27] during the free evolution. The
capability of the SU(N) spin lattice model to reproduce the
experimental observations also enables us to determine the
remaining s- and p-wave scattering parameters. For each of
the four channels, ne{ee, gg, eg” and eg’}, the s-wave and
p-wave parameters relate to each other through the
characteristic length, a,, of the van der Waals potential
[28]. Thus, after we determine a, using the available van
der Waals C¢ coefficients (see Supplementary Materials),
only four elastic scattering parameters remain independent.
Among those, agg, b, bay (and thus their respective p- or
s-wave counterparts) are known [17], leaving only one
unknown parameter associated with the eg” channel. We fit
the data in Fig. 2E and extract a.y and bgy. Table 1 lists all
the scattering parameters determined from the prior and
current measurements. We emphasize that the test of SU(V)
symmetry (at the 3% level) is based directly on the
measured interactions that are independent of nuclear spin
configurations, and it does not require accurate knowledge
of some common-mode system calibrations.
To reveal the SU(N) orbital magnetism in our system we
need to perform coherent dynamic spectroscopy. Ramsey
spectroscopy is particularly suitable for this goal, as the

(P)1g» depends linearly on the number of

(S)rg +




atomic evolution during the field-free period gives rise to
variable e-g orbital coherence. We measure the decay of the
e-g coherence, in the form of Ramsey fringe contrast

C(Tfree) = 2/t ’(Tfot)z +(T),)? as a function of

Tfree, Under various population distributions among nuclear
spin states (Fig. 3A). Here Trs is the sum of T*Y over the
2D traps. In the presence of a large magnetic field, the
decay of C has two sources. The first arises from within the
interrogated atoms: p-wave elastic interactions, two-body e-
e losses, higher-order interaction-induced mode-changing
processes, as well as dephasing induced by the distribution
of atoms across traps. All these p-wave effects are
accounted for in our theory using the same p-wave
parameters [17]. The second source comes from spectators,
which act on the interrogated atoms at a given site as an
inhomogeneous and density-dependent effective magnetic
field along z, with both s-and p-wave contributions. The
effective magnetic field is static if the atoms are frozen in
their motional states, but can vary with time in the presence
of higher-order mode-changing processes. The p-wave
interaction plays a dominant role at high 7z = 5-6 uK, while
the s-wave interaction, which has a stronger dependence on
mode distribution, becomes significant at lower T.

To understand the orbital dynamics in detail, we first
study three different cases under 7T = 5-6 uK, with 6,= /4
and the interrogated fraction x; = 100%, 14%, and 56%, as
displayed in Figs. 3B, C, E. To separate the effects of
dephasing and many-body correlation in the contrast decay,
we apply a m echo pulse in the middle of the Ramsey
sequence (Fig. 3A, lower panel). At the end of the
sequence, the dephasing caused by the interactions between
interrogated and spectator atoms and other technical effects
is removed by the echo. The m echo pulse modifies the
contrast decay in a 6;-dependent way, because the p-wave
contribution to contrast decay contains both 6;-dependent
and -independent terms, as well as enhanced e-e loss after
the echo pulse for 8, < m/2. The 6;-dependent contribution
is generated by the term y*(T#)? in the Hamiltonian, and
can lead to many body orbital correlations that are
unremovable by echo. The 6;-independent contribution is
generated by the term C*TZJV;, and can be removed by a ©
echo.

As shown in Fig. 3B, in a polarized sample and under
0,=n/4, the Ramsey contrast decays more slowly with an
echo pulse. This positive echo effect can be attributed to the
suppressed dephasing from inhomogeneous atomic
densities across different 2D traps (6;-independent
contribution) and to the faster number loss (note the
number normalization in C) with echo. Figures 3C and 3E
show similar positive effect of an echo pulse in the
presence of spectator atoms. Since p-wave interactions
between interrogated atoms are reduced as the interrogated
fraction decreases, the overall contrast decay becomes
slower. Based on the determined scattering parameters, our

model predicts that spectator atoms cause almost negligible
decoherence effects at this high 7Tz = 5-6 pK (see
Supplementary Material).

In a polarized sample where p-wave interactions
dominate, the contrast decay is expected to be insensitive to
Tr- This is confirmed in Fig. 3D where measurements at 7x
= 2.6 uK show similar decay behaviors to those at 5.4 pK
(Fig. 3B). Figure 3F plots the ratio of contrasts with and
without echo and illustrates the positive echo effect in
suppressing contrast decay in a fully polarized sample
under 8, = /4, as well as the negative effect under 8, =
3m/4 when the echo enhances contrast decay. The negative
echo effect can be attributed to both the development of
many-body orbital correlations under 8, = 3m/4 [17] and
the reduced e-e loss after the echo, and is well reproduced
by our spin lattice model.

When we lower Tx to ~2 pK, the rise of the s-wave
contribution causes significant decoherence effects due to
the spectator atoms. Figure 4A illustrates the x; = 14%
minority case where contrast decay is clearly faster than in
Fig. 3C, showing the influence of spectators. The inclusion
of off-resonant mode-changing collisions as higher order
corrections is now required to accurately reproduce the
experimental observations (see Supplementary Materials).
These mode-changing collisions can be visualized as
relocating pairs of atoms in the energy-space lattice shown
in Fig. 1C, analogous to interaction-induced tunneling
processes in a real space lattice. The echo pulse suppresses
the part of contrast decay arising from mode-preserving
collisions between spectators and interrogated atoms, but it
cannot reverse the decay due to mode-changing processes.
In Fig. 4A, the measured contrast decay with echo enables
us to determine a single parameter characterizing the mode-
changing processes (see Supplementary Materials).

For a further and independent test of our model, we
explore another case with x; = 56% and Tz ~2 pK, so that
both the interrogated atoms and spectator atoms have
important contributions to the contrast decay. As shown in
Figs. 4B, D, the data are well described by the same theory
model without varying any parameters, demonstrating a
firm understanding of the system dynamics.

The experimental exploration of exotic SU(X) physics is
just starting. The unique capability of precision laser
spectroscopy has so far allowed us to explore Ising orbital
magnetism at relatively high temperatures. We expect to
explore the full Hamiltonian including the exchange
interactions by controlling the atomic density, temperature
and the magnetic field to engineer various spin-spin and
spin-orbital dynamics. This will allow us to push the
frontier of emergent many-body quantum physics at
increasingly high temperatures, as well as the study of time-
resolved dynamics in the SU(N) Kondo lattice and Kugel-
Khomskii models [4,29,30] in the quantum gas regime.
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Fig. 1. Diagram of the interacting spin lattice. (A)
Energy levels for the two lowest electronic states ('S, and
3P,) of ¥’Sr atoms in a magnetic field, each with ten nuclear
spin states, depicted by colors. This color scheme is used
throughout the paper to denote the interrogated state. (B)
Interactions between two fermionic atoms characterized by
four s-wave (“a”) and four p-wave (“b”) elastic scattering
parameters. The interactions are governed by symmetries in
motional states (bottom labels), nuclear spins (left labels),
and electronic orbitals (white arrows). (C) (Left) Interacting
electronic orbitals (spin-%2 arrows) distributed over a lattice
spanned by motional eigen-energies. Colored circles show
the possibility of preparing coherent superpositions or
statistical mixtures of N nuclear spin states. (Right)
Illustration of a few lowest occupied eigenmodes of a
harmonic trap.
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Fig. 2. Nuclear spin independence of interaction
effects. (A) Ramsey sequence with an initial pulse of area
0y, a final 71/2 pulse, and a free evolution period Tgee= 80
ms. The spectator atoms remain in |g). (B) and (C)
Measured density shifts (in symbols) for different nuclear
spin configurations at 7 = 6-7 pK and ~ 2 pK,
respectively. For consistency, the shifts are scaled for ;'
= 4000. The inset illustrates the interrogated states (black
arrows) and population distributions among various nuclear
spin states. Solid and dotted lines show theory calculations
for the corresponding x; and Ty as indicated in the plots.
The gray band in (C) corresponds to pj,, the excitation
fraction for zero density shift in a polarized sample. The
spectator atoms generate a temperature-dependent density
shift, which is independent of p, of the interrogated atoms
and thus manifests as a net offset from the purely polarized
density shift. (D) Ratio of the slope of the frequency shift
between the spin mixed and polarized samples. The dotted
lines represent the standard error. (E) The difference in the
zero-shift excitation fraction between the spin mixed and
polarized samples. The solid and dashed theory lines are
used to determine the b, and ag, scattering parameters. In
D and E, two values of Ty are used: 2.3(2) uK (open
symbols) and 6.5(4) pK (filled symbols). In addition to
conditions used for B and C, other spin configurations are
studied: open up triangles (x; = 49%), open diamond
(41%), open right triangles (46%), open and filled hexagons
(26%), open and filled left triangles (24%), filled pentagons
(29%), and filled stars (12%). Error bars represent lo
standard error inflated by the square root of the reduced
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Fig. 3. Evolution of orbital coherence under varying
spin configurations. (A) (Upper panel) Ramsey sequence
with varying 6, and 7g..e; (Lower panel) sequence with an
echo (m) pulse. The group of circles illustrates the orbital
configurations for interrogated atoms (black circles) and
spectator atoms (colored circles). The contrast is
normalized by comparing the high-atom-number raw
Ramsey fringe contrast, C (defined in the main text),
against the low-atom-number raw contrast. The filled
symbols are for echo measurements and the empty symbols
without echo. (B to E) Normalized contrasts for 6, = n/4,
with different x; and 7x: (B and D) x;, = 100%, Tx = 5.4
pK and 2.6 pK, respectively; (C) x; = (14 + 2)%, TR =54
uK; (E) x, = (56 £ 6)%, Tk = 5.0 pK. The solid and
dashed lines show theory calculations with echo and
without echo, respectively, using a two-orbital model where
the spectators act as an effective magnetic field causing
dephasing to the interrogated atoms. Under the conditions
of (B to E), the dominant source for contrast decay arises
from p-wave interactions between the interrogated atoms.
(F) Effects of echo, characterized by the ratio of contrast
with echo to that without echo, for 8; = n/4 (anti-diagonal
ellipse and solid line), ni/2 (horizontal ellipse and short
dashed line), and 37/4 (diagonal ellipse and short dotted
line), under x; = 100%. Error bars represent lc standard
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Fig. 4. Evolution of orbital coherence with significant
mode-changing processes. (A) Normalized Ramsey
contrast for 6; = n/4, x;, = (14+2)%, Tk = 2.1 pk:
measurements with echo (filled symbols) and without echo
(empty symbols); calculations with echo (solid line) and
without echo (dashed line), respectively. (B) Normalized
contrast for 6; = n/4, x; = (56 £ 6)%, Tr = 1.6 uK. (C
and D) Effects of echo, characterized by the ratio of
contrast with echo to that without echo, using the same
symbol scheme as that in Fig. 3F. The solid, short-dashed
and short-dotted lines are theory calculations that account
for the contrast decay arising from the p-wave interactions
between interrogated atoms, as well as mode-changing
processes facilitated by s-wave interactions. The latter is
accounted for as a time-dependent inhomogeneous
dephasing not removable by a single echo. The theory uses
a single fitting parameter for the mode-changing processes
for all plots. Error bars represent 1o standard error inflated
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Table 1. S- and P-wave scattering lengths in Bohr radius (ay).

S- and P-wave scattering lengths in Bohr radius (ag)

Channel S-wave P-wave Determination

gg 96.2(1) 74.6(4)

eg’ 169(8) -169(23)

eqg 68(22) —4271%

ee (elastic) 176(11) -119(18)

ee (inelastic) Yee = 4613

Be. = 121(13)

[S-wave] Two-photon photo-associative
spectroscopy [20] and ro-vibrational spectroscopy
(21]

[P-wave] Analytic relation between S- and P-wave
parameters [28]

Analytic relation [28]
Density shift in a polarized sample [17]

[S-wave]
[P-wave]

[S-wave] Density shift in a spin mixture at
different temperatures (this work)
[P-wave] Analytic relation [28]

Analytic relation [28]
Density shift in a polarized sample [17]

[S-wave]
[P-wave]

Two-body loss measurement [27]
and analytic relation [28]

ACKNOWLEDGEMENTS

We thank P. Julienne, B. Gadway, T. Nicholson, B.
Bloom, and A. Gorshkov for technical discussions. We
acknowledge funding for this work from NIST, NSF PFC,
AFOSR (MURI), AFOSR, DARPA QuASAR, and
Austrian Science Foundation, SFB FoQus, ERC Synergy

[11M. M. Boyd et al., Optical atomic coherence at the 1-
second time scale. Science 314, 1430 (2006).

[2]C. Wu, J. Hu, S. Zhang, Exact SO(5) Symmetry in the
Spin-3/2 Fermionic System. Phys. Rev. Lett. 91,
186402 (2003).

[3]M. A. Cazalilla, A. F. Ho, M. Ueda, Ultracold gases of
ytterbium: ferromagnetism and Mott states in an SU(6)
Fermi system. New J. Phys. 11, 103033 (2009).

[4]A. V. Gorshkov ef al., Two-orbital SU(N) magnetism
with ultracold alkaline-earth atoms. Nat. Phys. 6, 289
(2010).

[S]M. Hermele, V. Gurarie, A. M. Rey, Mott Insulators of
Ultracold Fermionic Alkaline Earth Atoms:
Underconstrained Magnetism and Chiral Spin Liquid.
Phys. Rev. Lett. 103, 135301 (2009).

Grant UQUAM and SIQS. M.B. acknowledges support
from the National Defense Science and Engineering
Graduate fellowship program and the NSF Graduate
Research Fellowship program.

After submission of this work, we became aware of an
independent study of SU(N) physics in Yb atoms (F. Scazza
et al., arXiv:1403.4761).

[6]B. J. Bloom et al., An optical lattice clock with
accuracy and stability at the 10™** level. Nature 506, 71
(2014).

[7TA. Daley, M. M. Boyd, J. Ye, P. Zoller, Quantum
Computing with Alkaline-Earth-Metal Atoms. Phys.
Rev. Lett. 101, 170504 (2008).

[8]D. Banerjee ef al., Atomic Quantum Simulation of
U(N) and SU(N) Non-Abelian Lattice Gauge Theories.
Phys. Rev. Lett. 110, 125303 (2013).

[9]Y. Tokura, Orbital Physics in Transition-Metal Oxides.
Science 288, 462 (2000).

[10] X. G. Wen, F. Wilczek, A. Zee, Chiral spin states and
superconductivity. Phys. Rev. B 39, 11413 (1989).

[11] S. Kraft, F. Vogt, O. Appel, F. Riehle, U. Sterr, Bose-
Einstein Condensation of Alkaline Earth Atoms: “’Ca.
Phys. Rev. Lett. 103, 130401 (2009).

[12] S. Stellmer, F. Schreck, T. C. Killian, Degenerate
quantum gases of strontium. ArXiv:1307.0601 (2013).



[13] Y. Takasu et al., Spin-Singlet Bose-Einstein
Condensation of Two-Electron Atoms. Phys. Rev. Lett.
91, 040404 (2003).

[14] S. Stellmer, R. Grimm, F. Schreck, Detection and
manipulation of nuclear spin states in fermionic
strontium. Phys. Rev. A 84, 043611 (2011).

[15] S. Blatt et al., Measurement of Optical Feshbach
Resonances in an Ideal Gas. Phys. Rev. Lett. 107,
073202 (2011).

[16] R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi,
Submicron Spatial Modulation of an Interatomic
Interaction in a Bose-Einstein Condensate. Phys. Rev.
Lett. 105, 050405 (2010).

[17] M. J. Martin et al., A quantum many-body spin system
in an optical lattice clock. Science 341, 632 (2013).

[18] S. Taie, R. Yamazaki, S. Sugawa, Y. Takahashi, An
SU(6) Mott insulator of an atomic Fermi gas realized
by large-spin Pomeranchuk cooling. Nat. Phys. 8, 825
(2012).

[19] G. Pagano et al., A one-dimensional liquid of
fermions with tunable spin. Nat. Phys. 10, 198 (2014).

[20] Y. N. Martinez de Escobar et al., Two-photon
photoassociative spectroscopy of ultracold *Sr. Phys.
Rev. A 78, 062708 (2008).

[21] A. Stein, H. Knockel, E. Tiemann, The 'S+'S
asymptote of Sr, studied by Fourier-transform
spectroscopy. Eur. Phys. J. D 57,171 (2010).

[22] A. D. Ludlow et al., Sr lattice clock at 1 x 107
fractional uncertainty by remote optical evaluation
with a Ca clock. Science 319, 1805 (2008).

[23] T. L. Nicholson et al., Comparison of Two
Independent Sr Optical Clocks with 1x10™'7 Stability at
10° s. Phys. Rev. Lett. 109, 230801 (2012).

[24] A. M. Rey ef al., Probing many-body interactions in an
optical lattice clock. Ann. Phys. 340,311 (2014).

[25] B. Yan et al., Observation of dipolar spin-exchange
interactions with lattice-confined polar molecules.
Nature 501,521 (2013).

[26] R. Islam ef al., Emergence and frustration of
magnetism with variable-range interactions in a
quantum simulator. Science 340, 583 (2013).

[27] M. Bishof et al., Inelastic collisions and density-
dependent excitation suppression in a *’Sr optical
lattice clock. Phys. Rev. A 84, 052716 (2011).

[28] Z. Idziaszek, P. S. Julienne, Universal Rate Constants
for Reactive Collisions of Ultracold Molecules. Phys.
Rev. Lett. 104, 113202 (2010).

[29] M. Foss-Feig, M. Hermele, A. M. Rey, Probing the
Kondo lattice model with alkaline-earth-metal atoms.
Phys. Rev. A 81, 051603(R) (2010).

[30] M. Hermele, V. Gurarie, Topological liquids and
valence cluster states in two-dimensional SU(N)
magnets. Phys. Rev. B 84, 174441 (2011).



Supplementary Material for

Spectroscopic observation of SU(N)-symmetric interactions in
Sr orbital magnetism

X. Zhang, M. Bishof, S. L. Bromley, C.V. Kraus, M. S. Safronova, P. Zoller,
A. M. Rey, J. Ye

This PDF file include:

Materials and Methods

Supplementary Text

Fig. S1

Tables. S1 to S3

References [31-46], following [1-30] in the main text

Materials and Methods
Preparation of atomic samples at given temperatures and spin configurations

We trap 600 to 3000 37Sr atoms in a one-dimensional (Z) optical lattice at 813 nm, and
cool them to ~2 K along Z. Four types of nuclear spin configurations are generated: (1) a
single spin state via optically pumping atoms into m; = +9/2 with a circularly-polarized laser
beam; (2) a two-spin mixture via pumping into my = +9/2 and —9/2 with a 7-polarized beam;
(3) a poorly polarized sample via weakening the circularly-polarized pumping laser power and
applying a subsequent depolarizing beam; (4) an almost unpolarized sample by applying no
optical pumping. To cool atoms along Z, we apply resolved sideband cooling for (1)~(3) and
Doppler cooling for (4). In the radial (X-Y) directions, atoms are cooled to about 2 uK with

Doppler cooling and are at 5 ~ 6 uK without cooling in lattice.



Statistical methods for data analysis

Following our previously reported procedure [6], the data are first binned into small chunks,

the means and standard deviations of these bins are determined, and a reduced chi-squared,

A/ szeduced’ is determined. If 4/ szeduced > 1, indicating that the data are over-scattered, we inflate
the bins’ standard deviations to bring 4 / sze duced t0 1, and the weighted average procedure is then

performed again. This approach is employed to all measurements in this work.

Differential measurements

In order to determine the effect of inter-atomic interactions, we employ differential measure-
ments throughout this work. In the density-dependent frequency shift measurements shown in
Fig. 2, we measure the difference between transition frequencies at high and low atom numbers,
where the atom number is modulated by a factor of 2 ~ 3, normalize the frequency difference
by the atom number difference, and then scale it to a given atom number (4000 interrogated
atoms in Fig. 2).

In the Ramsey contrast decay measurements shown in Figs. 3 and 4, we remove the single-
particle decoherence effect in a differential measurement protocol. We take measurements at
alternate high and low atom numbers and then normalize the raw contrast measured at high atom
numbers by that measured at the lowest workable atom number (~ 600). The high-normalized-
by-low contrast ratio is recorded as the normalized contrast, shown as the vertical axes in Figs.
3B to 3E and Figs. 4A,4B.

Here the raw Ramsey contrast is determined as follows: under a varying phase of the final
7 /2 pulse, we measure the Ramsey fringe contrast by either determining the variance of exci-
tation fraction [17] for types (1) to (3) of nuclear spin configurations (see the first section on
atomic sample preparation), or by directly fitting fringes with a sinusoidal function for type (4)
spin configurations, where the interrogated fraction is small(~ 10%), in order to reject technical

noise.



Two-orbital SU(N) spin model
Hamiltonian

We consider an array of ultracold 3Sr atoms trapped in a 1D optical lattice at the magic
wavelength (i.e. same trapping for |g) and |e)). The lattice potential tightly confines the atoms in
the lowest vibrational mode along the Z-direction and generates a weak harmonic confinement
with angular frequency wg = 27 Vg along the radial directions.

We first consider the dynamics of .4” atoms in a single lattice site and label the thermally
populated oscillator modes n; = (ny;,ny;) with j € {1,...,.4"}. At typical operation conditions
of vg ~ 500 — 600 Hz and temperatures in the K regime, the mean interaction energy per par-
ticle is much weaker than the energy splitting between neighboring single-particle vibrational
modes along any spatial direction. Thus, at leading order, only collisions between the atoms
that conserve the total single particle energy must be considered. Such processes conserve the
total number of particles per mode. In this case, the many-body dynamics is mainly governed
by the internal degrees of freedom of the atoms, i.e. their electronic and nuclear spin degree
of freedom, and the motional degrees can assumed to be frozen. If the gas is initially prepared
in such a way that there is at most one atom per mode, the interaction dynamics of the system
can be mapped to a lattice Hamiltonian with spin and orbital degree of freedom, where the
vibrational modes n; correspond to the lattice sites.

Note, however, that in the case of a pure harmonic spectrum, mode changing collisions
are energetically allowed even under weak interactions due to (i) the linearity of the harmonic
oscillator spectrum and (ii) the separability of the harmonic oscillator potential along the X
and Y directions. Condition (i) allows two particles in modes (nx,ny) and (mx,my) to collide
and scatter into modes (nx + k,ny + k') and (mx — k,my — k') without violating the energy
conservation constraint. Condition (ii) allows the same two particles to scatter into modes
(nx,my) and (my,ny). Those issues, in principle, can impose important limitations on the
validity of the spin model in a harmonic trap. In practice, however, the trapping potential is

not fully harmonic. It comes from the Gaussian beam profile of the lasers and is given by



_2R?
Vk =~ —Ae " with wy the beam waist. To leading order, the trapping potential is harmonic

Vg ~ mTw’%RZ, but for an atom in a mode {ny,ny}, there are higher order corrections of the
energy beyond leading order: E, = hiog(nx +ny + 1) + AEy, with AE, ~ hog (2%’)2 (3(11)2( +
nZ) + dnxny +5(nx +ny + 1)) At typical operating conditions: Vg = 5% ~ 500 — 600Hz,
wo ~ 30um, 7 > 1uK, and a mean occupation mode number 7ixy > 50, the difference of
AE, for nearby modes is larger than 2774 x 10 Hz which is not negligible compared to typical
interaction energy scales ~Hz. The first term in AE;, thus prevents processes (i), while the
second term, which breaks the separability of the potential, prevents processes (ii). Based
on this argument we first restrict our analysis to only processes that conserve the number of
particles per mode. For details, see Ref.[24]

We denote by CAI;mnj the creation operator of a fermion in the mode n;, the electronic state
0 = e,g and with nuclear spin m = 1,...,N <2/ 4 1. N is chosen by initial state preparation.
The field operator creating an atom at position R and with quantum numbers &,m can then
be written as ‘i’z,,m(R) = ¢OZ (Z)¥n 6T6mn ny (X)@ny (Y). The functions ¢OZ and @y, )y are the
longitudinal and transverse vibrational modes. We introduce the spin orbital operators

Tj=% Y ¢hm;0apCBmn,» (S1)

o,f.m

where G is the vector of Pauli matrices acting on the {e,g} basis (set g = 1 and e = 2), and

further the nuclear-spin permutation operators
SZl(J) = Zégnnjédmnj' (82)
(o2

Those operators satisfy the SU(N) algebra [S}'(i),S5(j)] = 8i,j[8m.pSi (i) — 8,45} (i)] and gen-
erate SU(N) rotations of nuclear spins.

At uK temperatures, it is a valid assumption to consider only s- and p- wave scattering
channels, each characterized by four elastic scattering parameters. We denote them by ay (s-
wave scattering length) and b% (p-wave scattering volume), where ) = gg,ee,eg™,eg™, is used
to denote scattering of two atoms in the states |gg), |ee) and |+) = (|ge) & |eg))V/2, respectively.

Let us first assume that the spin wave function of the two atoms is symmetric. Then, due to

4



the fermionic statistics only atoms in the singlet state |—) can experience s-wave collisions,
while atoms in the triplet states |gg), |ee) and |+) can only scatter via p-wave interaction. The
interaction Hamiltonian for symmetric nuclear spin wave function is then of the form H;;,nj, =
Yn—eeger Vi IN)(N|4U,|—)(—|. The interaction matrix elements V" and Uy are defined via
the s- and p-wave matrix elements Pnj,nj, and S, jn that depend on the harmonic oscillator

modes as

+ 3 — 3
(V )nj,nj/ = annj,nj/,nj/,nj:annj,njn (SB)

(Ui)njnj = anSn]n 10 n]—anSn]nJ (S4)

The coefficients Syp/n/n and Pyymrn characterize s- and p-wave matrix elements, respectively,

which depend on the vibrationl modes. Explicitly,

4\/ﬁx/m[ (n /1/) ( ”’)] (S5)

Sonnn = R ny, X?nXsnX anannY7nY
A,
6V21m\ /70
Pannmr = (ak )3 z R[ (nx,nx,ny.ny ) p(ny,ny,ny,ny’) + p(nx,ny,ny,ny )s(ny,ny,ny,ny)], (S6)
ho

JdEe " Hy(E)Hy (&) Hyr (E)H,n (£)dE

T/ 2 gy 1
e 28 [ (44 1,8~ 1,8 (“42) | [ (L2 ) () — ) (2220
T/ 2 g g ) :

Here H,(x) are Hermite polynomials. affo is the the transverse harmonic oscillator length.

s(n,n',n" 0" =

>

p(n,l’l/,n”,n”') —

Conversely, if the nuclear spin wave function of the two atoms is antisymmetric, then the
triplet states can scatter via s-wave interactions, while the singlet state scatters via the p-wave
channel. Thus, for antisymmetric nuclear spin wave function, the Hamiltonian is given by

nny = Ln—cege+ U 7)Y (M| + Vg |=){(—|. Now, with the help of the spin orbital operators

and dropping constant terms, we can rewrite Hfj n, as
i

nn 774 F2
e A e v i +
2Fl Jnj,nj/ (7} . Tj’) + an,nj/ 7"]27"]2/ + an,nj/ 2 +Knj,nj/ Inj,nj/’ (S7)
. . . . . . . (St —Yog)n
Here, In;n, is the identity matrix acting on the j and j atoms. J,jfj,n] = % C,jfj ny =
(Cee—Cegn m, (Ceet; —Zgj)n (CeetCogtCeb+Yog)n i,
# I:_Ljn»/: g82 - dKITJn/_ = Sg L where Y =U,{ =V
>

5



for + and Y =V,{ = U for —. To write down the generic Hamiltonian Hyin Y of two colliding

that project on the nuclear spin

atoms we define the projection operators @n_] n, and @:{ n;
>

singlet an triplet state. They can be written in terms of the nuclear spin permutation operators

Inin, XN SE()SE(T)
as e@i = nm2 . Then,

nn/
Hnj,n/ c@n_]n/ n,n;+<@r—ltn/Hr—ltn/ (88)

This spin-orbital Hamiltonian is the SU(N) generalization of the so-called Kugel-Komskii (KK)
Hamiltonian obtained for N = 2[31]. The KK Hamiltonian is used in condensed matter physics
to model, e.g., the Mott insulator transition in metal oxides with perovskite structure[9]. Since
the interactions are only pairwise, the total Hamiltonian describing the interactions between .4
atoms populating the modes Ti = {ny,n,,...,n 4 } is given by H;® = 1% ., Hpy . Note that
the Hamiltonian commutes with all the S} (j) generators, [H3?,Sh (/)] = 0, and thus it is SU(N)
invariant.

In the presence of a laser field that drives the g — e transitions, the atom-light Hamiltonian
in the rotating frame of the laser is given by:

8e +gg

AH:(j)/n :—5TZ Zszm Ty+BZIS’" 7)1 (ge gg)T—l- 5

m=1

(89)

Here, I, =m— (N+1)/2, § = op — @y, where @y, is the laser frequency and hay the energy
splitting between ground and excited state in the absence of a magnetic field. The second term
is proportional to €, () the corresponding Rabi frequency between the states |gm) and |em).

Q,,(j) depends on the harmonic oscillator level of the atom n ;j [24] if there is any component of
the probing laser wave-vector along the transverse direction. In our current operating conditions
the mode dependence of Q,,(j) can be neglected. Q,,(j) also depends on the corresponding
dipole matrix element between the g — e transition of the nuclear spin sublevel m, determined
by corresponding Clebsch-Gordan coefficients. The last term describes the Zeeman splitting
in the presence of an external magnetic field B. Here, g, o are the Lande-factors for the two
electronic states. For 87 Sr atoms, Ag = (8¢ —8&g¢) ~ 109 Hz/G, which allows for the spectroscopic

resolution of the nuclear spin sublevels [1, 32].



At our operating densities only the e — e channels exhibits measurable inelastic collisions. In
the presence of those, the use of a master equation to correctly capture the dynamics is required.
However, at the mean field level, the recycling terms in the master equation vanish and one can
just use an effective Hamiltonian with complex parameters [24], i.e. the terms Vrf"n ,,U,f]e ., are
replaced by V,f“n — ET“;,] n;s U,‘j]“n — jAnJ n;- Iy, n; and Ay, ; have the same dependence as
Ve, and US| but with the real part of the corresponding interaction parameters replaced by

njn/ nn/

the imaginary one (de, — Yee and boe — Bee).

Mean-field Dynamics

We first derive mean-field equations of motion, making the ansatz p = @ ;p;, where p; =
Yop=egPy ( )|ot,m)(B,m'| is the density matrix of an atom in the oscillator level n;. pg
are the number of atoms in nuclear spin m and electronic orbital state o and pgz [';1 L correspond

to orbital coherences. Since initially a nuclear spin statistical mixture is prepared and no nuclear



spin coherences develop during the dynamics, we set p('x"’g#m to zero:

d mm - m mm u nn mm :
Epgg (]) =Q ( ) peg ZZJ;; nklm peg pge ; ;JHJ ng nm Il’l’l [peg (k)pge (])] ’
(S10)
d N N _
Epe”ém(]) :_Qm( ) peg —l_zz‘]l:L nkIm peg pge ; ;‘] nk mn Im [p;lgn(k)p;nem(])] ’
N N
Z Z e AR )P (F)Pee (k Z e~ A )Pee" (J )Pe"é’m(k)>,
(S11)
d mm - - mm 1 m mmy s
Epeg (]):_lpeg ( )(I BAg 5)+2Q ( )[pee ( )_pgg (])}
N
—ip" (/) ), l nc[Pee” (k) + pgg" (k)] + (g n, X, m ) [P2" (K) — g (K)]
k=1
N N
Xn,nk‘f'fn,nk Z 1_ nm pee ) pgg n]nkZ 1_ nm pee )‘f‘P;g(k)]
N _ N
—ilpe" () = Pgg" (N X | = ot P (k) +Jnym Y, (1= Sn) P (k)
k=1 n=1
1 ,
—ZI;IPZZ'"(J) 20 Pee (k) + (T, + AR n, Z, Snn)Pee (k) | - (512)

Here we have used the notation A = (AT +A7) /2. Also note (P2 (1))* = pge" (J)-

TWA Approximation

To account for the development of quantum correlations during the dynamics we use the
truncated Wigner Approximation (TWA)[24]. The TWA has proven to be a successful approach
to incorporate the leading quantum corrections to the mean-field dynamics. To implement the
TWA, one needs to solve the mean-field equations of motion supplemented by random initial
conditions distributed according to the Wigner function. For a spin coherent state with Bloch
vector length T = .4;,/2 (A, is the number of atoms in nuclear spin state m) and pointing

initially along —Z, the Wigner function is given by:



) B <T(;;%>2+<rg;>2>}

On(TL T T = (W) ST+ A el (s13)

This Wigner function has a transparent interpretation. For a Bloch vector pointing along the
direction —Z, the transverse components fluctuate because of the uncertainty principle. Note
T2 =Re(p"). TJ" = Im(pyy™) and T = (pI2" — pJim) /2.

For a statistical mixture, the total Wigner distribution is just a product of the Wigner distri-
butions of the nuclear spin components, £ = [],, #» - Quantum mechanical expectation values
of the spin operators relevant for this work can be computed as
(O(T)rwa=J {(Hma:w,z dr) Pl { T3, ](ﬁ(f))] , with (&(7)) the classical evolution of the

observable calculated using the mean-field equations.

Large magnetic field limit

Consider the experimental situation in which a single nuclear spin m; = m; = 1 is interro-
gated. Denote .#; the number of atoms in the interrogated nuclear state, and .45 = Zgzz%
spectator atoms. In the presence of a large magnetic field, BAg > J.#, flip-flop processes be-
come energetically costly and the mean-field equations of motion simplify. After rotating out

the fast oscillatory terms, during the dark time they become:

d )
EP%DI(J) ~ 0 (S14)
d )
d i 1,1 & 1,1
ZPe () = =pei' (7) X Tl e’ (K), (S16)
k=1
d ) : .
ZPei (1) = —ipey (/) (1 BAg —3) (S17)

N .
) . I e
=iPeig (1) Y [ Coym (Pgi’ (k) + pei! (K)) + o, (P’ (K) = g’ (K)) = 5T, Pee (K)
k=1

+(Ca jome ™ X — f“/ a“k)

M=

(1_5nm)p§g(k) . (518)

n=1



where we have used the fact that all the spectator atoms were initially in the ground state. From
those equations it is clear that the spectator atoms remain in the ground state and act just as
a magnetic field on the interrogated atoms. In this limit TWA approximation only generated

many-body correlations on the interrogated atoms.

Modeling the density shift

To model the density shift, one can use the collective mode approximation and replace the

+

i OF. Under this approximation

coupling constants by their collective thermal averages: O
and in the presence of a large magnetic field, from Eq. (S18) one gets that the density shift has

two independent contributions,
Av = AV +AVS. (S19)

The first term comes from p-wave interactions between interrogated atoms themselves and is

given by
AV ~ N, (C_+—cos elx_+), (S20)
- 313 . 3 3 +3
with Ct = [l)ee—zl’@ (P)g,, and x* = w (P)g,- Here (S)r, and (P) correspond to

thermal averages of the s- and p-wave overlap matrix elements. Assuming a Boltzmann distri-
bution of initially populated modes, they depend on Ty as <S>TR o< TLR (decreases with Tr) and
(P}TR o< Tlg (insensitive to TR) [17].

The second term, Av¥, is generated by the spectator atoms which act as an effective magnetic

field along z given by

AV = AN, (S21)

o (ah+an—2ag,) (53 b —2by,°
with A = =#—4—5(8) . + —*—5—"=(P)p..
Experimentally, two-body e-e losses are taken into account during the dark time, Tfee, by mea-
suring the time-average population (extracted from independent measurements periodically in-

serted into the clock sequence)[17]. Here for the sake of simplicity in deriving Eq.(S20) we
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ignored two-body e-e losses. However, losses can be easily included by solving Eqs.(S17) and
(S18) and then using for the density shift the computed time average population. In general
losses can give rise to a small non-linear dependence of the density shift with excitation frac-
tion, especially at high densities, but for the current experimental atom numbers and trapping

conditions those give a correction of the slope less than 1%.

Modeling the contrast decay

While a mean-field treatment is good enough to model the density shift, to model the con-

trast decay we need to include corrections from the TWA. Those corrections account for the

mm

oo the density matrix

development of quantum correlations during the dynamics. We denote p
components obtained after performing the Truncated Wigner average as well as an average over
the number and thermal distributions in the various pancakes.

In terms of the density matrix components, the Ramsey fringe contrast is given by €' (Tgee) =
2 |;361g1 (Tfree)l / [ﬁelel (Tfree) + ﬁé}; (Tfree)], where Tge 15 the free evolution time as illustrated in
Fig. 3A. In the presence of a large magnetic field, exchange is energetically suppressed and
the ground state population of the various nuclear spin sublevels is conserved. In this limit, the
decay of the Ramsey contrast % can be split into two separate contributions. One coming from

the decay due to interactions between interrogated atoms themselves, 6 (Tgee), and another

arising from the interactions between interrogated and spectator atoms, 6 ( Tgee ):
(g(ffree) = (gl(ffree)cgs(ffree)- (822)

6" (Thee) Was measured and investigated in Refs.[17, 24] and has contributions coming from
four different mechanisms: (i) At the single-site level (with fixed .4;) a decay of coherences
due to the development of genuine many-body correlations proportional to e_MT_1 (sinéy Tffeexj)z.
(ii) Dephasing caused when averaging over sites with different .4; due to the atom number de-
pendent precession rate of the coherences (Eq.(S20)). (iii) Decay due to two-body e-e inelastic
collisions. The latter is partially compensated by normalizing the coherences by the total num-

ber of interrogated atoms. (iv) Decay due to off-resonant virtual excitations of motional states,
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accounted for as higher order terms in the spin Hamiltonian. All of those effects are accounted
for theoretically. In this work, we apply the same model and same p-wave scattering parameters
as those extracted in Ref. (17).

In the large B limit, ™ (Tfee) can be understood as a dephasing mechanism induced by
an effective inohmogeneous and density-dependent magnetic field along z generated by the
spectator atoms on the interrogated atoms. Under the frozen mode approximation, for an inter-
rogated atom in transverse mode nj, interacting with .45 spectator atoms, the effective mag-

) . . st —2
netic field is 27 = A;A;, where Aj = T ysAnn, with Agy, = e 2elg

(D) +(bg)® —2(bgg)
4

3 .
]Pnj,nk . %" are the manifolds of thermally populated transverse modes

occupied by spectators (.5) or interrogated (i) atoms in that site, respectively. Consequently,

, (S23)

1 . F
o = SN 1B,
%rozen(ffree) = <</1/.Zj—le j ‘ree
t JV,TR

where (.)_, ., means average over the thermal and atom number distribution across the pancake
array [24].

We find, however, that off-resonant virtual excitations of motional states, do play a role in the
dynamics and are an additional source of contrast decay. Those generate a decay not removable
by an echo pulse. On the contrary, Cgi:fozen<ffree) can be removed by echo. To account for those
processes, we use a phenomenological adhoc model based on Ref. (24), which nevertheless
seems to reproduce fairly well the experimental observations as shown in Fig. 4. Correspond-

ingly, the contribution to contrast decay is given by

1 - )
G oot (Tiree) = <]Zj§1el%ﬁ’ Tfree> ; (S24)
t N IR
and
) 0 1S S (S25)
J (Wcut%m) (pes),(geAt),1°0,0p,Np,N0N NG, NN 5

where [ sums over .4 " initially unpopulated modes chosen to be close in energy to the ini-
tially populated ones, and selected assuming a Boltzmann distribution with radial temperature
TR. Sn;n,.n,n, are s-save transition matrix elements [see Eq. ( S5)]. 4" and y are fitting pa-

rameters, which are set to be the same for all cases shown in Figs. 3 and 4. ¥; decreases faster
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than Tg ' (more like 7r ~*) and the contribution of mode changing processes to be contrast

decay can be neglected for hot temperature cases (7Tg > 5 uK).

Interaction parameters
Relationship between s-wave and p-wave interaction parameters

A multichannel quantum defect theory [28] predicts that, for a single van-der-Waals poten-
tial, 7, the complex scattering lengths for the s-wave, Ay = an — iy, and the complex scat-
tering volumes for the p-wave, Bn3 = bn3 — iﬁnz’, are related with the van-der-Waals length

1/4
_ o 2uCq 1y .
a= F(%)z (_h2 ) , F(4) 3.626:

3 3 -1
Ay _ 1+(BT"> [(B—"> +2.128] . (526)
a a a

We have computed the Cg coefficients for the 11 = gg,ee, and eg channels (see later sections)
and found them to be 3107(30) a.u., 5360(200) a.u., and 3880(80) a.u., respectively, where 1
au =1 Ehag, with Ej, beging the Hartree energy and ag being the Bohr radius. Those together
with Eq.(526) allow us to relate Ay and By. Using prior measurements done in a nuclear spin
polarized sample [17], we can determine (agg,bge), (dee — iYeesbee — iPee)s (ajg,bjg). Using
those parameters and current density shift measurements (Fig. 2), we determine (a,,,b,,) as

explained below.

Extracting the parameters from measuremnst

We use our knowledge of the p-wave volumes extracted from density shift and contrast
measurements for polarized samples [17] and Fig. 2B, together with density shift measurements
in the presence of spectator atoms (Figs. 2C,D) and the relationship between s and p-wave
scattering parameters [28], Eq. (S26), to determine all the 37Sr interaction parameters in the

four ¢ — g channels.
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Specifically, from the slope and zero-point crossing of the density shift in a polarized sample
we determine [(bj,)® — (bgg)’|(P)7;, = —1.65s ! and [(bee)® — (bgg)®] = 0.4[(b,)° — (bgg)’].
For our trapping conditions we estimate a3(P)7, = (3.35£1)10"s~! and ao(S)7, = (0.08 =
0.02)(1uK)/[Tr(uK)]s~!. Those measurements, supplemented by excited state loss measure-
ments [27] allow us to determine the following interaction parameters: bjg ~ (—169 £ 23)ao,
bee =~ (—119+ 18)ag and B, ~ (121 + 13)ap. Using Eq. (S26) we can determine the corre-

sponding s-wave parameters:ag, ~ (169 +8)ap, ae ~ (176 £ 11)ag and Y, ~ (4673 ao.

2 \
*S: \\\ \
.0 AN \C
o N\ N

Y N
-1 \

p—

210 -05 00 05 10 15
(beg/b%y)’

FIG. S1: Fitting scattering parameters from the density shift data. The figure shows the theoretical
predictions of the offset of zero-shift excitation fraction p, — p; in a 13% spin mixture under two temper-
atures: 2.3(2) uK (blue line) and 6.5(4) uK (purple line) [computed using Eq.(S20-S21)] vs (b,,/ bjg)3.
The shadowed regions correspond to the values of p}, — p; that lie within the experimental error bars for

the corresponding temperatures.

Finally from the density shift measurements in the presence of spectator atoms we determine
|beg| < 60ag (best fit at —42ap), and a,, =~ (68 +-22)ap. The large variation of b,, comes from
the fact that the value that best fits the experimental parameters is in a region where it changes

sign as shown in Fig. S1.
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Constraints on scattering parameters

Taking into account all measurements, as well as the analytic relations betwen s-wave and
p-wave scattering parameters, we establish 12 independent constraints for the 10 scattering
parameters (8 elastic, 2 inelastic for e-e), see Table S1. Within experimental uncertainties,
our results satisfy all these constraints and thus help determine the microscopic mechanism for

interactions that obey SU(N) symmetry.

Determination of C, coefficients of Sr: for the 'Sy + 'Sy, °Py + Py, and 'Sy + 3Py channels

We investigate the molecular potentials asymptotically connecting to the |A) + |B) atomic

states. The wave function of such a system constructed from these states is
|Ma, Mp; Q) = |A)1|B)1, (S27)

where the index I(II) describes the wave function located on the center I(II) and Q = M4 + Mp.
Here, the My p) is the projection of the appropriate total atomic angular momentum J4p) on
the internuclear axis. We assume that Q is a good quantum number for all calculations in this
work (Hund’s case (c)).

If A and B are the spherically symmetric atomic states and there are no downward transitions
from either of them, the Cq coefficient for the A 4+ B dimer is given by well known formula (see,
e.g., Ref. [33])

CAB = % /O o (i) o (iw) do, (S28)

where o (i) is the electric-dipole dynamic polarizability at an imaginary frequency. This for-
mula is applicable to calculating Cg coefficients for Sr-Sr Sy + So, 'So + 3Py, and 3Py + 3Ry
dimers.

The integrals over @ needed for the evaluation of the Cg coefficients are calculated using

Gaussian quadrature of the integrand computed on a finite grid of discrete imaginary frequen-

15



TABLE S1: Constraints on scattering parameters

Measurements

or analytic relations

Constraints

on scattering parameters

Number

of independent constraints

Density shift for polarized beg® +bee” — 2bjg3 2
atoms: slope and p;;ol and by, — bgg3
(this work and Ref. 17)
Density shift for spin bng + b;g3 —2by,* 2
mixtures: p* (this work) and a, +a,, — 2ag,
Inelastic scattering [27] ﬁee3 and Y, 2
Measurements by other gg 1
groups [20, 21]
Analytic relations between| Relations for elastic scattering 5
s- and p-wave in all four channels: gg,ee,eg’,eg
parameters [28] and inelastic scattering
in the ee channel
Total 12

16



cies [34, 35]. The integral in the expression for Cg‘B coefficient is replaced by a finite sum
3
Ce? ==Y Wea (i) o (i (S29)
3= Y wea o) o)

over values of o (iwy) and aB(iay) tabulated at certain frequencies @y yielding an N,-point
quadrature, where each term in the sum is weighted by the factor W;. In this work, we use
points and weights listed in Table A of Ref. [35] and N, = 50.

Then, the calculation of the relevant Cg coefficients is reduced to the calculation of 'Sy and
3Py electric-dipole polarizabilities at imaginary frequencies. Such calculation for Yb has been
discussed in detail in [36]. All calculations were carried out by two methods which allows us to
estimate the accuracy of the calculations. The first method combines configuration interaction
(CI) with many-body perturbation theory (MBPT) [37]. In the second method, which is more
accurate, CI is combined with the coupled-cluster all-order approach (Cl+all-order) that treats
both core and valence correlation to all orders [38—40]. Cg coefficients for Sr and Yb dimers
and static electric-dipole o polarizabilities of Sr and Yb atoms [36, 41] are listed in Table S2.
Cl+all-order ab initio results are listed in rows labelled Cl+all. The rows “Diff.” give the
relative size of the higher-order contributions estimated as the difference of the Cl+all-order and
CI+MBPT results. We note that the relative size of the higher-order contributions are different
for Sr and Yb, due to different size of the higher-order corrections to dynamic polarizability at
imaginary frequencies at large @. The Py 4 3Py Sr C4 coefficient is compared with Refs. [42,
43].

The Sr-Sr and Yb-Yb 'Sy + 3Py Cg coefficient can also be calculated using a semiempirical
formula [44]

(S30)

CAB ~ C332 a’(0) aB(O)fAéA G’ ’
¢ (at(0))? +Cg (aB(0))?
where o (0) and otB(0) are the electric-dipole static polarizabilities of the atomic states A and
B, and C24 and CB? are the Cg coefficients for the (A +A) and (B + B) dimers, respectively.
While this formula gave the Yb CG(ISO —|—3Po) value in good agreement with the numerical

Cl+all-order result, it appears to be fortuitous. Most likely, the approximate formula worked
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TABLE S2: Cg coefficients for Sr and Yb dimers in a.u. « is the electric-dipole static polarizability.
Cl+all-order ab ibitio results are listed in rows labelled “CI+all”. The rows “Diff.” give the relative size
of the higher-order contributions estimated as the difference of the Cl+all-order and CI+MBPT results.
The uncertainties are given in parenthesis. The values listed in the column “Approx.” are obtained using
the approximate formula given by Eq. (S30). The values listed in the column “Numerical” are obtained

using the formula given by Eq. (S28). “Adjusted by -1%, *Ref. [41]

a('So) aCr) Cs('So+'So) Co(CRy+°Ry)  Co('So+°Ry)

Approx. Numerical

Yb CI+MBPT 138 306 1901 3916 2492 2609
Cl+all [36] 141(2) 293(10) 1929(39)  3746(180) 2487 2561(95)¢

Diff. 1.8% -4.4% 1.4% -4.5% 02%  -0.9%
Sr CI+MBPT 1954 482.1 3091 5638 3517 3927
Cl-+all 197.8 458.1 3143 5553 3607 3958
Diff. 12% -52% 1.7% -1.5% 25%  0.8%
Bestset  197.14" 444.51° 3107 5357 3548 3876
Final 5360(200) 3880(80)
Ref. [42] 5260(500)
Ref. [43] 5102

well for Yb because of the similar contributions of high-orders to 3Py static polarizability and
Yb Cs(*Py +3Py) coefficient. The approximate formula result for Cg('So 4> By) of Sr differs
from our final number by 9%. Both Yb and Sr calculations are illustrated in Table S2.

To improve the accuracy of our Sr Cg values, we extract the contributions of the dominant
terms to the dynamic polarizabilities o (iey) in sum (S29) at each frequency and replace the

corresponding energies by the experimental values and electric-dipole matrix elements by the
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TABLE S3: Cl+all-order (no small corrections) and final recommended matrix elements from Ref. [41]

in a.u. The theoretical and experimental [45] transition energies are given in columns AEy, and AE .

Transition AEth AEexpt DCI+all D recom

552 1So—5s5p 'P° 21823 21698 5.272 5.248(2)[46]
5s5p 3Py —5s4d Dy 3777 3842 2.712  2.675(13)
5s5p 3Py —5s6s 38 14673 14721 1.970  1.962(10)
555p 3Py — 5s5d Dy 20660 20689 2.460  2.450(24)
5s5p3Ry—5p* 3P 21208 21083 2.619  2.605(26)

recommended values that we determined in Ref. [41]. Then, Eq. (§29) is used with the modified
dynamic polarizabilities to obtain the improved values of the Cg coefficients. For the 5s% 1S
dynamic polarizabilities, the contribution from the 55> 1Sy — 5s5p Py transition is replaced.
For the 5s5p 3Py dynamic polarizabilities, the contributions from the 5s5p 3Py — 5s4d 3Dy,
555p 3Py — 5565381, 5s5p 3Py — 555d 3Dy, and 5s5p 3Py — 5p? 3P| transitions are replaced. The
best set energy and matrix element values are listed Table S3.

The resulting values are listed in the row “Best set” in Table S2 and are taken as final. The
uncertainties of the Cg(*Py +3Fy) and Cs('Py +3Py) coefficients are estimated as the difference

of the ab initio and the best set values.
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