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ABSTRACT

We report on observations of Lyman–break galaxies (LBGs) selected from

the Great Observatories Origins Deep Survey (GOODS) at mean redshifts z ∼ 4,

5 and 6 (B435–, V606– and i775–band dropouts, respectively), obtained with the

red–sensitive FORS2 spectrograph at the ESO VLT. This program has yielded

spectroscopic identifications for 114 galaxies (∼ 60% of the targeted sample), of

which 51 are at z ∼ 4, 31 at z ∼ 5, and 32 at z ∼ 6. We demonstrate that

1Based on observations made at the European Southern Observatory Very Large Telescope, Paranal, Chile

(ESO programme 170.A-0788 The Great Observatories Origins Deep Survey: ESO Public Observations of

the SST Legacy / HST Treasury / Chandra Deep Field South). Also based on observations obtained with

the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated

by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS

5-26555.
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the adopted selection criteria are effective, identifying galaxies at the expected

redshift with minimal foreground contamination. Of the 10% interlopers, 83%

turn out to be Galactic stars. Once selection effects are properly accounted for,

the rest–frame UV spectra of the higher–redshift LBGs appear to be similar

to their counterparts at z ∼ 3. As at z ∼ 3, LBGs at z ∼ 4 and z ∼ 5

are observed with Lyα both in emission and in absorption; when in absorption,

strong interstellar lines are also observed in the spectra. The stacked spectra of

Lyα absorbers and emitters also show that the former have redder UV spectra

and stronger but narrower interstellar lines, a fact also observed at z ∼ 2 and

3. At z ∼ 6, sensitivity issues bias our sample towards galaxies with Lyα in

emission; nevertheless, these spectra appear to be similar to their lower–redshift

counterparts. As in other studies at similar redshifts, we find clear evidence

that brighter LBGs tend to have weaker Lyα emission lines. At fixed rest–

frame UV luminosity, the equivalent width of the Lyα emission line is larger at

higher redshifts. At all redshifts where the measurements can be reliably made,

the redshift of the Lyα emission line turns out to be larger than that of the

interstellar absorption lines, with a median velocity difference ∆V ∼ 400 km s−1

at z ∼ 4 and 5, consistent with results at lower redshifts. This shows that

powerful, large–scale winds are common at high redshift. In general, there is no

strong correlation between the morphology of the UV light and the spectroscopic

properties. However, galaxies with deep interstellar absorption lines and strong

Lyα absorption appear to be more diffuse than galaxies with Lyα in emission.

Subject headings: cosmology: observations — galaxies: formation — galaxies:

evolution — galaxies: distances and redshifts

1. Introduction

The study of galaxies at high redshift is crucial for understanding the formation of the

Hubble sequence, the growth of visible structures in the Universe and the processes leading to

the reionization of the intergalactic hydrogen at the end of the Dark Ages. In the past decade,

the empirical investigation of galaxies at high redshifts (i.e., z > 1.5) has made rapid progress

thanks to advances in telescopes and instrumentation and to the development of optimized

selection techniques based on the observed colors of galaxies through either broad or narrow

passbands. Color–selection criteria, which are designed to target galaxies with a range of

spectral energy distributions (SEDs) within a targeted redshift window, are generally very

efficient and allow one to build large samples with reasonably well controlled systematics (e.g.,
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Steidel et al. 1999; Daddi et al. 2004; van Dokkum et al. 2003; Taniguchi et al. 2005),

suitable for a broad range of studies, both statistical in character or based on the properties

of the individual sources.

Among the various types of galaxies at high redshifts identified by color selection, the

Lyman–break galaxies (LBGs; e.g., Guhathakurta et al. 1990; Steidel et al. 2003; Giavalisco et al.

2004b, for a review, see Giavalisco 2002) are the best studied and their samples are the largest

both from a statistical point of view, and in terms of the the cosmic time covered (reaching

back to less than one billion years after the Big Bang). The reason is mostly practical: since

these galaxies are selected on the basis of luminous rest–frame ultraviolet (UV) emission,

which at redshifts 2.5 ∼< z ∼< 6 is redshifted into the optical and near–infrared windows, the

observations are among the easiest to carry out, taking advantage of very sensitive instru-

mentation with large areal coverage.

LBGs at redshift z ∼ 3 have been intensively studied with both very large (Steidel et al.

2003) and deep samples (Papovich et al. 2001), including high–quality spectra for more

than a thousand galaxies. Current surveys at z ∼ 3 provide the largest data set to study

the properties of galaxies during a relatively early phase of galaxy evolution (z ∼ 3 corre-

sponds to when the Universe was ∼ 20% of its current age), at least for one spectral type,

namely star–forming galaxies with moderate dust obscuration. A number of follow–up stud-

ies have been carried out following the discovery of these galaxies (Steidel et al. 1996a,b),

including studies of their morphology and size (Giavalisco et al. 1996; Papovich et al. 2003;

Ravindranath et al. 2006; Law et al. 2007; Lotz et al. 2006; Ferguson et al. 2004), their

ages and stellar masses (Papovich et al. 2000; Shapley et al. 2000; Dickinson et al. 2003a),

their chemical evolution (Pettini et al. 2000; Shapley et al. 2003), and of their clustering

properties (Giavalisco et al. 1998; Adelberger et al. 1998; Giavalisco & Dickinson 2001;

Adelberger et al. 2003).

At higher redshifts, LBGs appear fainter, the observations require higher sensitivity and

the samples are still relatively small. As a consequence, the properties of the most–distant

LBGs are less well characterized. Initial studies of the spectral properties and luminosity

function have been carried out at z ∼ 4 (Steidel et al. 1999) and z ∼ 5 (Madau et al.

1998) based on fairly small samples. More recently, larger samples at z > 4 have been gath-

ered, from both ground– and space–based observatories (Shimasaku et al. 2005; Iwata et al.

2003; Giavalisco et al. 2004b; Dickinson et al. 2004; Bunker et al. 2004; Bouwens et al.

2006, 2007); these samples, however, are exclusively photometric ones, with small numbers

of spectroscopic identifications. Such studies have investigated a wide spectrum of statistical

properties of LBGs at z > 4 and up to z ∼ 7, such as spatial clustering, morphology, UV lumi-

nosity function, stellar mass and properties of the Lyα line (see, for example, Hamana et al.
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2006; Lee et al. 2006; Ravindranath et al. 2006; Lotz et al. 2006; Giavalisco et al. 2004b;

Ferguson et al. 2004; Ouchi et al. 2005; Bouwens et al. 2007; Ando et al. 2006, 2007; Yan et al.

2006). However, these results are based on the assumption that the spectral properties of

LBGs at z ∼> 4 are the same as at z ∼ 3. It is reasonable to expect that the higher–redshift

samples should bear a similarity to those at z ∼ 3, since LBG color selection at all redshifts

are tuned to select galaxies with a similar rest-frame UV SED. However, without spectro-

scopic information, it is impossible to know if evolutionary effects are introducing systematic

biases in the observed statistics. For example, if the distribution of surface brightness, UV

SED or Lyα emission line properties evolve with redshift, this will affect the redshift distri-

bution and the completeness of the samples, which in turn will bias derived properties such

as the LBG spatial clustering, luminosity function, and the evolution of these quantities.1

In this paper we present results from a program of spectroscopic follow–up of LBGs

at redshift z > 4 selected from optical images obtained with the Advanced Camera for

Surveys (ACS; Ford et al. 1993) on board the Hubble Space Telescope (HST) in the four

passbands, B435, V606, i775 and z850, as part of the Great Observatories Origins Deep Survey,

or GOODS (for an overview of the GOODS project, see Renzini et al. 2002; Dickinson et al.

2003b; Giavalisco et al. 2004a). The spectra have been obtained at the ESO VLT with the

FORS2 spectrograph. The data from this program, specifically all the spectra of galaxies

in the redshift range 0.5-6.3, have already been released and described in previous papers

(Vanzella et al. 2005, 2006, 2008). Here we focus on a sample of LBGs, which has yielded

114 spectroscopic identifications in the redshift interval 3.1 − 6.3. Re-analyzing the whole

LBG sample, we introduce very few differences (mainly in the quality redshift) to respect

the previous global release (Vanzella et al. 2008), improvements that have been marked in

the reported list of the present work. Currently, it represents one of the largest and most

homogeneously–selected spectroscopic samples in this redshift range.

Throughout this paper magnitudes are in the AB scale (Oke 1974), and the world model,

when needed, is a flat universe with density parameters Ωm = 0.27, ΩΛ = 0.73 and Hubble

constant H0 = 73 km s−1 Mpc−1.

1Note that a simple analysis of the observed colors or sizes is not sufficient to establish the presence of

evolutionary effects since it is not possible to separately measure the distribution functions of color, size and

luminosity. See discussion in Reddy et al. (2008).
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2. Data and Sample Selection

2.1. ACS Images and Source Catalogs

We have selected samples of LBGs at mean redshift z ∼ 4, 5 and 6 (in the following

referred to as B435–, V606–, and i775–band dropouts, respectively) from the latest version

(v2.0) of the GOODS images, obtained with the ACS on HST. The v2.0 mosaics are nearly

identical in shape and size to the v1.0 ones. They cover the two GOODS fields, the northern

one encompassing the Hubble Deep Field North (HDF–N) and the southern one located at the

center of the Chandra Deep Field South (CDF–S). Each subtend an area of approximately

10×17 arcmin on the sky, for a total areal coverage of about 0.1 square degrees. As with v1.0,

the v2.0 images consist of two sets of mosaics observed in the B435, V606, i775 and z850 filters.

The depth of the V606, i775 and z850 mosaics, however, has been increased over version v1.0

by including additional observations taken during the continuation of the original GOODS

survey for high-redshift Type Ia supernovae (Riess et al. 2004, 2005). Since these additional

data were obtained using the same observational strategy as the original ACS program (e.g.,

the same Phase-II files were used to carry out the observations), integrating them into the

existing mosaics has been straightforward and has resulted in doubling the original exposure

time in the z850 band as well as a more modest depth increase in the other bands.2

2.2. Photometric Samples of Lyman–Break Galaxies

We have selected samples of LBGs using color criteria very similar to those presented

by Giavalisco et al. (2004b; G04b hereafter), with some minor modifications applied to the

definition of B435–band dropouts to explore the redshift distribution of galaxies near the

border of that color–color selection window. The exact locations of such windows balance

the competing desires of completeness and reliability. Windows are designed to include

as complete a sample of target galaxies as possible given the dispersion of observed colors

— due both to both observational scatter and the intrinsic dispersion in galaxy UV SEDs

(e.g., related to varying dust content, ages, metallicities, Lyα equivalent widths, etc.). On

the other hand, windows are designed to avoid significant numbers of galaxies at redshifts

outside (usually lower than) the targeted one.

2The v2.0 exposure times in the B435 , V606 , i775 and z850 bands are 7200, 5450, 7028 and 18232 seconds,

respectively. Details of the ACS observations, as well as major features of the GOODS project, can be found

in Giavalisco et al. (2004a); additional information about the latest v2.0 release of the GOODS ACS images

and source catalogs can be found at www.stsci.edu/science/goods/v2.0 and will be described in detail

in an upcoming paper (Giavalisco et al., in prep.).
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In the present work, B435–band dropouts are defined as objects that satisfy the color

equations:

(B450 − V606) ≥ 1.1 + (V606 − z850) ∧ (B450 − V606) ≥ 1.1 ∧ (V606 − z850) ≤ 1.6, (1.1)

where ∧ and ∨ are the logical AND and OR operators. These criteria extend the selection

of candidates to slightly bluer (B435-V606) and redder (V606-z850) colors than those in G04b.

As can be seen in Figure 1, which shows the selection windows corresponding to both sets of

color equations, the sample selected with the new criteria (solid line) fully includes the one

selected with the G04b criteria (dashed line). We have decided to use these more general

criteria to define the sample of B435–band dropouts, which is the largest among the three LBG

samples targeted for the spectroscopic observations, to explore both changes in the low–end

of the targeted redshift range and contamination rates from low–redshift interlopers.

The definitions of the color equations of V606–band and i775–band dropouts are un-

changed from those used in G04b and Dickinson et al. (2004), and are given by the color

equations

[(V606 − i775) > 1.5 + 0.9 × (i775 − z850)] ∨

∨ [(V606 − i775) > 2.0] ∧ (V606 − i775) ≥ 1.2 ∧ (i775 − z850) ≤ 1.3

∧ [(S/N)B < 2] (1.2)

and

(i775 − z850) > 1.3 ∧ [(S/N)B < 2] ∨ [(S/N)V < 2], (1.3)

respectively (see Figure 2 for a collapsed representation of the selection windows for V606–

and i775-band dropouts). For all three selection criteria above, when the isophotal S/N in a

given band is less than one, limits on the colors have been calculated using the 1σ error on

the isophotal magnitude.

We have restricted the photometric samples to galaxies with isophotal S/N ≥ 5 in

the z850 band, and we have visually inspected each candidate, removing sources that were

deemed artifacts. In addition, we have estimated the number of spurious detections using

counts of negative sources detected in the same data set. Together, these amount to a

negligible number of spurious sources for the B435– and V606–dropout samples, and ≈ 12%

for the i775–dropouts. We have also eliminated all sources with stellar morphology down

to apparent magnitude z850∼ 26, i.e., where such a morphological classification is reliable.

This accounts for an additional 3.1%, 8.3% and 4.6% of the B435–, V606– and i775–dropout

samples, respectively. While this procedure biases our samples against LBGs (and high–

redshift quasars) that are unresolved by ACS, it minimizes contamination from Galactic

stars. Note that we have spectroscopically observed a few point-like sources that obey the
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dropout selections in order to verify that such sources are indeed Galactic. In practice, these

cullings of the dropout samples result in negligible changes to the spectroscopic samples and

to key measured quantities, such as the specific luminosity density.

Down to z850≤ 26.5, roughly the 50% completeness limit for unresolved sources, the

culled samples include 1544, 490 and 213 B435–, V606–and i775–band dropouts, respectively.

With a survey area of 316 arcmin2, this corresponds to surface density Σ = 4.89 ± 0.12,

1.55±0.07 and 0.67±0.05 galaxies per arcmin2 for the three types of dropouts, respectively.

Error bars simply reflect Poisson fluctuations.

We note that while the V606– and i775-band dropout samples are mutually exclusive (i.e.,

i775 − z850 ≤ 1.3 vs. i775 − z850 > 1.3, respectively), the intersection of the B435– and V606-

band dropout samples may be non-zero. However, in this latter case, no sources in common

have been found down to the z850≤ 26.5, and only one galaxy satisfies both criteria when

the magnitude limit is extended down to z850≤ 27.5 (i.e., GDS J033245.88-274326.3).

We have used Monte Carlo simulations to estimate the redshift distribution function of

our LBG samples and compared the results to observations. The technique is the same as

that used in G04b and consists of generating artificial LBGs distributed over a large redshift

range (we used 2.5 ≤ z ≤ 8) with assumed distribution functions for UV luminosity (we used

a flat distribution, discussed below), SED, morphology and size. We adjusted the input SED

and size distribution functions by requiring that the distribution functions recovered from

the simulations match the z ∼ 4 observed sample, the largest of the three GOODS samples.

In this way, both simulations and observations are subject to similar incompleteness, photo-

metric errors (in flux and color), blending, and other measurement errors. The model SED

used for the simulations is based on a synthetic spectrum of a continuously star–forming

galaxy with age 108 yr, Salpeter IMF and solar metallicity (Bruzual & Charlot 2000). We

reddened it with the starburst extinction law (Calzetti 2000) and E(B − V ) randomly ex-

tracted from a Gaussian distribution with µE(B−V) = 0.15 and σE(B−V) = 0.15. In other

words, the dispersion of the LBG UV SEDs is modeled as only due to the dispersion in

the amount of obscuration for the same unobscured SED, neglecting the effects of age and

metallicity of the stellar populations. This is obviously a crude approximation, but, thanks

to the strong degeneracy between age, obscuration and metallicity on the broad–band UV

colors of star–forming galaxies, it is adequate here since we are only interested in measuring

the selection effects due to the specifics of the observations. For the cosmic opacity, we have

adopted the Madau (1995) prescription, extrapolated to higher redshifts when necessary. To

model the dispersion of the morphologies of the galaxies we have used an equal number of

r1/4 and exponential profiles with random orientation, and size extracted from a log–normal

distribution function (see Ferguson et al. 2004). We found the average redshift and standard
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deviation of the redshift distribution to be zB = 3.78 and σB = 0.34 for the B435–dropout

sample, zV = 4.92 and σV = 0.33 for the V606–dropout sample, and zi = 5.74 and σi = 0.36

for the i775–dropout sample.

2.3. The Spectroscopic Sample

We have selected a sample of 202 LBGs from the three samples defined above as primary

targets of the FORS2 spectroscopic observations. While the criteria to include a galaxy in

the target list were mostly based on its apparent magnitude, as we detail below, we did

not set a strict flux limit for the spectroscopic sample in these initial high-redshift LBG

spectroscopic studies. This allowed us to empirically assess how often the presence of Lyα

emission allows the measurement of the redshift of galaxies which are too faint for absorption

spectroscopy.

Targets were assigned slits in the FORS2 multi–object spectroscopic masks according to

an algorithm in which two competing factors combine to maximize (i) the number of targets

and (ii) the likelihood of success, under the assumption that brighter targets are more likely

to result in successful identifications. In practice, while brighter galaxies were more likely to

be assigned a slit, (slightly) fainter targets could still win the competition if their coordinates

allowed a larger total number of targets on a given mask. Relatively faint targets in close

proximity to brighter one were also assigned a slit if their inclusion could be made without

penalty. Where possible, we assigned faint targets to multiple masks.

When the number of available slits in a mask exceeded that of available targets, we

populated the remaining slits with “filler” targets selected to test target selection criteria

and to identify lower–redshift galaxies in the range z ∼ 1 − 2 (for a summary of the global

target selection of the FORS2 campaign, see Vanzella et al. 2006). In particular, we se-

lected some filler targets using LBG criteria that extended the primary B435– and V606–band

dropout selection criteria to galaxies with less pronounced “Lyman drops” and bluer UV

continuum, thus getting closer to the locus of general field galaxies. As discussed earlier,

such observations are useful for exploring the dependence of the redshift distribution func-

tion of the confirmed LBGs on the details of the color selection, as well as for measuring

contamination by low–redshift interlopers. In what follows we refer to these more loosely

defined B435– and V606–band dropouts simply as “fillers”. Only three such spectroscopically-

identified fillers are considered below, two B435–dropout fillers (GDS J033234.40-274124.3 at

z = 3.418, QF=B and GDS J033251.81-275236.5 at z = 3.468, QF=A) and one V606–dropout

filler (GDS J033239.82-275258.1 at z = 5.543, QF=C). We will report more extensively on

these tests in following papers, which will also include spectroscopic observations of GOODS
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galaxies obtained with different instrumental configurations.

3. FORS2 Spectroscopic Observations

The details of the observations, including journals of the observing runs, data reduction,

the extractions of the spectra have been reported in Vanzella et al. (2005, 2006, 2008), and

we refer the reader to those papers. We recall that the wavelength coverage was typically

5700Å-10000Å with a spectral resolution of R = λ/∆λ = 660, corresponding to 13Å at

8600Å. No order separation filter was used.

In the vast majority of cases, the redshift has been calculated through the identification

of prominent features of LBG spectra, e.g., Lyα either in emission or absorption, and Si ii

1260Å, O i+Si ii 1302Å (a blend at the spectral resolution of our instrumental setup), C ii

1335Å, Si iv 1394,1403Å, Si ii 1527Å, C iv 1548, 1551Å in absorption.

Redshift determinations have been made based on visual identification of spectral fea-

tures as well as by cross–correlating the observed spectra against high–fidelity LBG templates

of differing spectral types using the rvsao package in the IRAF environment. In particular,

we used emission and absorption line LBG templates from Shapley et al. (2003) as well as

the lensed absorption line LBG cB58 (Pettini et al. 2000). Each two-dimensional spectrum

has been visually inspected, including consideration of its slit orientation on the sky. In

many cases where no continuum has been detected, we derive a redshift measurement from

Lyα emission.

We have co–added all repeated spectra to improve the final S/N. The typical exposure

time for each mask was about 14,400 seconds and for co-added sources, total exposure times

range from 20,000 to 80,000 sec (e.g., see Vanzella et al. 2008).

We have assigned each measured redshift a quality flag (QF), with values of either

A (unambiguous identification), B (likely identification; e.g., based on only one line or a

continuum break), or C (uncertain identification). The presence of Lyα emission in the

second order spectrum (at > 10,000Å), has also been used on occasion, especially for faint

sources with low QFs based on absorption features. For example, one B435–band dropout

source (GDS J033221.05-274820.5) shows an apparently featureless continuum with a second-

order emission line at ∼ 10400Å, implying z ∼ 3.3. Indeed, recently the VIMOS spectroscopic

observations have confirmed this galaxy to be at z = 3.385 (Popesso et al. 2008).

We have assigned a redshift to 118 galaxies of the initial list of 202 targets, or 58.4%

of the input list; this relatively low success rate is, in large part, due to two factors: (i) the
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target list includes a relatively large fraction of faint sources — 65 or 32.2% of the sample

have z850> 26; and (ii) the difficulty in deriving redshifts for galaxies at z < 3.6 with our

instrumental configuration. In the latter case, depending on the slit position, Lyα and the

UV absorption features are often blueward of the spectral range available.

Of the 118 spectroscopically identified sources, 106 have redshifts in the expected range

for their adopted color selection. Note that some of these redshifts have already been pub-

lished in Vanzella et al. (2005, 2006). Of the sources outside the expected redshift range, one

source is a low–redshift galaxy from the B435–band dropout sample, one is a low–redshift

galaxy from the V606–band dropout sample, and 10 are Galactic stars (1, 3 and 6 from

the B435–, V606–, and i775–dropout samples, respectively). We note that one faint star,

GDS J033238.80-274953.7 (z850 = 25.16), that we spectroscopically classify with QF=C, has

been confirmed Galactic in nature due to the detection of its proper motion (M. Stiavelli,

private communication). Excluding the Galactic stars and the two low–redshift interlop-

ers, the final list of spectroscopically identified LBGs includes 46 B435–band dropouts, 32

V606–band dropouts, and 28 i775–band dropouts (reported in Tables 1, 2 and 3).

As mentioned above, we have assigned redshifts to three high–redshift filler targets found

to be in the same redshift range as the primary LBG sample. This brings the total number

of high-redshift (z > 3.1) spectroscopic identifications to 109, of which 32 have QF=C. Of

these 109 galaxies, 70 have redshift z > 4 (24 with QF=C); 37 have redshift z > 5 (13 have

QF=C); and 32 have redshift 5.5 < z < 6.5 (11 with QF=C; see Table 4 for a summary).

Finally, we also found five serendipitously–identified, high–redshift galaxies. These fell,

as second or third sources, on slitlets assigned to other primary targets. For four of them

the redshift identification relies upon a Lyα emission line; only in one case does the redshift

rely upon absorption features. These five serendipitous sources are, in right ascension order:

• GDS J033218.27-274712.0, at z = 4.783 (QF=C), marked in Figure 2 with a red

pentagon, is close to the V606-band dropout selection window (V606-i775>1.901, i775-

z850=0.501).

• GDS J033219.41-274728.4, at z = 3.250 (QF=C). This galaxy shows a flat continuum

and an absorption doublet interpreted as C iv 1548, 1551Å.

• GDS 03322.89-274521.0, at z = 5.128 (QF=C). This source, clearly visible in the i775
band (from which the coordinates were measured) is not detected in the B435, V606, or

z850 bands. We assume that the emission line is Lyα, though lacking firm constraints

on the continuum SED, we can not rule out another interpretation such as [O ii]3727

at redshift z = 0.999. This source is not used in the following analysis.
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• GDS J033228.94-274128.2, at z = 4.882 (QF=B), is discussed in Vanzella et al. (2005,

see their Fig. 13). The source is not present in the ACS catalogs because of blending

with a bright galaxy.

• GDS J033243.16-275034.6, at z = 4.838 (QF=C), is discussed in Vanzella et al. (2006,

see their Fig. 2, top panel). This source is not present in the ACS catalogs because of

blending with a bright star.

Figures 3 and 4 show the one-dimensional spectra for all confirmed LBGs, separated

depending on whether Lyα is in emission or absorption. Figure 5 shows the two-dimensional

spectra of confirmed LBGs at z > 5. Table 4 summarizes the characteristics of each dropout

sample compared with those expected from the Monte Carlo simulations of the redshift

selection described in §2.2, while Figure 6 shows the observed redshift distribution of each

dropout category. Note the (small) overlap between the redshift distribution functions for

B435– and V606–band dropouts at z ∼ 4.5 and between V606– and i775–band dropouts at

z ∼ 5.5.

4. Efficiency of the Photometric Selections

The effectiveness of the LBG color selection has been verified at z ∼ 3 by means of

an extensive program of spectroscopic confirmations of over a thousand U–band dropouts

(Steidel et al. 2003). At higher redshift, the spectroscopic samples of LBGs collected by

various groups (e.g., Steidel et al. 1999; Vanzella et al. 2006, 2008; Popesso et al. 2008;

Yoshida et al. 2006; Ando et al. 2007) are rather small and estimates of successful identifi-

cation rates for a given set of color criteria remain correspondingly uncertain. Details of the

filters and color criteria used by various surveys can result in different relative proportions

of successfully-identified LBGs (i.e., in the targeted redshift range), interlopers (i.e., out-

side of the targeted redshift range), as well as other types of unwanted sources (e.g., AGN

in the targeted redshift range). The GOODS data set is being widely used for a variety

of studies of the properties of galaxies at high redshifts (e.g., Bouwens et al. 2007), and

many of these studies use samples of photometrically–selected, high–redshift galaxies from

the GOODS ACS data without spectroscopic verification of the effective composition of the

samples. Even under the most optimistic assumption that the samples include negligible

fractions of interlopers and unwanted sources, fundamental quantities such as the shape of

the redshift distribution, which is important for the measures of the spatial clustering and

luminosity function, remain largely unknown.

The spectroscopic sample obtained with FORS2 discussed here is our initial effort to
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characterize the effectiveness of the GOODS LBG color selection criteria in selecting star–

forming galaxies at high redshifts; the numbers cited below are summarized in Table 4.

Of the 85 B435–band dropout candidates selected for spectroscopic observations, we have

secure redshifts for 48 sources down to z850 = 25.5 (56%). Of the 48 identifications, 46 have

redshifts in the expected range for B435–band dropouts, and only two are foreground objects.

One is a Galactic star (QF=B, z850=23.43, SExtractor stellarity index S/G=0.99) and the

other is a galaxy at z = 1.541 identified from [O ii] 3727 emission (QF=B, z850=25.49)3. We

have classified 8 of the 48 identifications as having QF=C. Assuming that all the identifica-

tions with QF=C are correct, the efficiency of the B435–band dropout selection is 46/48=96%.

Omitting the two foreground sources, the mean and rms of the B435–band dropout redshift

distribution are 〈z〉 = 3.765 and σz=0.328, respectively, fully consistent with the prediction

from Monte Carlo simulations (see §2.2 and Table 4).

Figure 1 shows the (B435-V606) vs. (V606-z850) color–color diagram for the entire FORS2

spectroscopic sample. The region of B435–band dropout sources is marked with a solid line

and the size of the symbols scale linearly with redshift for sources at z > 3.1; at redshift

lower than 3.1, the size of the symbol is fixed. The majority of the galaxies with z > 3

lie in the B435–band dropout region. It is evident from Figure 1 that the lower tail of the

redshift distribution is located in the lower part of the selection region: the eight sources with

3.1 < z < 3.5 have a mean (B435-V606)=1.69±0.23 and (V606-z850)=0.44±0.21. In this redshift

range, the selection criteria are more uncertain and depend on the intrinsic properties of the

sources. Photometric errors may also scatter sources across the boundary of the selection

region.

For the sample of V606–band dropouts, we have assigned spectroscopic slits to 52 candi-

dates and derived a redshift identification for 36 of them (69%) down to z850= 26.7, of which

11 have been given QF=C. Among the confirmed redshifts, 32 are in the range expected for

V606–band dropouts (11 with QF=C), three are Galactic stars (all of them with z850∼ 23.5

and S/G=0.99), and one, GDS J033220.31-274043.4, is a low–redshift interloper at z = 1.324

(QF=B)4. Assuming that all of the QF=C identifications are correct, the efficiency of the

3 This galaxy is well detected in the V606, i775 and z850 bands (with signal to noise ratios of 13.9, 14.1 and

26.1, respectively). This fact excludes the Lyα possibility at redshift ∼ 6.8. Other possible emission lines

are [O iii]5007 and/or Hβ at z ∼ 0.9, however in this case the [O ii] 3727 should be detected at 7049Å, region

free from skylines. If we assume Hα line, we should expect to observe at least Hβ at 7014Å. Therefore the

most probable interpretation is [O ii] 3727 at z=1.541.

4This galaxy is interesting in its own right. It has colors (V606-i775)=2.077 and (i775-z850)=1.246 and

falls in the upper right portion of the selection region in Figure 2. A pronounced break around 4000 Å and

the Ca ii HK absorption lines are evident in the spectrum, but there is no [O ii] 3727 emission line identified
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z ∼ 5 LBG selection is 32/36=89%; omitting the foreground sources, the mean and rms of

the redshift distribution are 〈z〉 = 4.962 and σz=0.386, respectively. Again, the observed

redshift distribution agrees well with the Monte Carlo predictions (Table 4).

Figure 2 shows the (V606-i775) vs. (i775-z850) color–color diagram for the entire FORS2

spectroscopic sample. The selection window for the V606–band dropouts (solid lines) and i775–

band dropouts (dotted line; i775–z850>1.3) are plotted. Galaxies confirmed in the redshift

interval 4.4 < z < 5.6 are marked with open circles. The majority of galaxies at z > 4.4 are

located within the selection regions.

Finally, of the 65 i775–band dropouts selected for spectroscopic observations, we have

secured redshifts for 34 down to z850= 27.4 (52%). Of these, 28 have redshifts in the range

5.5 < z < 6.3, of which 23 are based on the identification of an observed emission line as

redshifted Lyα (seven have QF=C) and five are based on the identification of an observed

continuum break as the onset of the high–redshift Lyα forest (four have QF=C and one

has QF=B). The remaining six i775–band dropouts are Galactic stars (four with QF=C

and two with QF=B; all with stellarity index S/G>0.91 and z850<25.4). Assuming that

all of the QF=C identifications are correct, the efficiency of the z ∼ 6 LBG selection is

thus 28/34=82%. The average redshift and standard deviation of the successfully identified

i775–band dropouts are 〈z〉=5.898 and σz=0.184. While the average of the distribution is

consistent with the predicted one, we note that the standard deviation is almost a factor of

two narrower. This may be an indication of large–scale structure at this redshift; from ACS

grism spectroscopy, Malhotra et al. (2005) note structure at this same mean redshift in the

HUDF.

We note that several sources from our i775–dropout spectroscopic sample were previously

published, including spectroscopic observations. One has a well-observed spectrum showing

Lyα emission at z = 5.829 (Stanway et al. 2004a; Dickinson et al. 2004; Bunker et al.

2004). An additional two sources were observed with the low–dispersion ACS grism and

show strong spectral breaks interpreted as due to the Lyα forest at z∼5.9 (Malhotra et al.

2005). These galaxies are present in our list with redshifts z = 5.92 and 5.95 (see Table 3).

The source GDS J033234.55-274756.0, for which the FORS2 spectrum yielded an inconclusive

redshift determination, is presented in Malhotra et al. (2005) at redshift z = 6.1.

Figure 2 shows the selection diagram for the i775-band dropouts (dotted line). Galaxies

confirmed in the redshift interval 5.6 < z < 6.5 are marked with open squares. The majority

of galaxies at z > 5.6 have (i775-z850) redder than 1.3, as per the adopted selection criteria.

down to a 3σ of 2×10−18 erg s−1 cm−2 Å−1, suggesting that the emission is dominated by evolved stellar

populations with little or no star formation activity.
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The confirmation of galaxies at redshift beyond five are almost exclusively due to the presence

of a single emission line, identified as Lyα (see §5.4 for a dedicated discussion).

In the redshift interval 5.4 < z < 5.6, the V606– and i775–band dropout selection criteria

overlap. In this redshift range, five spectroscopically–confirmed galaxies meet our V606–band

dropout selection criteria, while two meet the i775–band dropout criteria. As discussed below,

the presence of the Lyα emission line may play an important role in this respect.

Finally, as can be seen in Figures 1 and 2, of 114 high–redshift galaxies (109 targeted

and five serendipitous), 12 are outside of the primary color selection windows. Three of them

are the above mentioned “fillers”, five are serendipitous sources discussed in §3, and nine are

galaxies with colors close to the B435–, V606– or i775–band dropout selection windows (the

mean “distance” in terms of color from the selection windows is ∆C ∼ 0.04). These galaxies

were selected as B435–, V606– or i775–band dropouts from the previous (v1.0) ACS catalog,

though in the current v2.0 catalog, they no longer meet the dropout selection criteria (see

Table 5). We further note that seven out of these nine galaxies have been classified with

QF=C. In particular, GDS J033233.52-275532.2, an i775-band dropout at redshift z = 5.74

(QF=C), satisfied the i775–band dropout selection criteria using the v1.0 catalog (in the v1.0

catalog, i775-z850=1.791), but not using the v2.0 catalog; it is no longer identified at S/N>5

in the z850 band. A visual inspection of the z850 image suggests a faint source, as evident

in Figure 7. However, further investigations will be needed to clarify this target; we do not

include this source in the following analysis.

5. Composite Spectra

We now describe, for each category of dropout, the general spectral properties observed.

As in the case of LBGs at z ∼ 3, and depending on the S/N ratio, the most prominent

rest–frame UV features observed in our samples are the HI Lyα line (seen in emission,

absorption, or a combination of both), low-ionization, resonant interstellar metal lines such

as Si ii 1260Å, O i + Si ii 1302Å, C ii 1335Å, Si ii 1527Å. Fe ii 1608Å and Al ii 1670Å, and

high-ionization metal lines such as Si iv 1394,1403Å and C iv 1548, 1550Å associated with

P-Cygni stellar wind features and ionized interstellar gas. In one case, N iv] 1485Å emission

has been detected together with Lyα in emission (GDS J033218.92-275302.7; Vanzella et al.

2006). As to be expected, the number of robustly identified lines decreases drastically with

apparent magnitude over the range from z850∼ 24 to ∼ 26.5. At the faintest magnitudes,

given our typical exposure times, continuum flux is at the limit of measurability (S/N∼1

per resolution element) and therefore no absorption lines are reliably observed; the only

observable feature for the faintest sources is Lyα emission.
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5.1. B435-Band Dropout Composite Spectra

Among 46 B435–band dropouts with spectroscopic redshift at z ≈ 4, 15 of them show

Lyα in emission line (the “em.” class), 21 have redshift identified by means of absorption

lines only (the “abs.” class) — typically SiII 1260.4Å, CII 1335.1Å, SiIV 1393.8,1402.8Å,

CIV 1548.2,1550.8Å — and 10 sources show both emission and absorption features (the

“comp.” class). As mentioned above, two B435-band dropouts have Lyα blueward of the

observed spectral range, but this line was visible in second order at λ > 10,000Å; only

absorption features were used to derive the redshifts for these sources. These two galaxies

have not been used to make the composite spectra.

The composite spectra, normalized at 1450Å, for emission line sources (“em.” class),

emission and absorption line sources (“comp.” class) and absorption line sources (“abs.”

class) at z ∼ 3.8 are shown in the left panel of Figure 8. The composite spectra include

sources with QF = A, B and C. A continuum break blueward of Lyα, due to the intergalactic

medium, is clearly evident. Stellar and interstellar lines are also easily recognized.

The absorption lines clearly differ between the “em.”, “comp.” and “abs.” classes.

Figure 9 superposes the composite spectra of the B435-band dropouts with and without the

Lyα emission line (“em.” and “abs.”). Low-ionization interstellar absorption lines are more

pronounced in the “abs.” class composite spectrum; e.g., compare the OI, CII and FeII lines.

Figure 9 also shows that the non-emitter population has a redder spectral slope, consistent

with the previous work based solely on photometric data; e.g., Pentericci et al. (2007) find

βem.
phot ∼ −2.0 ± 0.11 and βabs.

phot ∼ −1.7 ± 0.13, where F (λ) ∼ λ−β. A similar trend has

also been noted by Shapley et al. (2003) from their sample of z ∼ 3 LBGs. In particular,

Shapley et al. (2003) find that the average extinction, E(B −V ), decreases as a function of

increasing Lyα emission strength. The similar trends seen here at z ∼ 4 suggests that the

emission line B435–dropout LBGs are, on average, less extincted than the absorption line

B435–dropout LBGs (c.f., Pentericci et al. 2007).

5.2. V606-Band Dropout Composite Spectra

As reported above, 32 V606–band dropouts are at z ≈ 5. As expected for the larger

distance modulus and correspondingly fainter sample, the fraction of spectroscopically–

confirmed V606–band dropouts with Lyα in emission is higher compared to the B435–band

dropout sample; 19 sources are in the “em.” class and 13 show only absorption lines or a

continuum break (“abs.” class). The rest–frame composite spectra of emission and absorp-

tion galaxies with QF = A, B and C are shown in the top left panel of Figure 8. Stellar and
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interstellar absorption lines, as well as the strong continuum discontinuity at Lyα, are clearly

observed in the composite spectra. The composite “em”-class spectrum looks quite similar

to the B435–band dropout composite “em” spectrum. For the “abs.” class, the composite

is dominated by low quality (QF=C) spectra and only the strong Lyman-α forest break is

apparent.

5.3. i775-Band Dropout Composite Spectrum

The rest–frame composite spectrum of the emission line (“em.” class) i775–band dropouts

is shown in Figure 10. Among the 28 i775–band dropouts with spectroscopic redshift at z ≈ 6,

22 sources show Lyα in emission (7 with QF=C).

Given the exposure times, these galaxies are generally too faint to measure a continuum

(e.g., see Figure 3 or Figure 5) and only Lyα emission has been detected. As shown in

Figure 11, this is particularly true for the fainter i775–band dropouts. Nevertheless, the

composite i775–band dropout spectrum shows signal redward of the Lyα line, with tentative

detection of the Si ii 1260Å and O i + Si ii 1302Å absorption lines despite the sky lines at

these wavelengths being stronger and denser. At these high redshifts (z ∼ 5.9), we find a

very opaque IGM blueward of the redshifted Lyα line. Consistent with quasar results (e.g.,

Songaila 2004), the IGM transparency is estimated to be of the order of 1%.

5.4. Single–Line Redshift Identifications

For most of the z ∼> 5 LBGs in our sample, the redshift identifications are based on a

single emission line — assumed to be redshifted Lyα — in an otherwise featureless and/or

low–S/N ratio spectrum. A question naturally arises: how robust are these identifications

(e.g., Stern et al. 2000)? To be selected as dropouts, the broad–band SED of these galaxies

must satisfy the color–selection criteria, which require the signature of the Lyman limit

and/or Lyα forest blanketing. The most plausible candidate for an alternate identification

is [O ii]3727 at z ∼> 1.0, though Hβ at z ∼> 0.5, [O iii]5007 at z ∼ 0.5 and Hα at z ∼ 0.1

are also possible. Such possibilities, however, will generally be inconsistent with the broad–

band colors of the galaxies, since low–redshift solutions would be star–forming galaxies with

relatively blue continua. This is illustrated in Figure 12, which plots the observed equivalent

width versus the (i775-z850) color for [O ii]–emitting galaxies at redshift 1 < z < 1.5 and

Lyα–emitting LBGs at redshift z > 5 (only galaxies with QF=A are plotted). Color and

equivalent width do an effective job at separatating the low–redshift, star–forming galaxies
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from their high–redshift counterparts, particularly for the i775–band dropouts. A few V606–

band dropouts do overlap with the low–redshift galaxies, but are easily separated using

(V606-i775) color, which is better suited for galaxies at z ∼ 5.

The composite spectra of emission line V606–band dropouts (Figure 8, right) and i775–

band dropouts (Figure 10) also provides evidence that most of the single–line Lyα identifica-

tions are correct. The z ∼ 5 composite spectrum, which is a lower–S/N version but otherwise

virtually identical to the z ∼ 4 composite spectrum (Figure 8, left), shows a number of ab-

sorption features that would not be observed due to dilution if most of the identifications

were wrong. The z ∼ 6 composite spectrum is similar, except that the lower S/N ratio re-

sults in a lower–S/N detection, or no detection at all, of absorption features. The continuum

discontinuity across the Lyα, however, is clearly detected with a jump larger than one order

of magnitude in the continuum flux density (in fact, the continuum blueward of the Lyα line

is consistent with being zero). This is larger than other continuum discontinuties observed

in distant galaxies (c.f., Spinrad et al. 1998; Stern et al. 2000).

Finally, another discriminant between high–redshift and low–redshift single emission-

line sources is provided by the line profile: high–redshift Lyα lines are asymmetric due to

intervening Hi absorption, while other lines will generally be symmetric. However, the low

S/N, low spectral resolution (R∼660) reported here makes the detection of a clear asymmetry

challenging in most individual spectra. In a few cases, however, an asymmetric profile has

been detected in the brigher Lyα–emitting LBGs reported here.

6. Outflows at z ∼ 4 and 5

Evidence of powerful winds in LBGs at z ∼ 3 (Shapley et al. 2003) and in galaxies at

z ∼ 2 selected from UV colors (Shapley et al. 2005) has been inferred from the systematic

redshift of the Lyα emission line and the blueshift of interstellar absorption lines with respect

to the systemic redshift of the galaxies, as traced by rest-frame optical nebular lines. In this

scenario the redshifted Lyα emission line forms in the receding part of a generally bipolar

flow of gas, while the blueshifted interstellar lines originate in the part along the line of sight

moving toward the observer.

6.1. Outflows in B435–Band Dropouts (z ∼ 4)

It is of interest to see if LBGs at z ∼ 4 also show the same phenomenon, and compare its

magnitude to that of the lower-redshift galaxies, looking for evolutionary effects. Obtaining
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spectroscopic observations of the rest–frame optical nebular emission lines is not a trivial

task. The [O ii]3727, [O iii] 4959 and 5007Å lines have been identified for only nine galaxies

in our sample, as a part of the AMAZE project, aimed at estimating the mass-metallicity

relation at high redshift (Maiolino et al. 2008). In fact, these features become unreachable

from the ground for redshift ∼> 3.8 when the lines go beyond the K-band. For such sources,

information about the possible presence of winds is derived from the velocity differences

between Lyα emission and interstellar absorption lines.

The AMAZE project (Maiolino et al. 2008) has determined the redshift of nebular lines

using the integral field spectrometer SINFONI at the VLT, adopting a spectral resolution

R=1500 in the spectral range 1.45 − 2.41µm. For each source, the redshift derived from

[O iii] 4959, 5007Å and [O ii]3727 agree within |∆z|∼10−3. We have calculated “nebular

redshifts” for each galaxy by averaging these three lines. The redshift of the interstellar

medium has been derived from the low-ionization interstellar absorption lines (ISL, e.g. Si ii

1260Å, O i+Si ii 1302Å, C ii 1335Å, and Si ii 1527Å), and the redshift of the hydrogen gas

is estimated from the Lyα line.

We then compare the various redshift estimates arising from the different physical re-

gions within the LBGs, i.e. the velocities VLyα, VISL and Vnebular. We find that:

1. the relative median velocity 〈VLyα − VISL〉 observed between the Lyα emission lines

and the interstellar absorption lines is +370+270
−116 km s−1 (derived from 16 galaxies at an

average redshift of 3.70±0.2). The Lyα emission is always redshifted relative to the

interstellar lines. Adopting the model of Verhamme et al. (2006), the velocity Vexp of

the expanding neutral hydrogen shell is of order of 120 − 180 km s−1;

2. the relative median velocity 〈VLyα − Vnebular〉 between the Lyα emission line and the

nebular lines is +161 ± 80 km s−1 (derived from four galaxies at z ∼ 3.65);

3. the relative median velocity 〈VISL − Vnebular〉 between the interstellar absorption lines

and the redshift of the nebular lines is −165+170
−194 km s−1 (derived from nine galaxies at

z ∼ 3.7);

The galaxy GDS J033217.22-274754.4, with its peculiar, double-peaked Lyα profile is

already been discussed in detail in Vanzella et al. (2008).

Figure 13 shows the histogram of (VLyα − VISL) for the 16 galaxies from the B435-band

dropout sample for which this measurement has been possible. The histogram does not

include quality QF=C spectra. In all cases, the redshift of the Lyα is measured by fitting a
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Gaussian profile to the line,5 while the redshift of the interstellar absorption lines is derived

cross-correlating the individual spectra with templates (viz., the lensed galaxy cB58 and the

composite spectrum without Lyα emission from Shapley et al. 2003), after excluding the

Lyα line from the analysis. The typical redshift error is ∆z ∼ 0.001 (Vanzella et al. 2008,

derived from multiple, independent observations) and translates into a final error on the

velocity difference ∆(VLyα −VISL) ∼ 64 km s−1 at z ∼ 3.7. Figure 13 shows that the Lyα line

is systematically redshifted relative to the interstellar absorption lines and a few galaxies

have velocity differences in excess of 600 km s−1.

Though derived from relatively small samples, these numbers are similar to LBGs at z ∼

3 (Shapley et al. 2003; Adelberger et al. 2003). In particular, Figure 11 of Shapley et al.

(2003) shows that with increasing Lyα emission strength, the kinematic offset implied by the

relative redshifts of Lyα emission and low-ionization interstellar absorption lines decreases

monotonically from 〈VLyα − VISL〉 = 800 kms−1 to 〈VLyα − VISL) = 480 km s−1. If we assume

this trend remains true at z ∼ 3.7 and consider the mean rest–frame Lyα equivalent width

of our sample (20 Å), the comparison is even more consistent with the results at z ∼ 3.

We also note that the 〈VISL − Vnebular〉 = −150 km s−1 derived by Adelberger et al. (2003) is

similar to the value derived here at slightly higher redshift, −165 km s−1.

6.2. Outflows in V606–Band Dropouts and at Redshifts Beyond 5

In the case of V606–dropouts (z ∼ 5), the mean velocity difference 〈VLyα − VISL〉 is

more difficult to estimate for individual galaxies because the S/N is generally lower, due

to both the faintness of the targets and to the UV absorption features entering a spectral

region affected by strong sky emission lines at z ∼> 4.5. For this reason, we have resorted to

estimating 〈VLyα − VISL〉 from the composite spectrum. All V606–band dropouts with Lyα

in emission have been co-added, registering their redshift with respect to theeir Lyα lines.

This procedure will lead to a slight smoothing of the interstellar lines and thus a larger

uncertainty. Nevertheless, an absorption signal remains clearly detected in the composite

spectrum.

The UV absorption features SiII 1260.4Å, CII 1335.1Å and SiIV 1393.8,1402.8Å (see

Figure 8) show an average blueshift of ∼ −450 km s−1 with respect to the Lyα line, similar to

5As simulated in Verhamme et al. (2008), the effect of the spectral resolution on the measurement of the

Lyα barycenter is more important for galaxies with broad Lyα absorption. In the case of emission, like the

objects reported here, this is not the case – the lines are narrow. Because the lines are nearly unresolved,

asymmetry has little affect on the measured central walelength.
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the B435–dropout results. With the aim of extending this measurement to yet higher redshift,

we have selected a subsample of eight LBGs with detected continuum at z > 5 from the V606

and i775–band dropout samples, at an average redshift of 5.6 and z850 magnitude 25.6 (three

i775–band dropouts and five V606–band dropouts; QF=C LBGs have not been considered).

Similar to the sample of pure V606–band dropouts, the composite spectrum shows a velocity

offset of (VLyα − VISL) ∼ +500 kms−1.

In order to check if the above estimations give realistic measurements of the offset, we

have re-calculated (VLyα −VISL) from the B435–band dropout composite spectrum. We find

(VLyα − VISL) ∼ +490 km s−1. Though a bit higher, this value is consistent with the number

derived from individual measurements.

This analysis performed therefore supports the interpretation that outflows at z ∼ 4

and 5 are present and similar to those seen at lower redshifts (z ∼ 2 − 3).

7. Lyα Equivalent Width and the UV Luminosity

For all galaxies with Lyα in emission, we have estimated the rest frame equivalent

width of the line. In the critical cases where this line is the only feature detected in the

spectrum, the continuum has been estimated from the available photometry assuming a

flat spectrum with spectral index β = −2.0 (fλ ∝ λβ). Depending on the redshift, the

i775 (z ≤ 4.65), z850 (4.65 < z ≤ 5.7) or Js (z > 5.7) magnitudes have been used to

determine the continuum level. In the highest–redshift case, we use Js magnitudes (the

Js filter has a central wavelength of 1.24µm and width of 0.16µm, it allows an accurate

photometry) from the GOODS-MUSIC catalog (Grazian et al. 2006), or the NIC3 F110W

band magnitude (Thompson et al. 2006) for sources in the HUDF. If the magnitude is a

lower limit, the resulting equivalent width is a lower limit (indicated by an arrow in the

figures). The absolute M145 magnitude has been derived from the z850-band, assuming a

template (drawn from SB99) of a star–forming galaxy with spectral index β ∼ −2.0.

Figure 14 shows the distribution of the rest–frame equivalent widths versus the absolute

magnitude calculated at 1450Å for all sources in the sample. A cosmic time between 0.9 to

1.6 Gyr after the Big-Bang is covered (B435, V606 and i775-band dropouts are marked with

different symbols). At fainter luminosities (M145 > −21), the estimated equivalent widths

span a wide range of values, from a few Angstroms up to 300Å. There is a natural obser-

vational bias that the redshift of the faintest, high–redshift galaxies can only be measured

if they contain a strong, high equivalent width Lyα line. However, there is no such bias

against high equivalent width for brighter galaxies, but these are not observed. This absence
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of large equivalent widths of Lyα lines at bright luminosities has already been noted by sev-

eral groups studying samples of Lyα emitters (LAEs) and LBGs at redshift between 3 and

6 (e.g., Shapley et al. 2003; Ando et al. 2006, 2007; Tapken et al. 2007; Verhamme et al.

2008).

The equivalent width of the Lyα line (or the escape fraction of the Lyα photons) is

related to the velocity expansion Vexp of the medium, the column density of the neutral gas

NHI, the dust extinction E(B − V ) and the geometry of the media (clumpy or continuum

geometry). A possible scenario is that the brighter galaxies are experiencing (or have already

experienced) a higher burst of star formation and supernovae explosions with an associated

production of dust. Thus, the more luminous galaxies would be dustier and more metal

rich, have correspondingly more efficient Lyα absorption, and thus exhibit lower observed

Lyα equivalent widths. Larger equivalent widths are expected for objects dominated by

younger (∼< 10− 40 Myr) stellar populations; lower equivalent widths are expected in dusty

and/or post-starburst galaxies (e.g., Schaerer & Verhamme 2008). This hypothesis implies

that brighter LBGs would be dustier, more chemically enriched, and show lower equivalent

widths (Lyα). One would expect that ultimately the main underlying parameter governing

the trends with UV magnitude might be the galaxy mass.

Finally we note that fixing the redshift (i.e., the dropout flavor) in Figure 14, the

deficiency of strong lines at bright UV magnitudes remains, though better statistics are

clearly needed, particularly at the faint end of the redshift distributions.

On the other side of the distribution, the presence of large Lyα equivalent widths for

faint sources may be a combination of selection effects and intrinsic properties of these

galaxies:

1. Observational bias:

• Spectroscopy. Obviously, from the spectroscopic point of view, faint galaxies

(mainly i775–band dropouts) are confirmed thanks to the presence of a Lyα emis-

sion line that can be observed also in the middle of the sky emission (see Fig-

ure 15). In the current spectroscopic sample, fainter galaxies tend to be at higher

redshifts. Figure 16 shows the behavior of Lyα luminosity versus redshift. There

is an indication that the fraction of stronger lines increases with redshift.

• Photometry. Strong Lyα emission also affects photometric color selection — in

particular, for i775–band dropouts which rely on a single color (i.e., i775–z850 >

1.3). At z > 5, the contribution of Lyα emission to the (i775-z850) color range up

to ≈ 0.5 (0.8) magnitudes for Lyα rest–frame equivalent widths of 100 Å (150

Å), consistent with the measurements in our spectroscopic sample (see Figure 17).
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The (i775-z850) color is increased or decreased depending on the strength of the

line and the redshift of the source. Two clear examples (marked with star symbols

in Figure 17) are:

(a) GDS J033218.92-275302.7 (z = 5.563) shows a Lyα emission line with rest–

frame equivalent width of ∼ 60Å falling within the i775 band. This has the

effect of reducing the apparent i775–z850 color by 0.59 magnitudes. This galaxy

has been selected as a V606–band dropout and is also discussed as a candidate

“Balmer Break galaxy” based on its bright IRAC flux and apparent “break”

in the K − 3.6µm colors (Wiklind et al. 2008).

(b) GDS J033223.84-275511.6 (z = 6.095) shows a Lyα emission line with no

continuum detected in 80 ks of spectroscopy. The rest–frame equivalent width

is ∼> 250Å, and the measured (i775-z850) color is a lower limit ((i775-z850) > 3.2).

In this case the z850 apparent magnitude (and the (i775-z850) color) is increased

by the line.

In order to explore such effects as a function of redshift, Lyα equivalent width and

z850 magnitude, we have calculated various color tracks as shown in Figure 18.

We find that, when the Lyα line enters the z850 band (z > 5.6) and leaves the

i775 band (z > 5.9), depending on the equivalent width, it favors the i775-band

dropout selection criteria. For fainter sources (z850>26.5), only the emitters tend

to survive.

2. Intrinsic effects: the large spread in Lyα equivalent widths at faint magnitudes

(M145 ∼< −21) observed by numerous authors may also be due to a relatively small

amount of dust, which would not filter out the stronger Lyα lines, and to a larger variety

of star formation histories and timescales — i.e., an enhanced role of “stochastic star

formation events.” Such a scenario is most likely to have a strong effect for galaxies

of smaller absolute scale (either mass or total star formation rate, Verhamme et al.

2008).

We further note that at z ∼> 6, the age of the Universe is of the order of the duration

of the LBG phase (∼ 0.5 − 1 Gyr — Shapley et al. 2001; Papovich et al. 2001; Lee et al.

2008).

Assuming an initial interval of time (∆tLyα) in which the LBG is active as a LAE

(i.e., shows conspicuous Lyα emission, with rest–frame equivalent width greater than 100Å),

whose duration should be of the order of 100 − 300 Myr (e.g., Mori & Umemura 2006;

Verhamme et al. 2008), the probability to observe a LBG in the LAE phase should increase

with redshift when observing galaxies in a Universe younger than ∼ 0.5 − 1 Gyr (roughly,
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the fraction of emitters versus non-emitters is proportional to ∆tLyα/τ(z)). Future surveys

of LBGs at redshift beyond seven should show this trend even more clearly (albeit subject

to the observational selection effects discussed above).

8. Correlation with Morphological Properties

We have derived basic morphological parameters for the galaxies in our spectroscopic

samples from the ACS z850–band image. With an effective wavelength λeff ≈ 9100 Å (for a

typical LBG UV spectrum), the z850 filter probes the rest–frame far–UV emission of B435–

dropout galaxies at λ0 ≈ 2000 Å. In general, it is difficult to interpret the results of analyses

of the UV morphologies of high–redshift galaxies in terms of the evolution of traditional

Hubble types, in part because these are mostly known at optical rest–frame wavelengths (c.f.,

Giavalisco et al. 1996a,b), and also because it is not obvious what is the typical morphology

of the present–day spectral types that are most similar to the z ∼ 4 LBGs.

We have measured parametric and non–parametric morphological indicators separately

for the two sub–samples of “emitters” and “absorbers” in the z ∼ 4 primary sample. The

basic morphological parameters have been drawn from the v2.0 ACS catalogs, direct outputs

of the SExtractor algorithm during the segmentation process in the z850 band, and are

summarized in Table 6 with their average values and 1-σ standard deviations. Tabulated

quantities are the major semi-axis (a), half–light radius (h.l.r.), isophotal area (AREAF) and

FWHM. As shown in Table 6, LBGs with Lyα in emission have more compact morphologies

relative to those with rest–frame UV features observed in absorption. In detail, the physical

sizes at the half light radius for emitters and absorbers are on average 1.1 and 1.6 kpc,

respectively.

To further investigate the correlation between morphology and Lyα properties, we have

computed the Gini coefficient for our sample. We have utilized the formulation described

in Abraham et al. (2003, , their Eq. 3). The Gini coefficient provides a measure of the

degree of central concentration of the source. Values range between 0 (uniform surface

brightness) and 1 (highly nucleated). Lotz et al. (2006), Ravindranath et al. (2006) and,

more recently, Lisker (2008), have analyzed the stability of the Gini coefficient, based on a

comparison of HST/ACS imaging data from the GOODS and UDF surveys. They find the

Gini coefficient depends strongly on the S/N ratio and at all S/N levels, the Gini coefficient

shows a strong dependence on the choice of aperture within which it is measured. This

complicates comparisons of Gini parameters derived in different studies. However, relative

values from measurements done the same way within a given data set should be meaningful.

In the present case we restrict the analysis for the brighter B435–dropout sample and assume
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that systematics are similar for both emitter– and absorber–class LBGs. The pixels of each

source used in the calculation are those with flux above F × 1σ percentile of the median

background. Adopting F=2 and the z850 band (F=2, z850 band), we find that the “em.” and

“abs.” classes have Gem=0.41+0.11
−0.06 and Gabs=0.26+0.18

−0.10, respectively. With (F=3, z850 band)

the values are Gem=0.31+0.09
−0.09 and Gabs=0.18+0.11

−0.08. The same calculation performed in the

i775 band, produces the following median values: Gem=0.49+0.10
−0.16, Gabs=0.26+0.14

−0.09 (F=3, i775
band) and Gem=0.61+0.11

−0.15, Gabs=0.35+0.19
−0.14 (F=2, i775 band).

These calculations show that the two LBG spectroscopic classes have different average

morphologies, with emitters intrinsically more nucleated than the absorbers. This distinction

seems to increase with greater Lyα equivalent width. The behavior is shown in Figure 19

(middle panel, F=2, z850 band), where the Gini coefficient is plotted versus the Lyα equiva-

lent width. Though this result is, on average, in qualitative agreement with the observations

at z ∼ 2 and 3 by Law et al. (2007), we note that cases of nucleated absorbers and “fuzzier”

emitters are also present. Larger galaxy samples at these redshifts are needed in order to

put this result on a firmer statistical footing.

As shown in Figure 19 (top panel), there also seems to be an inverse correlation between

Lyα emission equivalent width and galaxy size, namely galaxies with larger equivalent widths

are smaller. To some extent, this correlation can be explained by the fact that galaxies with

larger equivalent widths are more likely to be fainter; this is the case for the i775–dropout

sample (Figure 19, bottom panel). The correlation, however, seems to persist even when

subsamples cut by absolute luminosities are considered, as illustrated in the top panel of

Figure 19 where the size of the symbols scale with apparent z850 magnitude. In this latter

case, only sources with spectroscopically-detected detected and z < 5.6 have been considered

(at z > 5.6, Lyα enters the z850 band). One potential physical explanation of this size

behavior could lie in the masses of the objects. Lyα–emitting LBGs at z ∼ 3 − 4 are found

to have smaller stellar masses than objects lacking this emission (e.g. Gawiser et al. 2006).

Pentericci et al. (2007) also found for the B435–band dropout sample in the present work

an average stellar mass of 5 ± 1 × 109 M⊙ and 2.3 ± 0.8 × 1010 M⊙ for the emitters and

absorbers, respectively. This further suggests that emitters may be associated with less

massive dark matter halos and hence have experienced a different star formation history

compared to the absorption line galaxies. At higher redshift, this analysis is more critical

because high quality near–infrared images (e.g., NICMOS) and deep spectroscopy are needed

to identify the absorbers. Dow-Hygelund et al. (2007) found that Lyα–emitting i775–band

dropouts seem to be morphologically distinct from the general i775–band dropout LBGs.

We only report here that, on average, the h.l.r. for our sample of i775–dropouts emitters

is consistent with other observations (e.g. Stanway et al. 2004a,b; Dow-Hygelund et al.

2007), with h.l.r. ∼ 0.′′13 (Figure 19, lower panel). The only i775–band dropout with QF=B
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without Lyα in emission (GDS J033233.19-273949.1) has h.l.r. = 0.′′.20. High quality and

deeper near-IR images and spectroscopy are necessary to investigate this issue.

9. Conclusions

In the present work, we have addressed the spectroscopic properties of LBGs at high

redshift, selected from the GOODS survey. We have discussed the efficiency of the photomet-

ric selection criteria adopted. We have extracted preliminary information from the spectral

features and UV luminosity and compared it with analogous studies at lower redshift. Sum-

marizing,

1. 109 out of 202 targeted LBGs have been spectroscopically confirmed in the redshift

range 3.1 < z < 6.6, according to B435–,V606– and i775–band dropout selections. This

relatively low confirmation rate is largely due to the following two reasons: i) the target

list includes a relatively large fraction of faint sources, with 65 out of 202 or 32.2% of the

sample having z850> 26; and ii) the difficulty in determining redshifts for galaxies at z <

3.6 given our instrumental set-up. Considering sources with determined redshifts, 96%,

89% and 82% of the observed B435–,V606– and i775–band dropout samples have been

confirmed in the expected redshift range, respectively. Twelve low–redshift interlopers

have also been confirmed, 10 stars and two galaxies at z < 2. Five high–redshift

galaxies have been serendipitously discovered, yielding a total of 114 redshifts measured

beyond redshift 3.1 (38 of these with QF=C).

2. From the composite spectra of the three flavors of dropout (B435, V606 and i775–band

dropouts), we detect the typical spectral features of star–forming galaxies, namely a

flat spectrum redward of Lyα, IGM attenuation and the Lyman limit blueward of Lyα,

UV absorption lines (both high and low ionization), and Lyα seen in both emission

or absorption. In particular, at z ∼ 4, a comparison between the composite spectra

of emitters and absorbers shows steeper spectral slopes and weaker UV absorption

features for the emitters.

3. Galactic outflows have been identified at z ∼ 4 by measuring the velocity offset between

interstellar, Lyα and nebular lines. The measured 〈VLyα − VISL〉 = 370+270
−116 km s−1 is

consistent with results at z ∼ 3 by Shapley et al. (2003), considering the portion of

their sample with similar Lyα equivalent widths to our sample. We derive 〈VISL −

Vnebular〉 of −165 km s−1, similar to the −150 km s−1 derived by Adelberger et al.

(2003) at lower (z ∼ 3) redshift. A similar offset (but less accurate because it is

derived from the composite spectrum) has been detected in the V606–dropout sample
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(redshift ∼5), i.e., 〈VLyα − VISL〉 ∼ 500 km s−1. This supports the interpretation that

outflows similar to those taking place at z ∼ 2 and 3 are also observed in our samples

of LBGs at z ∼ 4 and 5.

4. The presence of a weaker Lyα equivalent widths for dropouts with brighter UV lu-

minosities (M145 < −21) is clear in the current spectroscopic sample (considering all

categories). This trend has been recently noted by several authors, and may be natu-

rally explained by a different evolution of bright UV LBGs with respect to the fainter

ones. The brighter galaxies should be dustier and more evolved (and probably more

massive) than the fainter ones, which show a larger spread of Lyα equivalent widths

possibly due to assorted SF histories.

5. The sample at z ∼ 4 exhibits correlations between certain basic UV rest–frame mor-

phological properties and spectroscopic properties such as the presence and strength

of Lyα emission. In particular, emitters appear more compact and nucleated than

absorbers. Law et al. (2007) find a similar “nucleation effect” at z ∼ 2 and 3 in their

BM/BX and LBG samples, and interpret this as a consequence of more dust in the ab-

sorbers leading to redder colors and more diffuse morphologies. Pentericci et al. (2008)

analyze the photometric properties of the same sample as discussed here, and find that

emitters are less massive and less dusty than absorbers. Focusing on the emitters, in-

creasing Lyα equivalent widths correspond to decreasing stellar masses and extinction.

The emitters, especially those with a large Lyα equivalent widths, could be systems

forming a relatively large fraction of their stellar mass during an intense burst of star

formation. These putative proto–spheroids observed at z ∼ 4 could include in signifi-

cant numbers the progenitors of the compact massive early–type galaxies identified at

z ∼ 2 (e.g., Cimatti et al. 2008; van Dokkum et al. 2008; Buitrago et al. 2008). Such

an evolutionary link is generally consistent with the observed spatial clustering prop-

erties and the stellar populations of LBGs at z ∼ 3 and ∼ 4 (Giavalisco et al. 1998;

Giavalisco & Dickinson 2001; Lee et al. 2006, 2008; Ouchi et al. 2005) and those of

the BzK and DRG galaxies at z ∼ 2−2.5 (Kong et al. 2006; Quadri et al. 2008). The

strength of spatial clustering increases with the mass of the galaxies and with redshift,

as a consequence of gravitational evolution of structure. The observed larger spatial

correlation length and larger stellar mass of the UV/optical–selected galaxies at z ∼ 2

(Daddi et al. 2007; van Dokkum et al. 2006) are in overall quantitative agreement

with the expected dependence of clustering with both mass and time, when compared

to the less strongly clustered and less massive (in stellar content) UV–only selected

galaxies at z ∼ 3 and ∼ 4 (Adelberger et al. 2005). This suggests that the same

populations of dark matter halos is being observed at different evolutionary stages of

the growth of their galaxy hosts and spatial clustering.
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Table 1. The spectroscopic sample of the B435–band dropouts. The redshift reported is

the result of the cross-correlation between the spectrum and the reference template. In the

first four columns the GDS name, the redshift value, QF and class, are listed, respectively.

Columns #5 to #10 are the z850 AB magnitude (MAGAUTO), the half light radius, the

galaxy-star classifier (0=galaxy, 1=point-like source), the (B435–V606) and the (V606–z850)

colors, and the isophotal S/N ratio in the B435 band (if <1, the (B435–V606) color is a lower

limit).

GOODS ID z QF class z850 h.l.r. S/G (B435-V606 ) (V606-z850 ) (S/N)B

J033200.31-274250.7 0.000 B star 23.43 2.65 0.99 2.27 0.72 15.72

J033239.12-274751.6 1.541 B em. 25.49 4.14 0.16 2.59 1.42 1.02

J033242.84-274702.5 a 3.193 B em. 24.92 3.07 0.96 1.37 -0.01 17.00

J033234.83-275325.2 3.369 B abs. 24.24 9.65 0.03 1.82 0.62 7.19

J033220.85-275038.9 3.450 B abs. 24.56 14.09 0.00 2.02 0.58 3.73

J033223.34-275156.9 3.470 A abs. 23.35 5.52 0.03 2.00 0.75 12.30

J033223.22-275157.9 3.470 A abs. 25.07 6.75 0.03 1.50 0.33 7.31

J033214.82-275204.6 3.473 A comp. 24.14 8.19 0.03 1.53 0.40 16.71

J033235.06-275234.6 3.477 C comp. 25.12 8.28 0.03 1.61 0.43 6.15

J033220.97-275022.3 3.478 A abs. 24.70 8.86 0.03 1.82 0.44 5.84

J033225.16-274852.6 3.484 A comp. 24.05 6.73 0.03 1.58 0.45 14.76

J033223.99-275216.1 3.557 B comp. 25.15 7.06 0.03 1.59 0.40 6.81

J033226.76-275225.9 3.562 A abs. 24.10 6.69 0.03 1.69 0.49 12.64

J033229.02-274234.0 3.585 B abs. 25.01 5.66 0.03 1.66 0.21 10.59

J033220.94-274346.3 ⋆ 3.596 A em. 24.61 6.37 0.45 1.75 0.34 9.53

J033229.14-274852.6 3.597 A em. 24.60 4.69 0.03 1.70 0.34 11.64

J033201.84-274206.6 3.603 A em. 25.04 6.50 0.01 1.71 0.07 9.50

J033242.50-274551.7 3.604 A em. 24.24 7.59 0.04 1.75 0.27 9.35

J033217.13-274217.8 3.617 A em. 25.11 4.20 0.36 1.70 0.19 9.11

J033235.96-274150.0 3.618 A comp. 24.11 4.36 0.03 1.65 0.39 16.16

J033215.78-274145.6 3.646 C abs. 24.79 5.69 0.48 1.92 0.46 6.47

J033217.22-274754.4 ⋆ 3.652 A em. 24.84 3.45 0.33 1.77 0.26 11.10

J033222.59-275118.0 3.660 A abs. 25.10 6.49 0.03 2.20 0.47 4.25

J033245.57-275333.3 3.685 A abs. 24.61 4.90 0.03 1.83 0.64 7.02

J033217.66-275332.0 ⋆ 3.696 B em. 24.29 5.43 0.02 2.29 0.54 7.27

J033232.08-274136.4 3.697 B abs. 24.74 7.30 0.03 2.49 0.56 3.68

J033230.10-275057.7 3.704 A comp. 24.64 15.14 0.02 1.95 0.43 3.78

J033226.28-275245.7 3.705 B comp. 24.65 7.07 0.32 2.01 0.30 6.93

J033218.05-274519.0 3.706 A abs. 24.61 13.03 0.02 3.79 0.68 0.96

J033219.81-275300.9 3.706 A comp. 24.50 5.82 0.03 1.95 0.54 8.10

J033219.60-274840.0 3.708 A em. 25.30 4.28 0.40 1.93 0.36 5.67

J033225.82-274250.3 3.770 C abs. 25.00 7.43 0.03 3.48 0.70 1.01

J033233.33-275007.4 3.791 A em. 24.84 4.50 0.05 2.20 0.29 5.50

J033234.65-274115.4 3.794 C abs. 24.62 7.66 0.02 2.43 0.70 2.54

J033236.83-274558.0 3.797 A comp. 24.58 5.59 0.29 2.10 0.61 5.54

J033239.67-274850.6 ⋆ 3.887 B abs. 24.56 5.15 0.03 3.05 1.10 1.57

J033238.73-274413.3 4.000 C abs. 24.81 11.18 0.00 2.95 0.96 -0.21

J033227.94-274618.6 4.000 C abs. 25.23 4.23 0.03 3.21 1.10 -1.38

J033246.25-274847.0 4.020 A abs. 24.88 5.09 0.03 3.71 0.77 0.82

J033241.16-275101.5 4.058 B abs. 25.25 7.20 0.03 3.21 0.83 0.16

J033240.38-274431.0 4.120 A em. 25.24 3.45 0.64 3.07 0.48 2.20

J033234.35-274855.8 4.142 A comp. 24.11 10.37 0.03 3.11 1.02 1.66

J033218.26-274802.5 4.280 A abs. 24.65 4.35 0.05 3.62 1.08 -0.75

J033212.98-274841.1 ⋆ 4.283 B em. 24.70 7.81 0.03 3.63 0.69 -0.29

J033248.24-275136.9 4.374 A em. 24.87 4.81 0.09 3.37 1.11 -0.54

J033214.50-274932.7 4.738 C em. 25.40 5.30 0.30 3.00 0.96 -0.08
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Table 1—Continued

GOODS ID z QF class z850 h.l.r. S/G (B435-V606 ) (V606-z850 ) (S/N)B

J033257.17-275145.0 4.760 A em. 24.64 5.52 0.02 2.71 1.53 1.47

aIt has been identify with broad MgII in emission, QSO.

⋆For these sources, the QF has been improved (i.e. C to B or B to A) to respect the online release of Vanzella et al.

(2008), after re-analyzing the whole LBG sample.
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Table 2. The spectroscopic sample of the V606–band dropouts. Cloumns as described in

Table 1.

GOODS ID z QF class z850 h.l.r. S/G (V606-i775 ) (i775-z850 ) (S/N)V

J033242.08-274911.6 0.000 B star 23.43 2.88 0.98 2.63 1.25 6.34

J033224.11-274102.1 0.000 A star 23.39 2.61 0.99 2.45 0.87 12.10

J033237.69-275446.4 0.000 A abs. 23.60 2.68 0.99 2.40 1.04 9.42

J033220.31-274043.4 1.324 B abs. 24.09 10.18 0.00 2.10 1.16 3.40

J033242.62-275429.0 4.400 C abs. 25.61 6.60 0.02 2.03 0.31 4.11

J033222.88-274727.6 4.440 B abs. 24.92 4.05 0.03 1.63 0.09 14.73

J033222.97-274629.1 4.500 C abs. 25.34 6.91 0.02 1.72 0.19 6.63

J033228.56-274055.7 4.597 B abs. 25.44 7.53 0.00 1.58 0.02 9.29

J033216.98-275123.2 4.600 B abs. 25.30 6.56 0.03 1.68 -0.08 9.02

J033255.08-275414.5 4.718 A em. 24.83 7.11 0.01 2.40 0.15 5.77

J033247.58-275228.2 4.758 C em. 25.73 8.33 0.01 1.87 0.14 4.28

J033229.29-275619.5 a 4.762 A em. 25.05 2.76 0.99 1.65 0.15 12.95

J033243.53-274919.2 4.763 A em. 25.56 4.89 0.02 2.13 0.12 5.13

J033240.12-274535.5 4.773 B em. 25.55 6.23 0.02 1.62 0.06 7.24

J033221.93-274533.1 4.788 C abs. 25.82 4.86 0.04 2.17 0.23 3.56

J033228.85-274132.7 4.800 B em. 25.43 4.50 0.03 1.66 -0.02 9.84

J033205.26-274300.4 4.804 A em. 25.24 4.11 0.03 1.85 -0.04 11.39

J033210.03-274132.7 4.811 A em. 25.03 3.63 0.31 1.77 0.12 12.63

J033242.66-274939.0 4.831 B em. 26.08 3.55 0.60 2.04 0.02 4.69

J033233.48-275030.0 4.900 C abs. 25.76 4.07 0.07 2.38 0.66 2.65

J033223.99-274107.9 4.920 C abs. 25.26 2.38 0.98 2.31 0.75 4.51

J033247.66-275105.0 ⋆ 4.920 C abs. 25.55 2.57 0.98 2.35 1.01 2.66

J033234.49-274403.0 4.948 C em. 26.04 3.45 0.51 1.49 -0.08 9.19

J033225.32-274530.9 4.992 B em. 26.70 4.45 0.11 2.69 0.53 0.55

J033221.30-274051.2 5.292 A em. 25.23 5.36 0.10 2.01 0.57 3.58

J033245.43-275438.5 5.375 A em. 25.15 6.08 0.03 2.86 0.79 1.94

J033224.40-275009.9 5.500 C abs. 25.29 7.76 0.02 2.74 1.18 -0.07

J033237.63-275022.4 5.518 A em. 25.76 8.05 0.01 2.58 1.05 0.80

J033218.92-275302.7 5.563 A em. 24.58 3.37 0.83 2.43 0.59 6.28

J033211.93-274157.1 5.578 B em. 26.53 4.10 0.10 2.07 1.03 1.40

J033245.23-274909.9 5.583 B em. 25.81 6.97 0.01 2.73 1.02 0.10

J033214.74-274758.7 5.939 B em. 26.36 4.15 0.17 2.36 1.12 -0.17

aIdentify with Lyα and NV1240Å (and possibly CIV 1549Å), QSO.

⋆For this source, the QF has been changed (B to C) to respect the online release of Vanzella et al. (2008), after

re-analyzing the whole LBG sample.
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Table 3. The spectroscopic sample of the i775–band dropouts. Cloumns as described in

Table 1.

GOODS ID z QF class z850 h.l.r. S/G (i775-z850 ) (S/N)i

J033219.23-274545.5 0.000 C star 23.47 2.64 0.98 1.35 37.91

J033218.19-274746.6 0.000 B star 23.76 2.66 0.99 1.48 28.00

J033224.79-274912.9 0.000 C star 24.95 2.77 0.99 1.60 10.92

J033238.80-274953.7 0.000 C star 25.16 3.81 0.91 3.87 0.99

J033222.47-275047.4 0.000 C star 24.42 2.70 0.99 1.74 15.04

J033238.02-274908.4 0.000 B abs. 25.41 2.59 0.99 1.37 9.77

J033239.03-275223.1 ⋆⋆ 5.559 C em. 25.72 4.08 0.18 1.66 5.16

J033215.90-274123.9 5.574 B em. 25.48 8.31 0.00 1.51 4.56

J033227.91-274942.0 5.757 C em. 26.91 3.48 0.27 1.60 2.45

J033255.32-275315.6 5.764 B em. 26.15 8.21 0.01 1.41 3.53

J033225.61-275548.7 a 5.786 A em. 24.69 3.69 0.64 1.65 11.87

J033246.04-274929.7 b 5.787 A em. 26.11 4.12 0.02 1.92 3.06

J033254.10-274915.9 5.793 C em. 25.26 10.84 0.00 1.90 2.52

J033240.01-274815.0 5.828 A em. 25.34 3.95 0.39 1.47 7.92

J033233.19-273949.1 ⋆ 5.830 B abs. 25.41 6.74 0.01 2.18 3.30

J033249.98-274656.2 5.890 B em. 26.25 3.47 0.50 1.65 3.76

J033224.97-275613.7 5.899 B em. 26.78 4.10 0.07 1.99 1.75

J033239.06-274538.7 5.920 B em. 27.05 3.80 0.90 1.53 2.45

J033228.19-274818.7 5.940 B em. 26.48 3.97 0.18 1.59 3.08

J033215.76-274817.2 5.944 C em. 26.09 5.08 0.17 1.75 3.01

J033236.47-274641.4 d 5.950 C abs. 26.30 4.69 0.01 2.88 0.58

J033232.46-274001.9 5.977 B em. 26.51 3.59 0.28 2.36 1.51

J033218.08-274113.1 5.979 C em. 26.72 5.61 0.00 2.03 0.27

J033224.80-274758.8 5.996 B em. 26.06 5.64 0.03 2.00 2.33

J033229.33-274014.3 6.000 C abs. 26.81 2.77 0.90 2.12 1.90

J033246.43-275524.4 6.082 B em. 26.80 4.68 0.75 2.35 0.15

J033223.84-275511.6 6.095 B em. 26.31 3.08 0.67 3.22 -0.27

J033229.84-275233.2 6.197 B em. 26.26 7.52 0.25 2.48 1.16

J033222.28-275257.2 6.200 C abs. 25.86 6.31 0.27 2.73 -0.01

J033217.81-275441.6 6.277 B em. 26.87 2.75 0.94 2.51 0.62

aalso known as SBM03#3 (Bunker et al. (2003)).

balso known as GLARE#3001 (Stanway et al. (2004a)).

calso known as SiD002 (Dickinson et al. (2004)), GLARE#1042 (Stanway et al. (2004a)),

SBM03#1, #20104 (Bunker et al. (2004))

dthis has been identified by Malhotra et al. (2005) in the HUDF with ACS grism spectra.

⋆For this source, the QF has been changed (C to B) to respect the online release of Vanzella et al.

(2008), after re-analyzing the whole LBG sample.

⋆⋆Redshift has been added to the previous LBG list (Vanzella et al. 2008), after re-analyzing the

whole LBG sample and tacking together the unconclusive single spectra.
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Table 4: Fraction of confirmed dropout candidates, “Nobs.” indicates the number of can-

didates observed. The number of confirmed high and low-redshift galaxies is reported in

columns three and four, respectively (with the fraction of “em.”, “abs.” and “comp.” classes

and the fraction of QFs “A”, “B” and “C”). In columns 5 and 6 the average and standard

deviation of the redshift distribution for the confirmed high-z sample are shown. In column

7 the completeness is reported.

classes Nobs. high-z low-z measureda expecteda,b compl.a

N
(em,abs,comp)
(A,B,C) N

(em,abs,comp)
(A,B,C) < z >±σ < z >±σ

B435–drop 85 46
(15, 21, 10)
(27, 11, 8) 2

(1, 1, 0)
(0, 2, 0) 3.76±0.33 3.78±0.34 5%

V606–drop 52 32
(19, 13, 0)
(9, 12, 11) 4

(0, 4, 0)
(2, 2, 0) 4.96±0.38 4.92±0.33 14%

i775–drop 65 28
(24, 4, 0)
(3, 13, 12) 6

(0, 6, 0)
(0, 2, 4) 5.90±0.18 5.74±0.36 29%

Fillers - 3
(1, 2, 0)
(1, 1, 1) - 3.4 < z < 5.5 - -

Serend. - 5
(4, 1, 0)
(0, 1, 4) - 3.2 < z < 5.8 - -

Sum 202 114 12

acalculated down to z850 = 26.5
bsee Giavalisco et al. (2004b)
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Table 5. The spectroscopic sample of galaxies identify at redshift beyond 3

serendipitously discovered and/or selected from the previous version (v1.0) of the ACS

catalogs and not satisfying the v2.0 one (see text for details).

GOODS ID z QF class z850 S/G Comment

J033219.41-274728.4 3.250 C abs. 24.65 0.33 serend. (B-V=1.30,V-z=0.48, v2.0)

J033234.40-274124.3 3.418 B abs. 24.26 0.45 filler. (B-V=1.42,V-z=0.55, v2.0)

J033251.81-275236.5 3.468 A abs. 25.03 0.04 filler. (B-V=1.15,V-z=0.36, v2.0)

J033206.53-274259.1 3.605 C abs. 24.44 0.03 B435–drop, from v1.0 (B-V=1.59,V-z=0.52, v2.0)

J033217.00-274113.7 4.414 B abs. 25.09 0.02 V606–drop, from v1.0 (B-V=1.90,V-z=1.67, v2.0)

J033218.27-274712.0 4.783 C em. 27.60 0.90 serend. (close to V606–drop, pentagon in Fig. 2).

J033243.16-275034.6 a 4.838 C em. - - serend. (See Fig. 2 of Vanzella et al. (2006))

J033228.94-274128.2 a 4.882 B em. - - serend. (See Fig. 13 of Vanzella et al. (2005))

J033222.71-275154.4 4.900 C abs. 25.55 0.02 V606–drop, from v1.0 (V-i=1.76,i-z=0.30, v2.0)

J033249.15-275022.5 4.910 C abs. 25.54 0.99 V606–drop, from v1.0 (V-i=1.95,i-z=0.67, v2.0)

J033211.71-274149.6 4.912 C em. 25.36 0.05 V606–drop, from v1.0 (V-i=1.68,i-z=0.25, v2.0)

J033222.89-274521.0 b 5.128 C em. - - serend.(LAE?)

J033216.55-274103.2 5.250 C abs. 25.69 0.00 i775–drop, from v1.0 (V-i=1.91,i-z=1.11, v2.0))

J033228.55-275621.8 5.492 B em. 27.45 0.96 i775–drop, from v1.0 (V-i=1.44,i-z=1.30, v2.0)

J033239.82-275258.1 5.543 C em. 26.53 0.15 filler, (V-i=1.66,i-z=0.96, v2.0)

J033233.52-275532.2 c 5.740 C em. - - i775–drop, from v1.0.

J033201.96-274406.5 5.821 C em. 26.19 0.01 i775–drop, from v1.0 (V-i=1.49,i-z=1.20, v2.0)

aSources not detected in the z850 band because blended to bright ones.

bSource not detected in the z850 band, only visible in the i775 band.

cSource originally detected in the v1.0 catalog, but not detected in the v2.0.
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Table 6. Basic morphological parameters for B435–band dropouts galaxies, dividing

between emitters and non-emitters. For the first four rows the values are reported in pixels,

while the Gini coefficient measure the nucleation of the source light (see text for details).

EM. ABS.

(< z >=3.757) (< z >=3.735)

a 4.54 ± 1.03 6.51 ± 2.18

h.l.r. 5.38 ± 1.65 7.49 ± 2.85

area 305 ± 117 438 ± 172

FWHM 10.38 ± 4.06 20.01 ± 11.97

Gini 0.41+0.11
−0.06 0.26+0.18

−0.10
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zspec < 3.1

zspec = 3.5

zspec = 4.0

zspec = 4.5

z=1.541

Fig. 1.— Color-color diagram for the selection of B435–band dropout galaxies, the solid

line outline the region of the selection. The black “skeletal” symbols with fixed size are all

sources in the FORS2 sample in the redshift range 0 < z < 3.1, those with redshift in the

range 3.1 < z < 4.4 are plotted varying the symbol size accordingly with the spectroscopic

redshift value. Stars have been marked with “star” green symbols. Galaxies confirmed in

the redshift interval 3.1 < z < 4.4 have been marked with open circles. The arrows mark

one sigma lower limit of the colors. The one low-z galaxy identified at z=1.541 has been

marked with an arrow (see text for details).
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zspec < 4.4

zspec = 5.0

zspec = 5.5

zspec = 6.0z=1.324

Fig. 2.— Color-color diagram for the selection of V606–band dropout galaxies and i775–band

dropout ones, the solid line outline the region of the V606–band dropout selection, while

the vertical dotted line ouline the i775–band dropout region (i775z850 > 1.3). The black

“skeletal” symbols with fixed size are all sources in the FORS2 sample in the redshift range

0 < z < 4.4, those with redshift in the range 4.4 < z < 6.5 are plotted varying the symbol

size accordingly with the spectroscopic redshift value. Galaxies confirmed in the redshift

interval 4.4 < z < 5.6 have been marked with open circles and those with z>5.6 have been

marked with open squares. Stars have been plotted with “star” green symbols. The open

pentagon marks a serendipitously discovered galaxy (z=4.783 QF=C, see text). The arrows

mark one sigma lower limit of the colors. The one low-z galaxy identified at z=1.324 has

been marked with an arrow (see text for details).
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zspec zspec zspec

Fig. 3.— One dimensional FORS2 rest frame spectra of all emission line galaxies of the

present sample. The redshift is indicated in the left side and the Lyα emission line is

enclosed between the two vertical lines. Quality C (see text) redshifts are marked with the ∗

symbol. Dotted vertical lines from left to right mark Si ii 1260Å, O i+Si ii 1302Å, C ii 1335Å,

Si iv 1394,1403Å, Si ii 1527Å, C iv 1548, 1551Å and Al ii 1670Å in absorption, respectively.
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zspec zspec

Fig. 4.— As in Figure 3 the one dimensional FORS2 rest frame spectra of all absorption

line galaxies are shown. Beyond redshift ∼ 4.5 the spectra appear more noisy and the line

identification is visually instable, the cross correlation technique is particularly useful in

these cases. The position of the Lyα line or the starting decrement by the IGM, is shown

with solid vertical lines. Dotted vertical lines as in Figure 3.
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Fig. 5.— Two dimensional FORS2 spectra of galaxies at redshift greater 5. The redshift

with its quality flag is indicated in the left side. The Lyα emission line is marked with a

circle where present, otherwise a segment underline the possible continuum-break.
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45Myr 29Myr 20Myr

Fig. 6.— Redshift distribution of the LBGs spectroscopically confirmed in the GOODS-S

field. Upper panel: the redshift distribution of all sources at redshift beyond 3 discovered

during the FORS2 campign is shown. The dotted area represents the sources with lower

spectral quality (QF=C). Middle panel: the redshift distribution (continuum line) of the

FORS2 sample with the highlighted the categories B435 , V606 and i775–band dropouts (blue

hatched “/” lines, green hatched “\” lines and red horizontal lines, respectively) is shown.

Bottom panel: the redshift distribution has been calculated counting the number of sources

in a redshift bin of 0.1 and moving it with a step of 0.003 up to redshift 6.5 (the shaded

region is the FORS2 spectroscopic sample and the continuum line histogram include the

spectroscopic data from the literature (see text)). The three segments indicate the interval

of cosmic time for dz = 0.1 at the mean redshift of each category.
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Fig. 7.— Cutouts, slit position on the sky and the two dimensional extracted spectrum of

the source GDS J033233.52-275532.2 (not detected in the v2.0 ACS catalog). Cutouts from

left to right are B435, V606, i775 and z850, respectively, with 2 arcsec side box. On the right

part of the figure the slit position is shown, and the faint source in the center, indicated

by the arrow (in the images north is up and east on the left). On the bottom-left, the two

dimensional spectrum is shown with the spot (marked with a circle) in the middle of the sky

window at ∼8200Å (see also Figure 15) and tentatively interpreted as Lyα emission, QF=C.
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Fig. 8.— Left panel: The composite spectrum of B435-band dropout galaxies with the Lyα

emission line (TOP), Lyα emission and absorption features (MIDDLE) and only absorption

features (BOTTOM) is shown, respectively. The spectroscopic features are well recognized

(for a detailed comparison between emitters (TOP) and absorbers (BOTTOM) see Figure 9).

Right panel: The same for the V606-band dropout sources has been done for emitters (TOP)

and absorbers (BOTTOM). In case of emitters, the abosrption features are also clearly

detected. In case of absorbers, given the low quality (QF=C) spectra and the small sample,

only the Lyman-α forest break is apparent.
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Fig. 9.— Comparison between composite spectra normalized at 1450Å of the B435-band

dropout galaxies with and without the Lyα emission line (emitters and absorbers). The

circles are the median values calculated in bins of 100Å of the absorbed stacked spectrum,

while the triangles are those of the emission stacked spectrum. The bluer spectral slope

of the “emitter” population is evident and in general the absorption lines of the emission

stacked spectrum are weaker than the absorbed spectrum.
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Fig. 10.— Composite spectrum of i775-band dropout emission line galaxies. A faint signal

reward the Lyα line is clear, and there is a tentative detection of absorption lines, whose

expected position is probably disturbed by the sky lines residuals (especially at λ beyond

1340Å). The shape of the spectrum shows the attenuation of the IGM blueward the Lyα

line.
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Fig. 11.— z850–magnitude distriburion of the three B435 ,V606 and i775–band dropout samples.

Solid line histograms show the magnitude of all targets observed, dotted regions show the

sources with a redshift measure and dashed histogram outline the sources for which a single

emissione line (without continuum) has been observed and used in the redshift measurement

(Lyα). It is evident the single line detection for the fainter galaxies (z850 magnitude beyond

∼ 26). For the B435–band dropout sample all galaxies show the continuum.



– 51 –

Fig. 12.— Comparison of the observed equivalent widths of Lyα and [O ii] 3727 lines for

the samples of galaxies at redshift > 5 and redshift ∼ 1-1.4, respectively. This is a further

indication of the high redshift nature of the single line detected for dropouts galaxies. Three

out of four V606–band dropouts relatively close to the zone of [O ii] 3727 galaxies have been

confirmed with QF=A, both the Lyα line and the continuum are evident in the spectra.

One is a QF=B and the equivalent widths of Lyα is a lower limit (see text for a detailed

discussion).
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Fig. 13.— Velocity differences between the the Lyα line and the interstellar absorption

lines (VLyα − VISL) for 16 galaxies of the B435–band dropout sample. The median of the

distribution is 370+270
−116 km/s (see text for details).



– 53 –

Fig. 14.— Rest frame Lyα equivalent width as a function of the UV luminosity (M145,

absolute magnitude at 1450Å) for all the galaxies at redshift beyond 3.1. Dashed curves

represent the equivalent widths at fixed Lyα luminosity, from top to bottom 5, 2, 1, 0.5

and 0.1 × 1043 erg/s, respectively. There is a clear trend for the Lyα equivalent width to

increase, on average and in its maximum value, for fainter objects. .
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sky abs.

A band

Fig. 15.— The positions of the Lyα lines (solid line) for galaxies at redshift beyond 5 are

marked on the sky spectrum (dotted line). Stars and open circles denote the redshift of

the Lyα position of galaxies with QF=A,B and QF=C, respectively. The lines have been

detected sparsely in the forest of the sky emission. The sky free windows at redshift ∼ 5.7

and ∼ 6.5 are also shown.
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Fig. 16.— TOP: The Lyα luminosity as a function of the M145 magnitude. BOTTOM:

Lyα luminosity as a function of the redshift. In the inner box, the same figure is shown but

the medians have been calculated at the average values of the three categories, B435, V606,

i775–band dropouts. For both panels, the filled triangles connected by a dotted line represent

the lower limit and upper limit to the Lyα luminosity for galaxies without continuum detected

in the spectra. The lower limit is simply the integral of the Lyα line, while the upper limit

is calculated assuming that the entire z850 flux is due to the line. Dotted horizontal lines

mark the 1042 and 1043 erg/sec luminosity, respectively.
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Fig. 17.— Color-redshift diagram of the spectroscopic sample at redshift beyond 5. The

six curves show the predicted (i775-z850) color for different templates spectra. The templates

have been built combining synthetic spectra (drawn from SB99) with different Lyα equivalent

widths. The two dashed lines from left to right have stellar populations of 108 and 107 years,

respectively, and no emission Lyα is present. The four solid lines from left to right are color

tracks assuming a fixed template of 107 years (from SB99) with the addition of Lyα emission

line with rest frame equivalent widths of 30, 50, 100, 150Å, respectively. The attenuation of

the intergalactic medium has been implemented adopting the prescription of Madau et al.

(1995). Open squares are sources with QF=C, pentagons and open circles are i775 and V606–

band dropouts, respectively. The dotted curves are the shapes of the filters i775 and z850, and

show at which redshift the Lyα line enter and leave them. The two stars mark two peculiar

galaxies (see text).
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Fig. 18.— Top: Pure luminosity-redshift dimming of the z850 apparent magnitude calculated

so that at redshift 5.6 (Lyα just blueward the z850 band) it is 25.5, 26, 26.5, 27 from bottom

to top curves. Solid line is the magnitude track of a SB99 template (with age of the stellar

population of 100 Myr) with Lyα emission inserted with rest frame equivalent width of 150Å,

the dashed lines without Lyα line inserted. Bottom: The (i775-z850) color as a function of

the redshift, the z850 magnitude and the Lyα rest frame equivalent width: dashed lines

correspond to equivalent width of 0Å, solid lines from left to right correspond to 50, 100 and

150Å, respectively. The thick green lines represent the regions where the color becomes a

lower limit (assuming the limit of the GOODS survey in the i775 band to be 28.0 at 2σ).

All lines have been plotted with the condition z850 < 27.5. The red horizontal line is the

color cut adopted for the selection of z∼6 galaxies. The shapes of the i775 and z850 filters

redshifted to the Lyα position are also reported, blue dotted lines (Lyα line enter the z850

band at redshift ∼ 5.6 and leaves the i775 band at redshift ∼ 5.9). It can be seen that fainter

galaxies at z > 5.6 tend to be selected with strong Lyα line.
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zspec<5.6

zspec>5.6

Fig. 19.— Top: Half light radius versus Lyα equivalent width. Squares, pentagons and

open circles mark B435 , V606 and i775–dropouts, respectively. The size of the symbols scale

with apparent z850 magnitude. Only sources with z850 below 26 and redshift below 5.6 (∼

0.8 Gyrs of the cosmic time is probed in the redshift range 3.5-5.6) are plotted (see text for

details). For comparison, the filled circle at 0Å is the average half light radius for galaxies

without Lyα emission line. The other two filled circles are the averages for sources in the bin

0-20Å and beyond 20Å. There is an apparent behavior such that larger Lyα equivalent widths

corresponds to smaller galaxies. Middle: Gini coefficient versus Lyα equivalent width only

for the B435–dropout sample. The filled circle at 0Å is the average of the absorbers, the

other two filled circles are the averages of the Gini parameter in the bin 0-20Å and beyond

20Å. Sources with larger Lyα equivalent widths seems to be more nucleated. Bottom: Same

of top panel, but for galaxies with redshift beyond 5.6 (mainly i775–dropouts). In all panels

no QF=C have been considered.


	University of Massachusetts Amherst
	From the SelectedWorks of Mauro Giavalisco
	2009

	Spectroscopic Observations of Lyman-Break Galaxies at Redshift ~ 4, 5 and 6 in the GOODS-South Field
	Introduction
	Data and Sample Selection
	ACS Images and Source Catalogs
	Photometric Samples of Lyman--Break Galaxies
	The Spectroscopic Sample

	FORS2 Spectroscopic Observations
	Efficiency of the Photometric Selections
	Composite Spectra
	B435-Band Dropout Composite Spectra
	V606-Band Dropout Composite Spectra
	i775-Band Dropout Composite Spectrum
	Single--Line Redshift Identifications

	Outflows at z 4 and 5
	Outflows in B435--Band Dropouts (z 4)
	Outflows in V606--Band Dropouts and at Redshifts Beyond 5

	Ly Equivalent Width and the UV Luminosity
	Correlation with Morphological Properties
	Conclusions

