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Abstract

Frequency shifts, radiative decay rates, the Ohmic loss contribution to the nonradiative decay rates, fluorescence yield, and
photobleaching of a two-level atom radiating anywhere inside or outside a complex spherical nanoshell, i.e., a stratified sphere con-
sisting of alternating silica and gold concentric spherical shells, are studied. The changes in the spectroscopic properties of an atom
interacting with complex nanoshells are significantly enhanced, often more than two orders of magnitude, compared to the same
atom interacting with a homogeneous dielectric sphere. The detected fluorescence intensity can be enhanced by 5 or more orders
of magnitude. The changes strongly depend on the nanoshell parameters and the atom position. When an atom approaches a metal
shell, decay rates are strongly enhanced yet fluorescence yield exhibits a well-known quenching. Rather contra-intuitively, the Ohmic
loss contribution to the nonradiative decay rates for an atomic dipole within the silica core of larger nanoshells may be decreasing
when the silica core–inner gold shell interface is approached. The quasi-static result that the radial frequency shift in a close prox-
imity of a spherical shell interface is approximately twice as large as the tangential frequency shift appears to apply also for complex
nanoshells. Significantly modified spectroscopic properties (see computer program available at http://www.wave-scattering.com)
can be observed in a broad band comprising all (nonresonant) optical and near-infrared wavelengths.
� 2005 Elsevier B.V. All rights reserved.

PACS: 78.67.Bf; 33.70.Jg; 32.70.Jz; 33.50.�j; 87.64.Ni; 87.64.Xx
1. Introduction

Spectroscopic properties of an isolated atom, such as
radiative and nonradiative decay rates, frequency shifts,
and fluorescence yields are not inherent to the atom but
characteristic of an atom coupled to a physical system.
Indeed, it has been known for a long time that the pres-
ence of a small structure, cavity, or an interface can sig-
nificantly impact the characteristic behaviour of a
radiating system, irrespective if the emission takes place
inside or adjacent to a material body [1–3]. The physical
origin of the decay of an excited atom state is the cou-
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pling of the atom to the vacuum electromagnetic field.
A nearby presence of a material body modifies the vac-
uum electromagnetic field at the atom position. Conse-
quently, the atom interacts with the modified vacuum
electromagnetic field and it will exhibit different spectro-
scopic properties than the same atom in the absence of
the material body. There is growing interest in the appli-
cation of various systems that can significantly affect the
vacuum electromagnetic modes. Such systems are cur-
rently of great interest in the fields of photonics and
quantum electrodynamics. They have found widespread
application in microcavity lasers, electroluminescent de-
vices, and proposed photonic band-gap devices. There is
also growing interest in the application of various as-
pects of the molecule–surface interaction in the field of
medical diagnostics, particularly in the immuno-assay

http://www.wave-scattering.com
mailto:wavescattering@yahoo.com
http://www.wave-scattering.com


2 A. Moroz / Chemical Physics 317 (2005) 1–15
area, in which fluorescence-based techniques are widely
used [4]. Alternatively, for the applications in near-field
optical microscopy, one is interested in changes in the
atom fluorescence properties induced by the presence
of a nearby microscope tip.

For the purpose of this article, the atom would mean
any localized fluorescent dipole source, e.g., fluorescent
organic group, rare earth atom, etc. The atom would be
considered as a two-level system in the regime of weak
coupling, within the domain of applicability of the linear
response theory [5–8]. In the latter case, the quantum-
mechanical description [5–8] yields identical results to
the classical description [9–14]. The spectroscopic prop-
erties of the atomwill be studied as a function of the atom
position inside and outside stratified spheres. The theory
of fluorescence properties of an atomic dipole has been
mostly investigated only in the case of a homogeneous
sphere [7,8,10,11,13–15]. Chew et al. [16] provided a for-
mal solution to the problem of a dipole radiating in the
presence of a multilayered sphere. However, their solu-
tion for the sphere with N concentric shells (the sphere
core counts as shell number one) is written in terms of a
2N · 2N matrix and appears awkward and impractical
for numerical calculations. Indeed, neither Chew nor
anybody else have appeared to implement the Chew
et al. [16] solution numerically. The main obstacles are
that asN increases so do computer memory requirements
to store the matrix and the time to carry out the matrix
calculations, which increases asN3.Whenever a radiating
dipole has been discussed interacting with a multicoated
sphere, either the problem has been treated in a quasi-
static approximation [3], or the dipole has only been al-
low to radiate at the sphere origin [7,17–20]. The dipole
position in the center of such a complex sphere consider-
ably simplifies calculation as the inherently vector prob-
lem reduces to the scalar one involving scalar fields
r Æ B(r) and r Æ D(r) [17,18]. Additionally, in most cases
only the simplest core–shell particles have been dealt with
[3,7,19,20]. Although Li et al. [21] has provided a recur-
sive formula for Green�s function for the case of a multi-
coated sphere with an arbitrary number of concentric
shells, an efficient numerical use of Li�s formula, even
for coinciding spatial arguments, requires to perform
traces over the magnetic angular-momentum number.
Only very recently the limitation on the dipole position
at the center of a general multilayered sphere has been re-
moved and the traces over the magnetic angular-momen-
tum number in the scattering Green�s function at
coinciding spatial arguments, G(r,r,x), have been explic-
itly performed [12]. A complete description of the classi-
cal electromagnetic fields of a radiating electric dipole has
been achieved outside and inside a multi-structured
spherical particle. Electromagnetic fields have been deter-
mined anywhere in the space, and the time-averaged
angular distribution of the radiated power, the time-aver-
aged total radiated power, radiative and nonradiative
(due to Ohmic losses) decay rates, frequency shifts have
been calculated. Our recursive solution only employs
2 · 2 transfer matrices and their ordered products and
provides a fast and reliable algorithm which can easily
be implemented numerically [12].

In the present article, the theory developed in [12] will
be applied to ‘‘nano-matryoshka’’ structures of Prodan
et al. [22], i.e., multilayered spheres consisting of alter-
nating silica and gold concentric spherical shells. Such
complex spheres have also been known as nanoshells.
Current experimental colloidal techniques allow one to
design a variety of multi-structured beads having a plu-
rality of concentric shells with the core radius from ca.
1 nm till 1 lm and controlled shell thicknesses. For in-
stance, metal (Au, Ag, Pt) and dielectric (ZnS) beads
can be coated in a controlled way by a silica shell [23–
27], and a dielectric (silica, Au2S) bead can be coated
by gold or some other noble metal [22,28–32]. One can
subsequently etched away silica core of a silica-core me-
tal-shell bead and obtain a hollow metallic nanoshell.
Either hollow metallic nanoshell or a dielectric-core me-
tal-shell bead can be in turn coated in a controlled way
by the second concentric silica shell (a dielectric over-
coat of either metallic shell or a metallic core prevents
aggregation of the particles by reducing the Van der
Waals forces between them) [22,31] and by a further me-
tal shell, thereby forming a ‘‘nano-matryoshka’’ [22].
Compared to a simple homogeneous sphere, such a
complex multilayered spherical particles allows one a
lot more freedom in engineering of both elastic [22,28–
30,33] and inelastic light-scattering properties [34].
Many other examples of stratified spheres can also be
found in nature. As an example, water insoluble aerosols
in atmosphere have a thin liquid layer adsorbed on their
surface. With the addition of an appropriate surfactant,
water droplets in different hydrophobic solvents (such as
oil) form a stable nanometer sized structures (with the
size depending on the water to surfactant molar ratio),
often referred to as ‘‘reversed micelles’’, consisting of a
spherical water core coated with a surfactant monolayer
[3]. In the case of a biological cell, the appropriate model
consists of concentric three-layered sphere, correspond-
ing to nucleus, cytoplasm, and membrane [16]. The case
of a sphere having two coatings is also important for
modeling hydrological particles coated with biological
material and micro-encapsulated material.

A unique feature of ‘‘nano-matryoshka’’ structures of
Prodan et al. [22], which partly explains our focus on
these structures, is the existence of two coupled nanocav-
ities surrounded by metal boundaries (see Fig. 1). The
latter feature holds promise of large and controlled tun-
ability of light-matter interactions, including both the
‘‘nano-matryoshka’’ scattering properties and the spec-
troscopic properties of the atom interacting with such a
nanostructure. As it will be shown below, such a complex
nanoshell geometry strongly affects spontaneous emis-
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Fig. 1. A typical spherical complex nanoshell, or ‘‘nano-matryoshka’’,
and its parameters. In the present case, the ‘‘nano-matryoshka’’ will be
embedded in water and the respective shaded and unshaded ‘‘nano-
matryoshka’’ concentric regions will represent gold and silica shells.
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sion decay rates, Wrad, photostability, and the ratio
Wrad/Wtot, known as the fluorescence yield, or simply,
quantum efficiency (here Wtot = Wrad + Wnrad denotes
the total decay rate) [20]. The spontaneous emission rate
Wrad is one of three Einstein�s coefficients (usually de-
noted as A coefficient). The remaining two Einstein�s
coefficients (usually denoted as B coefficients) describe
the stimulated emission probability and the absorption
probability. When multiplied by the radiant energy den-
sity Uxdx with circular frequency between x and
x + dx, the respective B coefficients then determine the
stimulated emission and absorption rates at the transi-
tion frequency x. Detailed balance in thermal equilib-
rium implies that the knowledge of a single Einstein
coefficient is sufficient to determine the remaining two.
Therefore, once the spontaneous emission rate is known,
the stimulated emission and absorption rates are also
unambiguously determined. For instance, the stimulated
emission probability and the absorption probability are
equal and the ratio of spontaneous to stimulated emis-
sion decay rate remains equal to the mean thermal pho-
ton number at the transition frequency, a constant which
does not change with changing environment (see third
reference in [1]). Thus, an inhibited (enhanced) spontane-
ous emission necessarily implies inhibited (enhanced)
stimulated emission by the same factor. There is hope
that using complex nanostructures one would be able
to tailor spontaneous and stimulated decay rates accord-
ing to one�s need and a desired application, such as chem-
ical speciation, LIDAR, fluorescent near-field
microscopy, identification of biological particles, and
monitoring specific cell functions. In this respect, fluores-
cent properties of the atom both inside and outside of a
complex nanostructure are of fundamental interest. For
instance, by placing fluorescent organic groups or rare
earth ions (with nm control over the radial position
[26]) inside the dielectric core or dielectric shell of such
a complex nanoparticle [32], a fluorescent nanoprobe
can be formed for biophysical and biomedical applica-
tions [4]. Alternatively, for the applications in near-field
optical microscopy [35], wherein the probe tip is modeled
as a sphere of small radius, one is interested in changes in
the atom fluorescence properties induced by the presence
of a nearby complex nanoparticle.
2. Theory

In order to characterize the change in the spectro-
scopic properties of the atom interacting with a (com-
plex) spherical scatterer, the frequency shifts, radiative
and nonradiative decay rates will all be normalized with
respect to the radiative decay rates of the same dipole
but now in a free-space filled in with a homogeneous
medium which is identical to that at the atom position.
Such a normalization of spectroscopic properties brings
an advantage that, in the case of radiative decay rates,
any local-field corrections [2,3,18,36] cancel out. In the
case of a homogeneous dielectric medium (characterized
by the refractive index n and dielectric permittivity e)
Nienhuis and Alkemade [37] have showed that

W rad
h ¼ n3

e
W rad

v ; ð1Þ

where W rad
h and W rad

v are radiative rates of the electric-
dipole transitions in the dielectric medium and in the
vacuum, respectively. For a nonmagnetic medium, the
above relation reduces to W rad ¼ nW rad

0 . It is emphasized
here that these results holds irrespective if a homoge-
neous medium is dispersive or not. (For the general case
of a linear, nonconducting, absorptive, and dispersive
medium see Section VIII of Tip et al. [38].)

Formally, irrespective of either the classical or quan-
tum-mechanical descriptions, the line broadening and
frequency shift of an electric-dipole emitter interacting
(via the vacuum electromagnetic field) with a material
body can be understood as a result of the coupling of
the emitted field with its own reflected field. Let us label
the concentric shells of a complex nanoshell from the
nanoshell core outward, with the nanoshell core count-
ing as the shell number one and the ambient counting
as the shell number five. Let rj, j = 1, 2, 3, 4, and ej, lj,
kj ¼ x0

ffiffiffiffiffiffiffiffiejlj
p

=c, j = 1, 2, 3, 4, 5, denote the respective
shell radii, dielectric permittivities, and wave vectors
occasionally, as in Fig. 1, the subscript 5 will be replaced
by h to indicate the host medium (ambient). Then, with-
in the linear response formalism of Agarwal [5] and of
Wylie and Sipe [6], the effective shift in the frequency
separation x0 of two levels of the atom within the nth
shell is given as follows (see [5,7–9,13]):
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x� x0

W rad
h

¼ � 3en
4p2k3n

Re p �Gðrd; rd;x0Þ � p½ �

¼ �Re
3en
4p2k3n

p � Esðrd;x0Þ. ð2Þ

Here, rd is the dipole position, p is the transition dipole
moment, kn ¼ x0

ffiffiffiffiffiffiffiffiffi
enln

p
=c, and G(r,rd,x) denotes the

scattering Greens function normalized such that the
electric field Es(r,x) of the scattered radiation at r due
to a dipole p radiating at frequency x at rd is given by

Esðr;xÞ ¼ Gðr; rd;xÞ � p. ð3Þ
For a homogeneous sphere one obtains in the quasi-sta-
tic limit [13,14]:

x� x0

W rad
h

� �
k
¼ 3

32

e1 � e2
e1 þ e2

1

ðk2rs � kdrdÞ3
;

x� x0

W rad
h

� �
?
¼ 3

16

e1 � e2
e1 þ e2

1

ðk2rs � kdrdÞ3
;

ð4Þ

where kd is the radiation wave vector in the medium
wherefrom the dipole is radiating. The most characteris-
tic feature of the quasi-static approximation is that the
frequency shift is a monotonic function of the dipole dis-
tance from the sphere boundary. Moreover, for the lim-
iting cases of an atomic dipole in a close proximity to the
sphere and in the long-wavelength limit the quasi-static
approximation fails to account for the retardation ef-
fects and the radiative decay rate (linewidth) remains
unchanged [13,14].

Whereas the change in the effective shift in the fre-
quency separation of two levels is given in terms of the
real part of G(r,r,x0), the total decay rate induced by
the presence of a (multilayered) sphere is determined
by the imaginary part of G(r,r,x0). Indeed, within the
linear response formalism of Agarwal [5] and of Wylie
and Sipe [6], the normalized decay rate for the atom
within the nth shell is given as [5,7–10,13,18]

W t

W h

¼ 1þ 3en
2p2k3n

Im p �Gðrd; rd;x0Þ � p½ �

¼ 1þ Im
3en
2p2k3n

p � Esðrd;x0Þ. ð5Þ

The basic assumption is, of course, that neither the tran-
sition matrix element nor the transition frequency are
appreciably changed by the presence of the interface.

In the presence of an absorption, as in our case, the
decay rate Wt comprises the following two basic decay
channels: (1) the process of real (i.e., not virtual) photon
emission with the photon escaping to the spatial infinity,
i.e., radiative decay; (2) the process of real (i.e., not vir-
tual) photon emission accompanied by the subsequent
photon absorption by the microsphere, i.e., a nonradia-

tive decay, [5,7–10,13,18]. In an ideal theoretical situa-
tion (i.e., a single fluorescent atom, the respective silica
and gold shell being without any impurities, and mul-
ti-photon relaxation absent) the decay rate Wt, as calcu-
lated according to Eq. (5), would be the total
spontaneous decay rate. However, the Ohmic loss is
only one of many other nonradiative mechanisms, such
as, for instance, multi-photon relaxation, coupling to de-
fects, direct electron-transfer processes, and concentra-
tion quenching, which may all contribute to the
nonradiative decay rate Wnrad [39–43] but are not in-
cluded in Eq. (5). Therefore, in practice, Wt would be
the lower limit to the total spontaneous decay rate Wtot.

Obviously, in the absorbing case, the spontaneous de-
cay rate Wt, as calculated according to Eq. (5) from the
imaginary part of Green�s function at coinciding argu-
ments, G(r,r,x), [7,8] does not coincide with the radia-
tive decay rate Wrad. The latter can be, up to a
proportionality factor, determined as the classically
radiated power of a dipole which escapes to spatial infin-
ity, or simply the radiative loss, Prad, which a classical
dipole experiences when interacting with a (multicoated)
sphere [10–12,15]. Prad is calculated from the electro-
magnetic flux given by the surface integral of the Poyn-
ting vector through a virtual sphere of radius R

extending to infinity [10–12]. According to the corre-
spondence principle, the radiative decay rates Wrad is
then given by

W rad ¼ P rad

�hx
. ð6Þ

In the absence of absorption, Wt and Wrad coincide. In
the presence of an absorption, the ratio Wrad/Wt, also
known as fluorescence yield, is always smaller than
one. The relative difference betweenWrad andWt is espe-
cially pronounced in the proximity of metal boundaries
(see Fig. 10 below). The quantum theoretical expression
for the power radiated by the spontaneous emission
from an excited state in an electric (a magnetic) dipole
transition is still obtained from the classical expression
for the power radiated by an electric (a magnetic) dipole,
by replacement of the dipole moment by the correspond-
ing transition matrix element. (An expression for the di-
pole source intensity detected by a point detector has
been provided by Dung et al. [8] (see Eqs. (34)–(36)
therein).)

Let k0 be the vacuum wave vector and e00 (l00) be the
imaginary part of the dielectric function (magnetic per-
meability) at the observation point. The Ohmic loss con-
tribution to the nonradiative decay rates, Pnrad, is
calculated according to formula

P nrad ¼
Z
a
QðrÞ dr; ð7Þ

where the volume integral extends over all the absorbing
regions. Q is given as the steady (averaged) inflow of en-
ergy per unit time and unit volume from the external
sources which maintain the field,
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Q ¼ ck0
8p

e00jEj2 þ l00jHj2
� �

. ð8Þ

Here, the averaging is performed with respect to time
and assuming that the amplitude of a monochromatic
electromagnetic field is a constant. The formula (8) for
Ohmic loss density remains also valid in the regions of
high absorption near resonance frequencies of the per-
mittivity and permeability, even when the so-called Brill-
ouin expression for the electromagnetic field energy
density,

U ¼ 1

8p
E � E� d½xeðxÞ�

dx
þH �H� d½xlðxÞ�

dx

� �
ð9Þ

is no longer valid (see Appendix C of Moroz [12]). For
simplicity, we will assume that l00 � 0, i.e., the Ohmic
losses will be entirely determined by an integral of the
squared amplitude of the electric intensity (see Moroz
[12] for calculational details).
Fig. 2. The normalized level shifts for the radially oriented atomic
dipole radiating at wavelength of 595 nm as a function of its distance
from the sphere center. The shifts are normalized to the radiative decay
rate W rad

h in free-space filled in with the medium at the dipole position.
For the homogeneous dielectric sphere D, the frequency shift reaches
the value as large as 261 at r/rs = 0.995075. However, for a better view
of the region around zero frequency shift, the ordinate axis has been
terminated at the frequency shift of 10.
3. Results

In this section, detailed results of numerical simula-
tions are shown for ‘‘nano-matryoshka’’ structures of
Prodan et al. [22], i.e., multilayered spheres with silica
core and surrounded by three additional concentric
spherical shells: an inner gold shell, followed by a silica
spacer layer, and terminated by an outer gold shell. As
in [22], ‘‘nano-matryoshka’’ structures have been consid-
ered with the following dimensions: r1/r2/r3/r4: 80/107/
135/157 nm (A), 77/102/141/145 nm (B), and 396/418/
654/693 nm (C). As comparative examples, the results
are also presented for a homogeneous silica sphere with
radius rs = 150 nm (D), a homogeneous gold sphere with
radius rs = 693 nm (E), and a homogeneous gold sphere
with radius rs = 150 nm (F). The radius of the sphere E

was chosen to coincide with that of the sphere C,
whereas the radius of the spheres D and F was selected
to lie between that of the spheres A and B. The radiating
wavelength was taken to be 595 nm, implying gold
refractive index nAu � 0.248 + i2.986 [44]. All the
spheres are assumed to be suspended in an aqueous
solution. The respective refractive indices of silica and
water are assumed to be nSiO2

¼ 1.45 and nH2O ¼ 1.33.
There is nothing particular in choosing the wavelength
of 595 nm, except of it being an emission wavelength
of lissamine molecules [43]. Any other (nonresonant)
optical wavelength would lead to qualitatively similar
conclusions. The choice of water as an ambient has been
motivated by a fact that (i) this often corresponds to an
experimental situation and (ii) aqueous solution matches
biological conditions.

In numerical simulations, the angular-momentum
cutoff value of lmax = 60 was used. In the case of the to-
tal and radiative decay rates, the cutoff value was suffi-
cient to obtain convergence on at least 8 significant
digits (see Fig. 8 of Moroz [12]). In the case of the Ohmic
loss contribution, an immediate metal shell proximity
provides a numerical challenge. However, further away
from metal interfaces the convergence of up to at least
8 significant digits can be attained again (see Fig. 9 of
Moroz [12]).

3.1. Frequency shifts

The radiative frequency shifts have been calculated
directly from the real part of Green�s function at coin-
ciding arguments according to Eq. (2) (see also Eq.
(137) of Moroz [12]). The dependence of the frequency
shifts on an atomic dipole position inside and outside
the ‘‘nano-matryoshka’’ structures A–C and the homo-
geneous spheres D–F for the respective radial and tan-
gential dipole orientations is shown in Figs. 2 and 3.
Since in the sphere center the difference between the ra-
dial and tangential orientation of a dipole disappears,
the corresponding radial and tangential quantities coin-
cide there.

In order to appreciate changes in the frequency shifts
induced by nanoshells A–C geometry, let us first discuss
the comparative example D of a homogeneous silica
sphere. Inside the dielectric sphere D, the frequency shift
of a radially oriented dipole steadily increases from its
value of �0.0117 at the sphere origin till that of �261
at r/rs = 0.995075 (the last sampled point inside the
spheres). On the other hand, the relationship between
the frequency shift and the position of a tangentially ori-
ented atomic dipole has an oscillating character, first
decreasing from the value of �0.0117 at the sphere



Fig. 3. The same as in Fig. 2 but for tangentially oriented atomic
dipole. For the homogeneous dielectric sphere D, the frequency shift
reaches the value as large as 133 at r/rs = 0.995075. However, as in
Fig. 2, for a better view of the region around zero frequency shift, the
ordinate axis has been terminated at the frequency shift of 10.
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origin down to �0.00784 at r/rs = 0.388, and subse-
quently steadily increasing till �133 at r/rs = 0.995075.
(Though due to the scale of ordinate axis, the shift ap-
pears to be a flat featureless horizontal line.) Outside

the dielectric sphere D, it is the frequency shift of the
radially oriented dipole which exhibits an oscillating
behaviour, increasing from the value of ��334 at the
very first sampled point outside the sphere at r/rs =
1.005025, reaching the maximum of �0.0038 at r/rs =
1.751294 and then decreasing down to �0.0021 at the
last sampled point at r/rs = 2.01. For a tangentially ori-
ented atomic dipole, the frequency shift gradually in-
creases from the value of ��162 at r/rs = 1.005025 up
to ��0.00017 at r/rs = 2.01 and compares well with
the quasi-static approximation [see Eq. (4)]. The latter
predicts a monotonic increase of frequency shifts from
large negative values to zero as r/rs increases. Had the
sphere radius was larger compared to the emission
wavelength, one would observe an oscillating relation-
ship between the frequency shift and the position of a
radiating atomic dipole for all dipole orientations and
both inside and outside the sphere. In agreement with
the quasi-static result (4) for a homogeneous dielectric
sphere which is optically denser than surrounding med-
ium (es > eh), the frequency shift of an atomic dipole in-
side the sphere and in close proximity to its boundary is
always toward higher frequencies (blue shift) [13]. On the
other hand, the frequency of an atomic dipole outside
the sphere and in close proximity to its boundary expe-
riences a shift toward lower frequencies (red shift) [14].

It is clear from Figs. 2 and 3 that frequency shifts of
an atomic dipole interacting with the ‘‘nano-mat-
ryoshka’’ structures A–C experience significantly en-
hanced changes than in the comparative example of
the homogeneous dielectric sphere D. Already at the
sphere center they can be more than two orders of mag-
nitude larger: ��1.941 for A, ��1.691 for B, and
�0.903 for C compared to �0.0117 for D. The emission
frequency of an atomic dipole in a silica region inside
the ‘‘nano-matryoshka’’ structures A and B is always
shifted toward lower frequencies (red shift). For ‘‘nano-
matryoshka’’ structure C, which radius is more than
four times larger than that of A and B, the red shift is
still observed in a proximity of gold shells. However,
in a marked contrast to ‘‘nano-matryoshka’’ structures
A and B, further away from gold shells, a small fre-
quency shift toward higher frequencies is observed: for
r/rs 2 [0,0.17), (0.69,0.79) and r/rs 2 [0,0.23), (0.7,0.85)
in the case of tangentially and radially oriented dipole,
respectively. The magnitude of frequency shifts substan-
tially depends on the atom position within a dielectric
shell. With the atom approaching metal shell bound-
aries, the frequencies exhibit an accelerated decrease to-
ward large negative values. We have seen that even in
the case of a purely homogeneous dielectric microsphere
D with a small refractive index contrast, the frequency
shifts are capable of reaching very high values near the
surface of the microsphere. However, for the respective
‘‘nano-matryoshka’’ structures A–B, the shifts at the
proximity of metal-dielectric interfaces can be more than
two orders of magnitude larger.

Outside and at a very close proximity of the outer
sphere boundary, large red frequency shifts are observed
for the complex nanoshells A–C as well as for the homo-
geneous spheres D–F. For instance, for radially oriented
dipole source at the very first sampled point outside the
spheres at r/rs = 1.005025, this red shift ranges from
�7392 (B), through �5858 (F), �5117 (A), �334 (D), till
�67 (C, E). For a tangential dipole orientation, the red
shift ranges from �3597 (B), through �2839 (F), �2480
(A), �162 (D), till �30 (C, E). Note that for the largest
‘‘nano-matryoshka’’ C, and a homogeneous gold sphere
F of the same radius, the comparable frequency shifts at
the proximity of the outer sphere boundary are 5-times
smaller than for the silica microsphere D. Surprisingly
enough, the quasi-static result (4) of Klimov et al.
[13,14] that, in the close proximity of a spherical shells
interface, the radial frequency shift is approximately
twice as large as the tangential frequency shift appears
to apply also for complex nanoshells (see Figs. 2 and 3).

Further away from sphere boundaries, as the value of
r/rs increases, the red shift typically changes into blue
one and vice versa in dampened oscillations around
zero. According to Fig. 2, a noticeably large blue shift
with maximum �2.14 at r/rs � 1.154 is observed for
a radially oriented dipole source outside ‘‘nano-
matryoshka’’ B, leading to repulsive forces between the
atom and the dielectric microsphere [14]. The blue shift
persists in a large interval for r/rs 2 (1.12,1.78). For a
tangential dipole source orientation, this blue shift,
which occurs for r/rs 2 (1.14,1.275) and (1.63,2.01) with



Fig. 4. Normalized decay rates W t=W rad
h for the radially oriented

atomic dipole radiating at wavelength of 595 nm as a function of its
distance from the sphere center. The rates are normalized to the
radiative decay rate W rad

h of the same atomic dipole in the free-space
filled in with the medium at the dipole position.

Fig. 5. The same as in Fig. 4 but for tangentially oriented atomic
dipole.
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maximum �0.413 at r/rs � 1.164, becomes almost five-
times smaller. Blue frequency shifts for the atom located
outside a sphere are also observed in the remaining
cases, but they are almost one order of magnitude smal-
ler. For instance, for radially oriented dipole source, the
excursion above zero does not exceeds �0.148 for C (at
r/rs � 1.144), �0.146 for E (at r/rs � 1.154), �0.059 for
A (at r/rs � 1.592), �0.033 for F (at r/rs � 1.741),
�0.004 for D (at r/rs � 1.751). In the case of a tangen-
tially oriented dipole source, the excursion above zero
does not exceeds �0.113 for E (at r/rs � 1.254),
�0.104 for C (at r/rs � 1.254), �0.062 for A (at
r/rs � 2.01), �0.05 for F (at r/rs � 2.01), whereas for D
the frequency shift remains negative till 2.01. Hence,
similarly to the case of the atom located either close to
a plane or inside a homogeneous dielectric spheres [13],
the relationship between the frequency shift and the po-
sition of the atomic dipole outside the spheres considered
here has an oscillating character. The dampened oscilla-
tory behaviour of the frequency shift for the radially ori-
ented dipole outside the sphere D contradicts the
conclusion reached by Klimov et al. [14]. However, Kli-
mov et al. [14] have only studied atoms at a distance
from a dielectric sphere not larger than r/rs � 1.2, which
is a too short distance to observe any oscillating behav-
iour. Had they drawn frequency shifts for larger values
of r/rs, they might have observed the oscillatory behav-
iour, too.

3.2. Decay rates, the Ohmic loss contribution to
nonradiative decay rates, and fluorescence yield

3.2.1. Total decay rate Wt

The normalized total decay rates Wt as calculated di-
rectly from the imaginary part of Green�s function at
coinciding arguments according to Eq. (5) (see also
Eq. (135) of Moroz [12]), are displayed in Figs. 4 and
5. Obviously, one finds the rates in the sphere center
identical for the radial and tangential atomic dipole ori-
entations. An advantage in dealing with the normalized
decay rates is that any local-field correction [2,3,18,36]
cancels out (see also Section 4.3 below) and, in principle,
a direct comparison between the normalized decay rates
and experiment can be performed.

Similarly as in the preceding subsection, in order to
appreciate changes in the decay rates induced by nano-
shells A–C geometry, we will first discuss the compara-
tive example D of a homogeneous silica sphere. Inside
the dielectric sphere D, the normalized decay rate for a
radially oriented atomic dipole steadily decreases from
its maximum value of �0.94237 at the sphere origin
down to �0.83437 at the last sampled point inside the
sphere at r/rs = 0.995075. On the other hand, the nor-
malized decay rate for a tangentially oriented atomic di-
pole exhibits a weakly oscillating behaviour: it first
increases from the value of �0.94237 at the sphere origin
and reaches its maximum of �0.95173 at r/rs =
0.497562, and then decreases down to �0.90179 at
r/rs = 0.995075. Outside the dielectric sphere D, the nor-
malized decay rate for a radially oriented atomic dipole
steadily decreases from its maximum value of �1.27798
at the first sampled point outside the sphere at
r/rs = 1.005025 down to �0.99896 at the last sampled
point at r/rs = 2.01. On the other hand, the normalized
decay rate for a tangentially oriented atomic dipole
exhibits a weakly oscillating behaviour: it first increases
from the value of �0.9824 at r/rs = 1.005025, reaches its
maximum of �1.00414 at r/rs = 1.860746, and then it
decreases down to �1.00366 at the last sampled point
outside the sphere at r/rs = 2.01. (Though due to the
scale of ordinate axis, the decay rates appear to be a flat
featureless horizontal line in Figs. 4 and 5.) Note in
passing that for spheres of larger radius compared to



Fig. 6. The normalized radiative decay rate of the radially oriented
fluorescence dipole source at wavelength of 595 nm. The rate has been
normalized to that in free-space filled in with the medium at the source
position.

Fig. 7. The same as in Fig. 6 but for tangentially oriented atomic
dipole.
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the emission wavelength one would observe an oscillat-
ing behaviour of decay rates for any atomic dipole
orientation [10,11].

A characteristic feature of nanoshells is a huge in-
crease of the decay rates for a dipole source in a close
proximity to metal boundaries, and especially when di-
pole is within the silica core. In a purely dielectric case,
such large decay rates are only observed in the proximity
of sharp resonances of large spheres [10], whereas in the
present case they can be achieved with small nano-
spheres without any special tuning to their internal res-
onances. For the ‘‘nano-matryoshka’’ structures A and
B, the decay rates monotonically increase from the val-
ues at their center of �0.8751 and �1.7979, respectively,
up to the respective values at the last sampled core
points of �2773 (5412) and �2445 (4765) for the tangen-
tial (radial) dipole orientation. The normalized decay
rates of an atomic dipole at the core region of the largest
‘‘nano-matryoshka’’ C exhibit a qualitatively different
behaviour which is characterized by pronounced min-
ima �0.1696 at r/rs = 0.218955 and �0.1129 at
r/rs = 0.209005 for the radial and tangential dipole ori-
entations, respectively. Depending on the nanoshell
parameters and the atom position, both inhibited and
enhanced decay rates are observed, with the decay rates
maximum values (in hot spots) being between two and
three orders of magnitude larger than the decay rates
minimum values (in cold spots) within the same shell.
The positional sensitivity of the decay rates appears to
be more pronounced in the nanoshell core regions than
in the second silica shell.

Outside the complex nanoshell C, an oscillatory
dependence of the decay rates on the dipole position is
clearly visible. The behaviour is closely matched by the
case E, i.e., the case of homogeneous metal sphere of
the same radius. The amplitude of the oscillatory depen-
dence is much stronger than that discussed earlier for D.
A pronounced oscillatory dependence of the decay rates
on the dipole position outside the sphere can also be
seen for F and a tangential dipole orientation. For A

and a tangential oriented dipole interacting with B only
a very weak oscillatory dependence is seen. For B and a
tangential dipole orientation and F and the radial dipole
orientation only monotonic decrease of decay rates is
observed down to �0.10373 and �0.10188, respectively,
at r/rs = 2.01.

3.2.2. Radiative decay rate Wrad

The normalized radiative decay rates Wrad as calcu-
lated according to Eq. (6) are shown in Figs. 6 and 7.
The radiative decay rate is more pronounced for a radi-
ally oriented atomic dipole, in which case an order of
magnitude enhancement can be expected for an optimal
atom position inside the second silica shell of the nano-
shells A and B. Outside the spheres, the largest (an order
of magnitude) enhancement of the radiative decay rate is
achieved in a proximity of the small homogeneous gold
microsphere F, closely followed by the nanoshell A. The
best location of a tangentially oriented atomic dipole ap-
pears to be within the nanoshell B silica core. Whereas
the radially oriented atomic dipole shows typically an
enhanced radiative decay rate outside the spheres, in
the case of its tangentially orientation the radiative de-
cay rate is generally reduced. A strongly reduced radia-
tive decay rate is also observed for an arbitrarily
orientated atom inside the silica shells of the nano-
matryoshka structure C. Further away from the spheres
outer surfaces the radiative decay rate shows dampened
oscillations around one for any atomic dipole orienta-
tion. The radiative decay rate for a tangential dipole ori-
entation exhibits a complex behaviour within the



Fig. 9. The same as in Fig. 8 but for tangentially oriented atomic
dipole.
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nanoshell C silica core, showing there a local minimum
of �0.0204 at r/rs = 0.199055.

3.2.3. Ohmic loss contribution to the decay rate

Compared to the normalized total and radiative de-
cay rates in Figs. 4–7, the normalized Ohmic loss contri-
bution to the decay rates shown in Figs. 8 and 9 does not
exhibit any oscillatory behaviour outside the spheres. It
is reminded here that the Ohmic loss contribution to the
decay rates has been calculated according to Eqs. (7)
and (8). (Further computational details can be found
in Sections 6 and 8.2 of Moroz [12].) In agreement with
expectations, the Ohmic loss contribution steadily de-
creases down to zero with the increased atomic dipole
distance from the sphere surface. It is also easily under-
standable that the Ohmic loss contribution to the decay
rates rapidly increases when the atom approaches metal
boundary. However, rather contra-intuitively, the Oh-
mic loss contribution within the nanoshell C silica core
decreases from its maximum value of �0.2102 at the
center down to �0.044 and �0.047 for the radial and
tangential dipole orientations, respectively, at the very
last sampled silica core point at r/rs = 0.567214. For
the radial dipole orientation, the Ohmic loss contribu-
tion decreases monotonically, whereas for a tangential
dipole orientation it exhibits an oscillatory dependence
with a series of local minima and maxima: first decreas-
ing from the central value of �0.2102 down to �0.086 at
r/rs = 0.228905, increasing up to �0.137 at r/rs =
0.398060, and eventually decreasing down to �0.047 at
r/rs = 0.567214. This effect appears to be real and not
an artifact of computational inaccuracies or numerical
instabilities. Calculations in extended precision yielded
essentially the same result. Note that the local minima
Fig. 8. The normalized Ohmic loss contribution W nrad
X =W rad

h to the
nonradiative decay rates for radially oriented atomic dipole radiating
at wavelength of 595 nm as a function of its distance from the sphere
center. The Ohmic loss contribution has been normalized to the free-
space radiative decay rate W rad

h in the medium identical to that at the
dipole position.
of the decay rates and the Ohmic loss contribution to
the decay rate for a tangential dipole orientation occur
at more or less the same position within the nanoshell
C silica core.

3.2.4. Fluorescence yield

In Fig. 10, the ratio Wrad/Wt is plotted, which is
known as the fluorescence yield, or simply quantum effi-

ciency. Our Wt is that calculated directly from the imag-
inary part of Green�s function at coinciding arguments
according to Eq. (5) and has earlier been shown in Figs.
4 and 5. However, ourWt only comprises the Ohmic loss
contribution, W nrad

X , to the nonradiative decay rate
Wnrad. The Ohmic loss is only one of many nonradiative
mechanisms, such as, for instance, multi-photon relaxa-
tion, coupling to defects, direct electron-transfer pro-
cesses, and concentration quenching, which all
Fig. 10. Fluorescence yield (quantum efficiency) at wavelength of
595 nm for an averaged dipole orientation as a function of the dipole
position.
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contribute to the nonradiative decay rate Wnrad [39–43]
and which may all occur at real experimental situations.
Therefore, our W t ¼ W rad þ W nrad

X does only provide the
lower bound for the total decay rate Wtot. Since
W rad=W tot

6 W rad=ðW rad þ W nrad
X Þ, the ratio Wrad/Wt

for an averaged dipole orientation plotted in Fig. 10
provides an upper theoretical bound on the fluorescence
yield. Because of absorbing bodies, W nrad

X > 0 and the
respective ratios Wrad/Wt are always smaller than one.
(For the sake of clarity, the trivial nonabsorbing case
D, in which case the ratio is equal to unity for any atom
position, has been omitted.) As expected, with increas-
ing the atom distance from the outer sphere surface,
where the Ohmic loss contribution W nrad

X decreases to
zero, the ratio Wrad/Wt rapidly approaches unity. For
all cases considered, the respective fluorescence yields
are already larger than 0.93 at r/rs = 2. At nanoshell
centers, a remarkably large value of the fluorescence
yield (�0.694) is observed for nanoshell B. In the case
of nanoshell C, the fluorescence yield is the smallest
(�0.160). As dipole approaches metallic shells, the
respective fluorescence yields rapidly drop to very small
values. This is well known as fluorescence quenching [4].
In spite of decay rates being strongly enhanced in the
proximity of metal shells (see Figs. 4 and 5), the decay
of the excited atomic states is not accompanied by the
emission of a real photon, but instead matter quanta
are created due to absorption. The fluorescence quench-
ing at the proximity of metal boundaries then implies
pronounced maxima of the respective fluorescence yields
when the atom is located at the middle of the second sil-
ica shell of nano-matryoshka structures A–C. Indeed,
the shell is surrounded by metal shells on its both sides.
A noticeable feature is also a rather complex behaviour
of the fluorescence yield within the core of nanoshell C.
In the latter case, we have already seen a complex behav-
iour in the case of decay rates and the Ohmic loss con-
tribution to the decay rates. The complex behaviour in
all these cases is the result of almost 5· larger core ra-
dius compared to the core radii of nanoshells A and B.

3.3. Photobleaching and detected intensity enhancement

If one assumes that photobleaching of a dye takes
place only while the dye is in its excited states, a suffi-
ciently large enhancement of the spontaneous emission
rates can significantly lower the probability of switching
into nonfluorescent dark (triplet) states, thereby increas-
ing stability against photobleaching [32,50]. The latter
means that a fluorescent dye molecule can emit more
photons before irreversible chemical reactions prevent
the molecule from any further emission. Let us assume
that photostability is inversely proportional to the ex-
cited state lifetime, i.e., proportional to the total decay
rate [20]. Then the photostability of the atom interacting
with a nanoshell compared to that in the free-space filled
in with a homogeneous medium which is identical to
that at the atom position increases by the factor of
W tot=W rad

h . On the other hand, there is only the probabil-
ity ofWrad/Wtot that a given decay will end up with pho-
ton at the spatial infinity. Given the respective two
situations, let N and N0 be average numbers of the pho-
tons emitted by the fluorescence source (and detected in
the far-field) till photobleaching. Then the ratio N/N0

can be obtained as ðW tot=W rad
h Þ � ðW rad=W totÞ ¼

W rad=W rad
h , i.e., the ratio is equal to the normalized radi-

ative decay rate. The latter has been plotted as a func-
tion of the source position in Figs. 6 and 7.

The results presented so far have not assumed any
incident radiation. An atomic dipole has already been
assumed to be in an excited state and the changes in
its decay properties have been monitored. It is informa-
tive to assess the changes in the detected fluorescence
intensity due to the presence of a metal nanoshell. By
taking into account that:

1. the respective stimulated emission and absorption
probabilities undergo the same changes in the pres-
ence of material boundaries as the rate of the sponta-
neous emission;

2. the stimulated emission and absorption rates are
given as the product of the intensity, or squared field
strength, with the respective probabilities;

3. the spontaneous decay rate Wt can be enhanced by
more than 3 orders of magnitude (see Figs. 4 and
5), the radiative decay rate Wrad an order of magni-
tude (see Figs. 6 and 7), and intensity by 4 or more
orders of magnitude;

one finds that an elementary absorption–emission cycle
can be accelerated by 7 or more orders of magnitude,
resulting in the enhancement by 5 or more orders of
magnitude of the detected fluorescence intensity.
4. Discussion

4.1. Size-dependent corrections and nonlocal effects

The calculations presented so far have been per-
formed assuming the bulk values of gold dielectric con-
stant. If theory presented here is to be applied for a
multilayered spherical particle with a small metallic
core or a thin metallic shell with a radius or thickness
S [ 20 nm (such as the outer shell of nano-mat-
ryoshka B), two effects have to be additionally consid-
ered. First, the bulk dielectric function is modified,
since the electronic mean free path is then shorter than
in the bulk [45]. Second, nonlocal effects come into
play [46–48]. The first effect can easily be incorporated
by replacing the bulk dielectric function eB(x) with its
size-dependent modification
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eðxÞ ¼ eBðxÞ þ
x2

p

x2 þ ixs�1
B

�
x2

p

x2 þ ixs�1
� ð10Þ

Here, xp is the bulk plasmon frequency, sB is the relax-
ation time in the bulk metal, s�1 ¼ s�1

B þ vFS
�1 is the in-

verse relaxation time (also called damping coefficient C)
corrected for the finite size of the particle, and vF is the
Fermi velocity. More generally

s�1 ¼ s�1
B þ AvFS

�1; ð11Þ
where A is a parameter determined by the geometry. For
simple Drude theory and isotropic scattering one usually
takes A = 1.

On the other hand, nonlocal effects, i.e., when the
Fourier transform of the dielectric function depends
in addition to x also on k, are associated with the res-
onant excitation of longitudinal bulk plasmon modes
(either propagating ones, with frequency above the
plasma frequency xp, or evanescent ones, with fre-
quency below the plasma frequency xp) [46–48]. The
neglect of the nonlocal responses of the substrate is
the main reason why a phenomenological treatment
will generally break down when the radiating atom is
very close (within a few nanometers) to the sphere sur-
face [48]. Indeed, the spectroscopic properties of the
two-level atom interacting with a complex spherical
nanoshell have been investigated here within the frame-
work of macroscopic Maxwell�s equations. The latter
lead to unphysical results in the limit r ! rs, i.e., when
the atom approaches sphere surface. For instance, the
quasi-static approximation [see Eq. (4)] predicts that
frequency shifts increase as (r � rs)

�3. The non locality
brings about a natural cutoff pole order: the nonlocal
sphere does not polarize significantly at angular mo-
menta higher than a certain cutoff value lc. The latter
is of principal importance since it allows for a fully
converged treatment of multipolar excitation effects
[49]. Another important feature of the nonlocal dielec-
tric function is that it introduces a natural cutoff angu-
lar-momentum for the excitation of near-field modes
[48,49], and thereby a natural cutoff for the conver-
gence of the nonradiative decay rates.

The nonlocal effects may significantly influence both
the radiative and nonradiative rates of very small nano-
spheres and nano-matryoshka structures with very thin
shells. For instance, in the case of a small homogeneous
nanosphere with radius of rs 6 5 nm, the radial and tan-
gential dipolar decay rates for low emission frequencies
(x 6 0.5xp) can be reduced by up to 2 orders of magni-
tude with respect to the local results [48]. On the other
hand, for emission frequencies xP 0.5xp, the decay
rates can be up to 2 orders of magnitude larger than
in the local case [48]. The theory of Leung [48] has been
extended to the case of complex nanoshells (see Section
11.1 of Moroz [12]) and its application will be presented
elsewhere.
4.2. Radiative decay rates vs. the local density of states

In the ideal case of nonabsorbing and nondispersive
material medium (which, however (except for the vac-
uum), does not exist), the trace of the imaginary part
of the Green�s function at coinciding spatial arguments,
which enters Eq. (5), is related to the local density of
states, q(x,r) = �(1/p)Tr Im G(rd,rd,x0), where Tr de-
notes trace (G is a tensor quantity). This relation has
prompted claims that radiative decay rates are propor-
tional to the local density of states (LDOS). However,
even in the ideal nonabsorbing homogeneous case one
finds this claim true only when (i) one performs orienta-
tional averaging over atomic dipole orientations and (ii)
properly includes medium dependent prefactors [see Eq.
(5)]. Once dispersion comes into play, radiative decay
rates cease to be proportional to the LDOS. Indeed,
Nienhuis and Alkemade [37] have showed that the
LDOS in the homogeneous dispersive case is

qðxÞ ¼ n2
dðxnÞ
dx

qð0ÞðxÞ; ð12Þ

where nðxÞ ¼ ffiffiffiffiffi
el

p
is the frequency dependent refractive

index of the medium and q(0)(x) = x2/c3p2 is the LDOS
of photon states in vacuum (see Eqs. (29)–(31) of Nien-
huis and Alkemade [37]). Yet, as it has been emphasized,
the Nienhuis and Alkemade formula (1), which does not
contain any derivatives of the medium refractive index,
remains also to be valid in the dispersive case.

The presence of a derivative factor in the LDOS can
also be traced down to similar derivative factors in the
Brillouin expression for the electromagnetic field energy
density (9). Another argument is as follows. Let
G(E) = 1/(E � H) denote a scattering Green�s function,
where E is an energy and H is a Hamiltonian. Then,
for an isolated eigenvalue En of an energy-dependent
Hamiltonian (our case; see [7,8]) the quantity
�(1/p)Tr ImG(E) is no longer equal to the Dirac delta
function d(E � En), but merely proportional to
d(E � En) with a prefactor 1/|1 � dH/dE|. The latter is,
in general, different from unity. Therefore, the density
of states (DOS) q(E) can no longer be defined as
q(E) � �(1/p)Tr ImG(E). Yet another argument is that
the integrated density of states is given by the expression
N(E) � (1/p)Tr Im lnG(E) = �(1/p)Tr Im ln(E � H).
Since, for an energy-dependent Hamiltonian, the rela-
tion (d/dE)[Tr ImlnG(E)] = �Tr ImG(E) no longer
holds, N(E) 5 �Eq(E)dE, provided that the density of
states (DOS) q(E) is defined as q(E) � �(1/p)Tr ImG(E)
(see also Moroz [51]).
4.3. Local-field corrections

An atomic dipole couples to the microscopic vacuum
fluctuations. If the (unnormalized) decay rate Wt [see
Eq. (5)] is obtained from macroscopic Maxwell�s
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equation, the difference between microscopic and macro-

scopic vacuum fluctuations can be accounted for by
local-field corrections. The local-field effects always play
an important role and constitute a critical test of our
understanding of the relation between microscopic and
macroscopic electromagnetic phenomena [2,3]. As dis-
cussed by Schuurmans et al. [36], one has to distinguish
between the substitutional and interstitial character of
impurities. In the former case, the well-known empty-
cavity factor 3e/(2e + 1) applies, whereas, in the latter
case, the Lorentz local-field factor (e + 2)/3 is obtained.
Since the decay rate Wt can be expressed in terms of an
expectation value of the product of two electric field
operators (see, e.g., Eq. (25) of Dung et al. [8]), the lo-
cal-field factors appear squared. In the near-infrared
and for optical wavelengths, an inclusion of the corre-
sponding local-field factor is only necessary for electric
dipole transitions. Indeed, in the above wavelength
range, magnetic permeabilities l of different materials
are all equal to the vacuum value and, therefore, the lo-
cal-field factors for magnetic dipole transitions are triv-
ially equal to one. (For local-field corrections in
absorbing case see [18].)

However, since we have only discussed normalized
decay rate Wt [see Eq. (5)], any local-field correction
cancels out and a direct comparison between the nor-
malized decay rates and experiment can, in principle,
be performed (see, however, the following subsections).

4.4. Nonradiative decay rates

Earlier, at the end of Section 3.2, it has been discussed
that the sum W t ¼ W rad þ W nrad

X , where W nrad
X stands for

the nonradiative decay rate due to the Ohmic losses,
does only provide the lower bound on the total decay
rate Wtot. Consequently, Fig. 10 only shows the upper
theoretical limits on the fluorescence yields. Indeed,
the Ohmic loss is only one of many other nonradiative
mechanisms, such as, for instance, multi-photon relaxa-
tion, coupling to defects, direct electron-transfer pro-
cesses, and concentration quenching, which all
contribute to the nonradiative decay rate Wnrad [39–
43]. It turns out that even in a purely dielectric case, in
the absence of any Ohmic losses and for small fluores-
cence atom concentrations, the nonradiative decay
Wnrad can be higher than the radiative decay Wrad,
resulting in the fluorescence yield smaller than 0.5
[3,52,53]. When fluorescence dye concentrations increase
above a certain threshold value, the fluorescence yields
of most organic dyes are substantially reduced even fur-
ther with respect to a zero-concentration limit value. It
should be emphasized that, for a dipole outside the
sphere, the radiative decay rate Wrad is proportional to
the intensity of the time-resolved fluorescence spectra
at t = 0 [43]. Therefore, in the latter case, Wrad and
Wnrad can be disentangled experimentally [43].
In order to test theoretical predictions experimen-
tally, the choice of a suitable fluorescence source turns
out to be a critical issue. Rare-earth ions, which exhibit
long luminescence lifetimes, are very suitable candidates
[2,42,54]. However, they are usually implanted by an ion
deposition resulting in a poor control over their radial
distribution within a spherical shell. On the other hand,
fluorescent organic groups can be placed inside the
dielectric core or shell of a complex nanoparticle with
nanometer control over the radial position [26], but their
decay rates are usually strongly affected also by other
then purely electromagnetic mechanisms, such as con-
centration quenching. For instance, in the case of fluo-
rescein (FITC), the threshold value for a concentration
quenching is �0.1 mM (�1 mM) in liquid (solid) solu-
tions [50]. However pyrene-doped PMMA spheres with
pyrene concentrations up to 10 mM do not exhibit any
concentration dependence [55]. Note also that metals
per se have inherent photoluminescence [57]. However,
since metal photoluminescence results in a broad band
continuum [35,57], it can easily be filtered out.

4.5. Nonlocal decay rates

The nonradiative mechanisms different from the Oh-
mic losses do only depend on the immediate neighbor-
hood of a radiating dipole. Therefore, one can include
all such mechanisms of nonradiative decay rates under
the local nonradiative decay rate, Wloc. On the other
hand, the nonradiative decay rate due to Ohmic losses
and the radiative decay rate can be viewed as a nonlocal

decay rate, W nloc � W t ¼ W rad þ W nrad
X . The reason be-

hind this nomenclature is that the latter two rates de-
pend on the geometry and material composition of the
entire sphere and surrounding medium, and not only
on the immediate proximity of the radiating dipole.
The total decay rate is then written as Wtot =Wloc +
Wnloc. As a rule, both the nonradiative decay rate due
to Ohmic losses and the radiative decay rate change if
the optical properties of a shell being far away from
the radiating dipole (for instance, ambient medium)
change [42,52,53]. In the case of a homogeneous dielec-
tric sphere, the local and nonlocal decay rates can be, in
principle, disentangled by measuring the total decay rate
Wtot using the same sphere in different environments
[2,3,52]. For instance, the sphere can be embedded in a
refractive index matched liquid [2,3,52]. Its radiative
decay rates then becomes that of a dipole in a homoge-
neous dielectric slab [53,56]. Other possible environ-
ments include air or liquids with different refractive
indices [52]. The difference of the respective total decay
rates measured in different sphere environments then
corresponds to the difference of the nonlocal decay rates
[52]. The latter is obviously also true for a multicoated
sphere. The local and nonlocal decay rates can then be
separated by fit of Eq. Wtot =Wloc + Wnloc to the mea-
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sured data [42,52]. Only after the local decay rate Wloc is
determined, a comparison of measured data and theory
presented here can be performed [32].
4.6. Numerical subtleties

When dealing with dispersive and absorbing shells, it
may happen that the linearly independent spherical Bes-
sel functions jl and yl (see Section 10 of Abramowitch
and Stegun [58] for notations) are in fact related by
yl(kr) � ijl(kr) up to almost all significant digits in dou-
ble precision. Consequently, if the spherical Hankel
functions hð1Þl is later on formed as the sum
hð1Þl ðkrÞ ¼ jlðkrÞ þ iylðkrÞ [58], its precision may be dras-
tically compromised. Therefore, it is always recom-
mended to determine hð1Þl ðkrÞ by a direct independent
recurrence, such as that proposed by Mackowski et al.
[59] (see recurrences (63), (64) therein). Otherwise the
radiative decay result for the interior of the nanoshell
C may differ by up to four-orders of magnitude from
the correct one. If one can perform calculations in an ex-
tended precision, this pathological behaviour can be lar-
gely overcome, yet the independent recurrence by
Mackowski et al. [59] is still highly recommended.
Fig. 11. Normalized decay rates W t=W rad
h for an averaged dipole

orientation in the case of nanoshell A as a function of the dipole
position for different emission wavelengths.
4.7. Outlook

Interesting avenue of further research is the study of
the effect of sphere�s resonances on the atomic spectro-
scopic properties. So far, the latter problem has been
thoroughly investigated only in the case of a homoge-
neous dielectric sphere [14] and a dispersive and absorb-
ing sphere [8]. However, a comparative study for
complex nanoshells is missing. Yet another interesting
set of problems arises in connection with strong atom–
sphere interactions, leading, for instance, to Rabi
splitting of an atom levels. Also, here only the case of
a dielectric homogeneous microsphere has been
considered [60].

Another important aspect is the inclusion of nonlocal
effects into the treatment of spectroscopic properties of
the atom interacting with complex nanoshells. As it
has been discussed earlier, the neglect of the nonlocal re-
sponses of the substrate is the main reason why a phe-
nomenological treatment will generally break down
when the radiating atom is very close (within a few
nanometers) to the sphere surface [48]. So far, the effect
has only been investigated in the case of small metal
nanospheres [48]. In this regard, complex ‘‘nano-mat-
ryoshka’’ structures offer the possibility in studying the
nonlocal effects for spheres of relatively large radius,
provided that metal shells are thin enough. General the-
ory for the case of ‘‘nonlocal’’ shells has already been
developed [12] and its application will be presented
elsewhere.
5. Summary and conclusions

Frequency shifts, decay rates, the Ohmic loss contri-
bution to the nonradiative decay rates, fluorescence
yields, and photobleaching of an atomic dipole interact-
ing with ‘‘nano-matryoshka’’ structures of Prodan et al.
[22] have been investigated. The changes in the spectro-
scopic properties of an atomic dipole interacting with
complex nanoshells have been shown to be significantly
enhanced, often more than two orders of magnitude,
compared to the same atom interacting with a homoge-
neous dielectric sphere. The detected fluorescence inten-
sity can be then enhanced by 5 or more orders of
magnitude. The decay rate enhancements can be
achieved with small nanospheres without any special
tuning to their internal resonances. The changes
strongly depend on the nanoshell parameters and the
atom position. Rather contra-intuitively: the Ohmic loss
contribution to the nonradiative decay rates for an
atomic dipole within the silica core of larger nanoshells
may be decreasing when the silica core–inner gold shell
interface is approached. Surprisingly enough, the quasi-
static result (4) of Klimov et al. [13,14] that the radial
frequency shift in the close proximity of a spherical shell
interface is approximately twice as large as the tangen-
tial frequency shift appears to also apply for complex
nanoshells (see Figs. 2 and 3). Although decay rates
are strongly enhanced in the proximity of metal shells,
the majority of the emitted radiation is absorbed and
fluorescence yield exhibits there a well-known quenching
(see Fig. 10). Although simulation have so far been per-
formed at the wavelength of 595 nm (the emission wave-
length of lissamine molecules [43]), Fig. 11 demonstrates
that significantly modified spectroscopic properties can
be observed in a broad band comprising all (nonreso-
nant) optical and near-infrared wavelengths.
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It has been shown here that complex nanoshell struc-
tures provide the possibility of a controlled tunability in
engineering of the radiative decay rates. The ability of
controlled modification of radiative rates for atoms or
molecules in the excited state is of great importance
since dissipative pathways of the excited state can be
controlled. For instance, one can design nanoprobes
with enhanced quantum yield for fluorescent micros-
copy and with enhanced photostability for biophysical
and biomedical applications [4,32], identification of bio-
logical particles in fluorescence-activated flow of cyto-
meres [61], to monitor specific cell functions, or in the
cell identification and sorting systems [62,63]. Enhanced
spontaneous emission rates could also provide increased
sensitivity in low level fluorescence applications [40,50].
Designing of small noble metal nanoparticles with re-
duced quantum yield, Wrad/Wtot, at the particle close
proximity (ca. 1 nm) may have crucial implications for
the particles use as acceptors in biophysical Förster res-
onant energy transfer experiments in vitro as well as
in vivo [43]. The theory presented earlier in [12] with
numerical results shown here may also stimulate design
of coated tip geometries for applications in near-field
optical microscopy [35].

The emphasis was on the spontaneous decay, rates.
However, detailed balance in thermal equilibrium im-
plies that the knowledge of a single Einstein coefficient
is sufficient to determine the remaining two. Therefore,
qualitatively similar behaviour as that shown in Figs. 4
and 5 is also expected for the stimulated emission and
absorption rates.

Hopefully, the results presented in this article, in con-
junction with computer program available at http://
www.wave-scattering.com will provide a larger freedom
in engineering of (complex) spherical particles proper-
ties, rendering them more suitable for a variety of
applications.
Appendix A. Supplementary material

A Windows executable that allows calculation of the
level shift and radiative and nonradiative decay rate of a
dipole source anywhere inside and outside a concentric
nanoshell, can be found in the on-line version of this pa-
per at doi:10.1016/j.chemphys.2005.05.003.
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