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Abstract We discuss the possible existence of the fully-

heavy tetraquarks. We calculate the ground-state energy of

the bbb̄b̄ bound state, where b stands for the bottom quark, in

a nonrelativistic effective field theory framework with one-

gluon-exchange (OGE) color Coulomb interaction, and in

a relativized diquark model characterized by OGE plus a

confining potential. Our analysis advocates the existence of

uni-flavor heavy four-quark bound states. The ground state

bbb̄b̄ tetraquark mass is predicted to be (18.72 ± 0.02) GeV.

Mass inequality relations among the lowest Q Q Q̄ Q̄ states,

where Q ∈ {c, b}, and the corresponding heavy quarkonia are

presented, which give the upper limit on the mass of ground

state Q Q Q̄ Q̄. The possible decays of the lowest bbb̄b̄ are

highlighted, which might provide useful references in the

search for them in ongoing LHC experiments, and its width

is estimated to be a few tens of MeV.

1 Introduction

Heavy quarkonium spectroscopy is the arena of quark poten-

tial models, in which the full interaction incorporates the

short-range one-gluon-exchange (OGE) and long-range con-

fining potential [1–6]. To put heavy quarkonium spec-

troscopy in a model-independent framework, efforts have

been made to develop a nonrelativistic effective field theory

formalism [7–9]. For details, see recent review [10].

Higher-order perturbative calculations show that the

lowest-lying heavy quarkonia can be regarded as weakly cou-

pled states [11–13]. They are characterized by a momentum

scale m Qv ≫ �QCD, where m Q and v are the heavy quark

mass and velocity, respectively, and �QCD is the nonpertur-

bative scale of quantum chromodynamics (QCD) [14], and
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their dynamics is mainly dominated by the short-distance

interaction. In particular, there is some evidence that the first

few bottomonia and Bc mesons can be identified as weakly

coupled systems [15–17], while the J/ψ lies on the border-

line of this classification [9]. The lowest-lying doubly- and

triply-heavy baryons have also been studied as weakly cou-

pled bound states [18,19] but, due to the lack of experimental

incentive,1 this area is not as well explored as that of heavy

quarkonia.

It is also worth mentioning some recent indications of the

existence of mesons whose properties and quantum num-

bers do not fit into a traditional quarkonium interpreta-

tion (for recent reviews, see [21–27]). These states, includ-

ing Zb(10610) and Zb(10650) [28], Zc(3900) [29,30], and

Zc(4025) [31,32], have similar features and must be made

up of four valence quarks, as they are isovector states in the

heavy quarkonium mass region. Another interesting exam-

ple is X (3872) [33] which, because of its unusual properties,

does not fit well into a pure charmonium picture [1–4]. Sev-

eral alternative interpretations have been proposed [34–44].

Fully-heavy tetraquarks, such as bbb̄b̄ and the charm ana-

log ccc̄c̄, are of considerable interest, since they are free

of light degrees of freedom and might be used as an ele-

gant probe to investigate the interplay between both aspects

of QCD: perturbative and nonperturbative. Owing to the

lack of experimental incentive, only a few theoretical stud-

ies have been conducted in this field, and whether Nature

allows the bound states of fully-heavy tetraquarks or not

is still an open question. If it does, what are their masses

and decay properties? Recently, this debate has given rise

to several studies within different approaches, including the

constituent quark and diquark models [45–48], chiral quark

1 Very recently, the LHCb Collaboration announced the first measure-

ment of the S-wave doubly-charm baryon, the �++
cc [20], with a mass

of about 3620 MeV.
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model [49], chromo-electric potential model [50], and QCD

sum rules [51,52]. All of these predict the existence of fully-

heavy (bottom) tetraquarks, except for Ref. [50], in which

the authors argue that the stability of a fully-heavy system of

quarks should rely on more subtle effects that are not included

in the simple picture of constituent quarks. The fully-heavy

tetraquark case is similar to that of polyelectrons Ps2, the

bound state of two electrons and two positrons (e−e−e+e+),

discussed long ago by Wheeler [53]. Just after the prediction

of Ps2, a debate on their stability started [54,55], but it took

half a century to get experimental evidence of them [56].

In this paper, we compute the bbb̄b̄ ground-state energy.

The calculations are performed within the formalism of a

nonrelativistic effective field theory (NREFT) at the leading

order (LO), which neglects all spin-dependent and confining

interactions, and in a relativized diquark–antidiquark model,

both of which are characterized by the OGE potential. We

also make a rough estimate of the bbb̄b̄ total width, in order

to guide experimental searches.

The paper is organized as follows. In Sect. 2, we describe

the NREFT approach to solve the system considered. At the

end of this section, we include our diquark model results.

Section 3 is devoted to discuss the results, and we compare

our predictions of the mass of the Xbbb̄b̄ ground-state with

those of previous studies. In Sect. 4, we derive a set of mass

inequalities, and provide the upper limits of the ground state

masses of several fully-heavy tetraquarks. In Sect. 5, we high-

light some possible decay modes of the Xbbb̄b̄ and give the

ballpark estimate of its total decay width. Finally, we provide

a short summary.

2 Formalism

In this section, we describe an NREFT approach to the fully-

heavy tetraquark spectroscopy, characterized by the OGE

interaction. This is used to estimate the mass of the bbb̄b̄

ground state. As all of the four quarks are very heavy, the

tetraquark system is weakly coupled with a small size of the

order 1/(m Qαs) ∼ 1/(m Qv), where αs is the strong coupling

strength and v ≪ 1. In this case, the dynamics of the system

is dominated by the OGE which provides a color Coulomb

potential at the LO, and the long-distance confining potential

and spin-dependent interactions become perturbations.

In addition, we also give a tetraquark (diquark–antidiquark)

model prediction for the bbb̄b̄ ground-state mass.

2.1 Nonrelativistic Hamiltonian

The nonrelativistic Hamiltonian describing the 2Q−2Q̄ sys-

tem takes the following form at the LO

H
NR =

4
∑

i=1

Ti +
∑

i< j

VSI(ri j ), (1)

where Ti = mi + p2
i /(2mi ), ri j ≡ |ri − r j |, and the second

term is the spin-independent OGE color Coulomb potential,

VSI(ri j ) =
∑

i< j

λi

2
· λ j

2

αs

|ri − r j |
, (2)

where λi and λ j are color matrices. The quark mass mb is to

be determined from the ground state bottomonium masses,

and αs is taken at the scale of the typical momentum transfer.

At order α2
s , we can write mb as [19]

mb =
Mbb̄(1S)

2

(

1 + 2

9
α2

s (μ)

)

. (3)

Here, we take the spin-averaged mass Mbb̄(1S) =
(

Mηb
+

3Mϒ

)

/4.

2.2 Solving the four-body problem

The four-body problem is notoriously delicate. One should

be careful about the choice of the wave functions, because a

crude adoption may give rise to misleading conclusions, as

first illustrated by Ore in Ref. [54] in the case of polyelec-

trons (e−e−e+e+ bound states). One year later the author, in

collaboration with Hylleraas [55], came up with an elegant

prescription to handle four-body systems. This is what we

are willing to use to calculate the bbb̄b̄ ground-state energy,

provided that we make the substitution e− → b, e+ → b̄.

Since the ground state is non-degenerate and its symme-

tries are governed by those of the Hamiltonian HNR, the spa-

tial wave function should be symmetric under the exchange

of Q1 Q2 ↔ Q̄3 Q̄4. This leads to ψspatial(Q1 Q2) =
ψspatial(Q̄3 Q̄4). This symmetry [55] helps to reduce the num-

ber of integration variables and simplify the four-body prob-

lem. To describe the quark relative motion, we define the

following Jacobi coordinates,

σ = r1 − r2, ρ = r3 − r4, λ = 1

2
(r1 + r2 − r3 − r4),

(4)

which are shown in Fig. 1.

The “physical” tetraquark color wave function can be writ-

ten as a superposition of different color configurations,2

|ψc〉 = α|3̄12334; 11234〉 + β|6126̄34; 11234〉, (5)

2 In the following, we use the notation |C12C34; C1234〉, where the color

configuration of the quark (antiquark) pairs 12 and 34, C12 and C34, are

coupled to that of the tetraquark, C1234.
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Fig. 1 Tetraquark Jacobi coordinates of Eq. (4). Filled and open circles

represent quarks and antiquarks, respectively

where the coefficients α and β can be obtained by diagonaliz-

ing the model Hamiltonian on the tetraquark wave function.

When the two identical heavy quarks are in the 3̄ color repre-

sentation and in an S-wave, the spin must be equal to 1 so as to

satisfy the Pauli principle. For the two heavy quarks being in

the 6 color representation and in an S-wave, the spin needs to

be 0. Therefore, the mixing between 3̄ and 6 color representa-

tions requires a flip of heavy quark spin, and thus is of higher

order in NREFT (suppressed by v2 ∼ 0.1). Since the OGE

gives an attractive interaction for 3̄ and a repulsive interaction

for 6, at LO the ground-state color configuration should be

|3̄12334; 11234〉. Such a ground-state configuration has been

suggested [57–60], and more recently in Refs. [46,49,61].

It is also supported by recent lattice QCD studies on fully-

heavy four quark systems [62,63].

On the basis of the |3̄12334; 11234〉 color configuration, the

kinetic energy matrix elements can be written as

T = p2
σ

2m1
+

p2
ρ

2m2
+

p2
λ

2m3
= 1

mb

(p2
σ + p2

ρ + 2p2
λ), (6)

where m1, m2 and m3 are the reduced masses of Q1 Q2,

Q̄3 Q̄4 and Q1 Q2 − Q̄3 Q̄4, respectively. The spatial trial

wave function is written in terms of the Jacobi coordinates

of Eq. (4) and Fig. 1,

ψ(σ , ρ,λ)spatial = N

3
∏

i=1

exp

[

−1

2
β2

i ξ2
i

]

, (7)

where (ξ1, ξ2, ξ3) ≡ (σ , ρ,λ), βi are the oscillatory (varia-

tional) parameters, and

N =
(

1√
π

)9/2
∏

i

β
3/2
i , (8)

is the overall normalization constant. It has been recently

shown that the above Gaussian variational basis is a powerful

tool to obtain the ground state energy of heavy tetraquarks

[61].

It is worth noting that the color configurations |113124;
11234〉 and |813824; 11234〉 are linear superpositions of the

two color representations of Eq. (5). In other words, one can

alternatively use the bases {|3̄12334; 11234〉; |6126̄34; 11234〉}
or {|113124; 11234〉; |813824; 11234〉}. For the detailed argu-

ments, we refer to Refs. [64,65]. A physical transition

between the |3̄12334; 11234〉 tetraquark state and the |113124;
11234〉 two-meson state3 can occur, which is the well-known

“flip-flop” transition [66]. This is an important ingredient

while studying the decays into two mesons if the mass of the

initial tetraquark is higher than the two-meson threshold.

2.3 bbb̄b̄ ground-state

The eigenvalue problem is solved by means of a numerical

variational approach with Gaussian trial wave functions [67,

68]. The quark mass mb is extracted via Eq. (3), where one

also has to include the spin-averaged mass of the 1S (ground-

state) bottomonia,

Mbb̄(1S) = 1

4
[3Mϒ(1S) + Mηb(1S)] = 9.45 GeV. (9)

The other parameter, i.e., the running coupling constant

αs(μ), is taken at the scale of the typical momentum trans-

fer in the ground-state bottomonium (μ = 1.5 GeV). The

extracted values are

mb = 4.82 GeV, αs(1.5 GeV) = 0.31. (10)

The spin-averaged binding energy of the 1S bottomonium is

Ebb̄(1S) ≡ 2mb − Mbb̄(1S) = (0.20 ± 0.01) GeV. (11)

We can estimate the energy of the Xbbb̄b̄ ground-state by

means of the variational method with Gaussian trial wave

functions previously used in the bottomonium case and the

model parameter values of Eq. (10). We get

M
gs,NR

bbb̄b̄
= (18.72 ± 0.02) GeV, (12)

where the uncertainty is given by the product of the binding

energy and αs(1.5 GeV). The binding energy of the lowest

four b-quark bound state is obtained as

Ebbb̄b̄(1S) ≡ 4mb − M
gs,NR

bbb̄b̄
= (0.56 ± 0.02) GeV. (13)

The extracted optimal values of the variational parameters

βi are β1 = β2 = 0.77 GeV and β3 = 0.60 GeV, where

β1 = β2 is due to the symmetry of the spatial wave function

[55], as discussed in the last subsection.

2.4 bbb̄b̄ ground state in a relativized diquark model

In this subsection, we provide an estimate of the fully-

bottom tetraquark ground-state energy by treating the Xbbb̄b̄

3 Similarly to the tetraquark model case, for simplicity in the

meson-meson molecular model the color configuration is restricted to

|113124; 11234〉.
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configuration as a diquark, bb, and antidiquark, b̄b̄, bound

state in a relativized diquark model. In this model, the

diquark is an effective degree of freedom which describes

two strongly correlated quarks with no internal spatial exci-

tations. The lowest-energy diquark configurations, scalar

and axial-vector, are both color anti-triplets but have dif-

ferent spin and flavor quantum numbers. The former, i.e.,

the scalar diquark, has spin-0 and its flavor wave func-

tion is antisymmetric. The latter has spin-1 and is flavor-

symmetric. As mentioned in the last section, because of the

Pauli principle, a (point-like) diquark made up of quarks of

the same flavor can only be of the axial-vector type [57–

59,69].

To calculate the energy of the bbb̄b̄ ground state in diquark

anti-diquark configuration, we need an evaluation of the bb

axial-vector diquark mass, Mav,bb. The diquark (antidiquark)

mass is estimated by binding a bb (b̄b̄) pair via the OGE plus

a confining potential [3], and we have4

Mav,bb = 9.85 GeV. (14)

After doing that, we can compute the 1S, 0++ tetraquark

ground-state energy in the relativized diquark model. The

model Hamiltonian is characterized by the OGE plus confin-

ing potential. For more details on the model and the values

of the model parameters, we refer to Ref. [70]. With the use

of the previous value of Mav,bb, we get

M
gs,REL

bbb̄b̄
= 18.75 GeV, (15)

which is consistent with the result obtained in the previous

subsection. See also Table 1, where our relativized diquark

model prediction is compared to those of previous stud-

ies. The theoretical uncertainty in the above prediction can

be estimated by using the typical error of the quark model

calculations. The intrinsic error in the quark model predic-

tions is of the order of 30–50 MeV [42–44]; therefore, this

diquark model prediction has the cumulative uncertainty of

O(50 MeV).

3 Results and discussion

In Table 1, our NREFT and relativized diquark model results

for the mass of the bbb̄b̄ ground-state are compared with

those of previous studies. The results are strongly model-

dependent and vary in the range of (18.7 ± 0.2) GeV,

approximately. The differences among the results mainly

stem from different choices of effective Hamiltonians, the

model-parameter fitting procedures, and the use of distinct

4 Notice that the parameters in this diquark model are different from

those in the NREFT approach.

approximations in the tetraquark wave function. This last is

related to the possible ways of combining the quark color

representations to obtain a color singlet wave function for

the tetraquark. In the last column of the Table 1, we also

report the differences between the predicted masses and the

ηbηb threshold, (18798 ± 4) MeV [21] whose central value

is used.

It is worthwhile to remind some previous studies. For

example, Karliner et al. [47] made a phenomenological esti-

mation of the Q Q Q̄ Q̄ ground-state energies, with Q = b

and c. The authors utilized a relation between meson and

baryon masses to extrapolate the binding energy of Q Q Q̄ Q̄

systems in the diquark model. They made the ballpark esti-

mates of Bbb̄(1S) and the binding energy of the tetraquark

with respect to the two-bb-diquark threshold, and obtained a

value of about 1/2 for the ratio Bbb̄(1S)/Bbbb̄b̄(1S).

Bai et al. calculated the bbb̄b̄ ground-state energy by

means of a phenomenological potential, whose parame-

ters were fitted to the bb̄ spectrum and verified by lat-

tice simulation [45]. The bbb̄b̄ ground-state energy was

obtained by solving the Schrödinger equation numerically;

spin-dependent corrections and a linear confining potential

were included. Their result agrees with our LO NREFT result

very well, indicating that neglecting the spin-dependent and

confining parts provides a very good approximation to the

system under study.

A diquark model prediction of the bbb̄b̄ and ccc̄c̄ ground-

state energies was given in Ref. [48]. There, the authors

assumed tetraquarks to be made up of two almost point-like

diquarks in the color-triplet configuration. The model param-

eters were fitted by solving a non-relativistic Schrödinger

equation for the charmonium and bottomonium spectrum.

The bbb̄b̄ ground-state mass agrees with our diquark model

well.

In Ref. [71], the authors computed the ccc̄c̄ ground-

state energy within a nonrelativistic potential model. The

authors concluded that the possibility of obtaining bound

states depends on the assumptions made on the quark dynam-

ics and the flavor configurations. There are also early predic-

tions for the mass [72] and width [73] of the fully-charm

tetraquark, and the ground-state energies of Q2 Q̄2 systems,

with Q ∈ {s, c, b, t} [74]. For the full mass spectrum of

all-charm tetraquarks, we refer to Ref. [69]. All-charm four-

quark bound state has also been studied in the Bethe–Salpeter

approach and the ground state was reported to be deeply

bound (650 MeV) below the 2ηc threshold [75].

A study of the importance of mixing effects between

tetraquark and molecular-type components is also worth-

while to be carried out, especially for those states which are

close to meson-meson thresholds. The probability of a fully-

heavy tetraquark to be a (Q Q̄) − (Q Q̄) hadronic molecule

might be calculable without any ambiguity. It is worthwhile

to mention that the possibility of an ηb − ηb bound state has
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Table 1 Different theoretical

predictions of masses for the

ground state (J PC = 0++)

Xbbb̄b̄. The acronyms NR and

REL refer to nonrelativistic and

relativized results, respectively.

In the last column,


 ≡ m(Xbbb̄b̄) − 2m(ηb)

References Mass (GeV) 
 (GeV)

This work (NR) 18.72 ± 0.02 − 0.08 ± 0.02

This work (REL) 18.75 − 0.05

Karliner et al. [47] 18.862 ± 0.025 0.06 ± 0.03

Bai et al. [45] 18.69 ± 0.03 − 0.11 ± 0.03

Berezhnoy et al. [48] 18.754 − 0.04

Chen et al. [51] 18.462 ± 0.15 − 0.34 ± 0.15

Wu et al. [49] 18.462–18.568 − 0.28 ± 0.05

Wang [52] 18.84 ± 0.09 0.04 ± 0.09

been studied by computing the QCD van der Vaals force in

the framework of potential nonrelativistic QCD in Ref. [76].

Given that the recent lattice nonrelativistic QCD calculation

did not find any state below the noninteracting ηbηb thresh-

old [77], such a study seems necessary to understand what

happens.

It would also be very interesting to test the possibility of

a bbc̄c̄ tetraquark that remains stable against strong decays,5

but unfortunately there is no experimental evidence yet. The

stability of heavy-light tetraquark systems is still an open

question. The Q Qq̄q̄ was shown to be stable against strong

decays by Lipkin long ago6 [78]. Very recently, bbq̄q̄ was

shown to be stable against strong decays but not its charm

counterpart ccq̄q̄ , nor the mixed (beauty+charm) bcq̄q̄ state

[79,80]. For a detailed discussion on the stability of such

systems, we refer to the recent study in Ref. [81].

4 Tetraquark–meson mass inequalities

One can estimate the lower bounds of the ground state energy

levels of the fully-heavy four-quark systems by using the vari-

ational approach, as suggested long ago by Nussinov [82–

84] and by Bertlmann and Martin [85]. This approach was

tested by the lattice QCD calculations of Weingarten [86]

and also by the rigorous calculations in the vectorlike gauge

theories (QCD) by Witten [87]. We attempt to extend Nussi-

nov’s approach to the fully-heavy four-quark bound states

and obtain inequalities between the tetraquark states and the

corresponding heavy quarkonia in the following.

Let us consider the general Hamiltonian of four heavy

quarks with pair-wise interactions:

5 All the other possible fully-heavy tetraquarks can decay strongly by

annihilating at least a pair of quarks and antiquarks of the same flavor.

6 Before Lipkin, the authors of Ref. [71] also argued that X Q Qq̄q̄ is

stable if the quark mass ratio m Q/mq is large enough. For reasonable

values of the quark mass ratio, 5 ∼ 20, they predict a X Q Qq̄q̄ above

but not very far from the corresponding threshold. Note that the ratios

mb/mu ≈ 16, mc/mu ≈ 5, and mb/mc ≈ 3, if one uses typical values

for the constituent quark masses.

H4(Q1 Q2 Q̄3 Q̄4) =
4

∑

i=1

Ti (Qi ) + VQ1 Q2 + VQ̄3 Q̄4

+VQ1 Q̄3
+ VQ1 Q̄4

+ VQ2 Q̄3
+ VQ2 Q̄4

.

(16)

The color-antitriplet potential V
(3̄)
Q Q between any quark (or

antiquark) pair can be related to the color-singlet quark–

antiquark potential, V
(1)

Q Q̄
[88], via

V
(3̄)
Q Q = 1

[Nc − 1] V
(1)

Q Q̄
, (17)

where 1/[Nc − 1] is the overall ratio of the color coefficient

in the leading SU(Nc) group. The above relation can also be

verified by using the eigenvalues of the Casimir invariants

from the Table 2, and it holds when the Q Q and Q Q̄ pairs

are in the same spin and orbital quantum states. With the use

of V
(3̄)
Q Q = 1

2
V

(1)

Q Q̄
for SU(3), Eq. (16) can be rearranged as

follows

H4(Q1 Q2 Q̄3 Q̄4) =
4

∑

i=1

Ti (Qi ) + 1

2

(

V
(1)
12 + V

(1)
34

)

+
∑

i=1,2; j=3,4

VQi Q̄ j
, (18)

where as before we consider only the color-antitriplet for

Qi Q j and triplet for Q̄i Q̄ j , and we have written the color-

singlet quark–antiquark (Qi Q̄ j ) potential from applying

Eq. (17) to Qi Q j as V
(1)
i j .

To work out the last term in the above equation, one has

to calculate the eigenvalues of the color matrices, viz. the

Casimir invariants
∑

i=1,2; j=3,4

VQi Q̄ j
∝

〈

3̄12334

∣

∣

∑

i, j

Ĉi · Ĉ j

∣

∣3̄12334

〉

, (19)

where Ĉi, j = λi, j/2. The eigenvalues of these Casimir

invariants are explicitly given in Table 2. We need to know

in which color representation the Qi Q̄ j pair is. For instance,

by writing down explicitly the color wave function (see, e.g.,

Ref. [89]), we can get
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Table 2 Eigenvalues of the Casimir invariants Ĉi · Ĉ j and Ĉ2

∣

∣�i j

〉

color
Ĉi · Ĉ j

∣

∣�
〉

color
Ĉ2

∣

∣Qi Q̄ j

〉

1
−4

3

∣

∣�
〉

singlet
0

∣

∣Qi Q̄ j

〉

8
+1

6

∣

∣�
〉

octet
3

∣

∣Qi Q j

〉

3̄
−2

3

∣

∣�
〉

triplet/antipriplet

4

3
∣

∣Qi Q j

〉

6
+1

3

∣

∣�
〉

sextet

10

3

∣

∣3̄12334

〉

1
= 1√

3

∣

∣113124

〉

−
√

2

3

∣

∣813824

〉

= − 1√
3

∣

∣114123

〉

+
√

2

3

∣

∣814823

〉

. (20)

Using Ĉi · Ĉ j =
(

Ĉ2
i j − Ĉ2

i − Ĉ2
j

)

/2, where Ĉi j = Ĉi + Ĉ j ,

we have

〈

3̄12334

∣

∣Ĉi · Ĉ j

∣

∣3̄12334

〉

= 1

4

〈

3̄12334

∣

∣Ĉ12 · Ĉ34

∣

∣3̄12334

〉

= −1

3
(21)

for i = 1, 2; j = 3, 4. This result enables us to write the

pair-wise potential of four-quark state in terms of the quark–

antiquark color-singlet potential, viz., the quarkonium poten-

tial,

∑

i< j

Vi j = 1

2

(

V
(1)
12 + V

(1)
34

)

+1

4

(

V
(1)
13 + V

(1)
14 + V

(1)
23 + V

(1)
24

)

. (22)

This means that under the approximation of one-gluon

exchange and that the two quarks are in color anti-triplet, the

four-quark Hamiltonian [Eq. (18)] can be expressed in the

following form,

H4(Q1 Q2 Q̄3 Q̄4) = 1

2

(

H12 + H34

)

+1

4

(

H13 + H14 + H23 + H24

)

, (23)

where Hi j = Ti + T j + V
(1)
i j (ri j ) is the quarkonium Hamil-

tonian. Taking quarkonium wave functions as the trial wave

function, and applying the variational principle [82–84], we

obtain an upper bound on the ground state energy of four-

heavy-quark system by computing the expectation value of

the Hamiltonian of the subsystems, namely

E4Q ≡
〈

H4(Q1 Q2 Q̄3 Q̄4)
〉

�
1

2

(〈

ψ12

∣

∣H12|ψ12

〉

+
〈

ψ34

∣

∣H34

∣

∣ψ34

〉)

+1

4

∑

i=1,2; j=3,4

〈

ψi j

∣

∣Hi j

∣

∣ψi j

〉

, (24)

where ψi j are the corresponding ground state wave functions

of the i j subsystems. Here, we use � instead of ≤ because we

have made the approximation that the two quarks are in color

anti-triplet and the two anti-quarks are in color triplet, though

it is expected to work rather well since the mixing with the

sextet-antisextet configuration is expected to be suppressed

by v2 ∼ 0.1 for fully-bottom and ∼ 0.3 for fully-charm

four-quark systems. In this sense, the inequalities derived for

baryons by Nussinov [82–84] are more rigorous because the

two quarks in a baryon must be in an anti-triplet without any

approximation.

The inequalities for all possible fully-heavy tetraquarks

are listed in Table 3. The corresponding numerical values

are obtained using the spin-averaged quarkonium masses

Mbb̄(1S) = 9.445 GeV, Mcc̄(1S) = 3.069 GeV and

Mcb̄(1S) = 6.324 GeV. Since the B∗
c (13S1) meson has not

been observed, for Mcb̄(1S) we used the average value of the

theoretical predictions of Godfrey–Isgur model [90] and the

Cornell potential model from Ref. [91].

If we compare the so-obtained approximate upper bound

in the fully-bottom sector with the earlier theoretical predic-

tions listed in Table 1, we find this value is indeed larger than

all the model predictions except for that of Ref. [52], which

is calculated by means of QCD sum rules and has a large

uncertainty.

5 Possible decays of X
bbb̄b̄

The main difficulties in the experimental observation of fully-

bottom tetraquark mesons are related to the production mech-

anisms and observation of the main decay modes. A very

recent study discussed the production of the bbb̄b̄ ground-

state at the LHC, concluding that the bbb̄b̄ is supposed to be

very narrow and likely to be discovered [46]. Another recent

study [92] also discussed the possible production of a narrow

scalar resonance around 18–19 GeV at the LHC.7 In the fol-

lowing, we will discuss the decays of such a state and provide

a rough estimate of its width. We will argue that the width is

at least a few tens of MeV.

As shown in Table 1, most of the models predict the

ground-state fully-bottom tetraquark to be below the ηbηb

threshold. Because of this, one expects its width to be almost

saturated by the following decay modes: (1) decays into final

states containing a pair of bottom and anti-bottom quarks; (2)

decays into hadrons of lighter flavors. The former is domi-

nated by one-gluon exchange, while the latter should be dom-

inated by two gluons. Figure 2 shows an example of the decay

into a pair of open-bottom mesons. Because the gluons are

7 The decay of such resonance into four-lepton final state is also

explored to disentangle whether it would be a tetraquark or something

more exotic.
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Table 3 Mass inequality

relations and upper bounds of

the mass of ground-state

fully-heavy tetraquarks formed

of bottom and charm quarks

State Mass inequality Upper bound (GeV)

Xbbb̄b̄ � 2Mbb̄(1S) � 18.89

Xbbb̄c̄ � Mbb̄(1S) + Mcb̄(1S) � 15.77

Xbb̄cc̄ �
1

4
(Mbb̄(1S) + Mcc̄(1S)) + 3

2
Mcb̄(1S) � 12.62

Xbbc̄c̄/Xccb̄b̄ �
1

2
(Mbb̄(1S) + Mcc̄(1S)) + Mcb̄(1S) � 12.58

Xccc̄b̄ � Mcc̄(1S) + Mcb̄(1S) � 9.39

Xccc̄c̄ � 2Mcc̄(1S) � 6.14

Fig. 2 Quark level description of hadronic decays Xbbb̄b̄ → M1 M̄2,

where M1 and M̄2 are spin-parity and phase-space allowed bottom and

anti-bottom meson, respectively

at the scale of mb, one expects the first type of decays to

dominate over the second. As it is not an easy task to calcu-

late partial decay widths into given exclusive decay modes,

in the following we provide a rough estimate of the inclu-

sive decay width of the Xbbb̄b̄ ground-state based on the first

decay mode.

The inclusive width of the Xbbb̄b̄ into final states with a

pair of b and b̄ quarks can be described as a two-step process

triggered by a transition operator T as

〈h1h2 . . . |T |Xbbb̄b̄〉 = 〈h1h2...|T2|b1b̄4g〉
·〈b1b̄4g|T1|b1b2b̄3b̄4〉, (25)

where h1 and h2 indicate possible bottom hadrons allowed

by the spin-parity quantum numbers and the available phase

space. Here T1 is operator for the coupling of a heavy quark–

antiquark pair to a gluon, given by
√

4παs Q̄ 1
2
λaγ μQǫa

μ,

and T2 is responsible for the transition from bb̄g to the final

hadronic states. We need to sum up all the possible final states

generated at the second vertex of Fig. 2, which includes not

only two-body but also many-body final states. As a result,

only the second factor (T1) in the above equation matters.

The Q̄ Q annihilation at short distances requires a direct

dependence on the zero-point wave function of the color-

octet Q̄ Q inside the four-body bound state, RQ Q̄(8)
(0).

Hence,

Ŵ(Xbbb̄b̄ → h1h2 . . .) ∝ αs(mb) |Rbb̄(8)
(0)|2. (26)

It is well-known that the ηb decay width is saturated by two-

gluon exchange, and the ηb inclusive decay width is Ŵ(ηb →

hadrons) ∝ α2
s (mb) |Rbb̄(1)

(0)|2 [93–95]. The wave function

at origin of a color-octet bb̄(8) pair might be larger than that

of the asymptotic color-singlet bb̄(1), namely a bottomonium

[96]. However, at the present stage there is no need for a

precise calculation of the width. For an order-of-magnitude

estimate, one may simply assume |Rbb̄(8)
(0)|2 ∼ |Rbb̄(1)

(0)|2.

Therefore, we can estimate the inclusive width of the Xbbb̄b̄

decays into hadrons containing b and b̄ as

Ŵ(Xbbb̄b̄ → h1h2 . . .) ≃ 1

αs(mb)
Ŵ(ηb → hadrons). (27)

The ηb dominantly decays into hadrons, hence, Ŵ(ηb →
hadrons) ≈ Ŵ(ηb) = 10+5

−4 MeV [21]. Taking αs(mb) =
0.22 [21], and neglecting all other possible decay modes

which should be subdominant, we get

Ŵ(Xbbb̄b̄) = O(50 MeV). (28)

The previous width (of the order of a few tens of MeV) is

large enough to make the resonance observable. Our estimate

of Eq. (28) is of the same order of magnitude as an earlier

prediction for similar systems [73], while it is much larger

than the estimate of Ref. [47], 1.2 MeV. Similarly, we expect

the width of the fully-charm tetraquark, if below the ηcηc

threshold, to be larger,

Ŵ(Xccc̄c̄) ≃ Ŵ(ηc)

αs(mc)
= O(100 MeV). (29)

The fully-bottom tetraquark states could be searched in

the final states including a pair of bottom hadrons, such as

B B̄, �b�̄b, �b�̄b, �b�̄b and �b�̄b. They can also decay

into a fully leptonic final state via an intermediate ϒ(1S)X

state as

Xbbb̄b̄ → ϒ(1S)X → l+l−l+l−, (30)

where l can be τ , μ or e, and X could be the off-shell low-

est vector bottomonium, X ≡ ϒ(1S)∗. This decay involves

the annihilation of two bb̄ pairs into virtual photons, so the

branching fraction is expected to be small, O(10−4 ∼ 10−8),
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as estimated in [47].8 Despite of this, the multi-lepton final

states are expected to provide a clean signal with a low back-

ground. The ideal place to look for the decays of Eq. (30)

is the Large Hadron Collider experiments, where the Higgs

boson cross section was measured by reconstructing a four-

lepton final state [97]. Because of this, a scan at relatively

lower energies, of the order of 2Mηb(1S), should be almost

straightforward at LHC.

6 Summary

We calculated the bbb̄b̄ ground-state energy in terms of two

different approximations for the tetraquark wave function.

They were used to simplify the solution of the four-body

problem.

In the first case, we provided an evaluation of the bbb̄b̄

ground-state energy in an NREFT at the LO, where the poten-

tial is an OGE-induced color Coulomb potential. A nice fea-

ture of our approach is that the color wave function is com-

pletely given by |3̄12334; 11234〉 at the LO, and its mixing with

|6126̄34; 11234〉 only occurs at higher orders. The solution of

the four-body problem was simplified by making use of the

symmetries introduced by Hylleraas and Ore in their study of

polyelectrons, namely the bound states of two electrons and

positrons. In our specific case, one of the above mentioned

symmetries could be expressed asψspatial(bb) = ψspatial(b̄b̄),

where ψspatial(bb) and ψspatial(b̄b̄) are the spatial wave func-

tions of the bb and b̄b̄ systems, respectively. Thanks to this,

the four-body problem was simplified by reducing the num-

ber of integration variables. In the second case, we calcu-

lated the bbb̄b̄ ground-state energy in a relativized diquark

model. This model is characterized by OGE plus a confin-

ing potential. In the diquark model, the effective degree of

freedom of the diquark, describing two strongly correlated

quarks with no internal spatial excitations, is introduced.

Tetraquark mesons are then obtained as two-body diquark–

antidiquark bound states. Our results in both approaches –

NREFT at LO (18.72 ± 0.02 GeV) and relativized diquark

model (18.75 GeV) – only differ by a few tens of MeV, and

suggest the existence of a bbb̄b̄ bound-state below the ηbηb

threshold.

We also derived a set of approximate inequalities for the

energies of the fully-heavy tetraquarks in terms of those of

various heavy quarkonia. Instead of giving the values of the

ground-state energies of the states of interest, the inequalities

provide upper bounds on them. As expected, our LO NREFT

and relativized diquark model results on the Xbbb̄b̄ ground-

state mass satisfy the corresponding inequality.

8 We have down-scaled the branching faction estimate by one order of

magnitude in comparison with that in Ref. [47], since the total width

estimated here is one order of magnitude larger.

Finally, we discussed the possible decay modes of the

lowest fully-heavy tetraquarks and estimated the decay width

of the ground state bbb̄b̄ to be of O(50 MeV). We hope our

results might provide useful references in the search for fully-

heavy tetraquarks in ongoing LHC experiments. In particular,

we suggest searching for the lowest Xbbb̄b̄ in the relevant

center-of-mass energy region around 18.7 GeV in the final

states of four leptons or a pair of bottom hadrons such as B B̄,

�b�̄b, �b�̄b, �b�̄b and �b�̄b,
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