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1. Introduction

In recent times, considerable resources have been invested into studying the nucleon spectrum

on the lattice, both to elucidate the properties of various excitations, and to probe the validity of

the calculation methodology itself. In particular,the first positive-parity JP = 1
2

+
excitation of the

nucleon, known as the Roper resonance N∗(1440), has been a long-standing puzzle for the com-

munity. In constituent quark models, the Roper resonance energy level resides above the lowest-

lying negative-parity excitation, the N∗(1535), while in Nature, the Roper lies 95 MeV below the

N∗(1535).

A crucial component for lattice spectroscopy studies in this channel is to select a sufficiently

large operator basis so as to appropriately span the states of interest in the low-lying spectrum. One

method for performing this selection is to include qualitatively different operators, by construct-

ing interpolators with different quark and/or Dirac structure while retaining the quantum numbers

relevant to the channel.

As the spectrum has many multi-particle scattering states present, including five-quark inter-

polating fields is one natural way to construct these novel operators. Their inclusion then enables

us to search for states that have poor overlap with standard three-quark interpolators and have been

missed. As meson-baryon states with strong attraction can be well localized [1], local five-quark

operators can be expected to overlap well with such localized states. The presence of such states

would lead to an important role for molecular meson-baryon configurations [2] in our understand-

ing of the Roper resonance.

In this work we consider pairing positive-parity meson operators with the standard nucleon

interpolating field in order to allow the ground state nucleon to participate in forming the quantum

numbers of the Roper. To this end, we construct local five-quark meson-baryon operators σN

and a0N, and explore their impact on the positive-parity nucleon spectrum. We are searching for

any alteration of the spectrum reported in previous studies and/or any new low-lying finite volume

energy eigenstates that have hitherto remained elusive.

Following the outline of variational analysis techniques in Section 2, we construct the new

local five-quark operators in Section 3. Simulation details are discussed in Section 4 and the results

of the variational analyses are presented in Section 5. A summary of our findings and their impact

our our understanding of the Roper resonance is presented in Sec. 6.

2. Correlation Matrix Techniques

Correlation matrix based variational analyses [3, 4] are well-established as a methodology

within which hadron spectra can be extracted [5]. The calculation begins via the judicious selection

of a suitably large basis of N operators, such that the states of interest within the spectrum are

contained within the span. An N ×N matrix, Gi j, of cross correlation functions,

Gi j(~p, t) = Tr

(

Γ±∑
~x

e−i~p·~x 〈Ω
∣

∣χi(~x, t)χ j(~0, tsrc)
∣

∣Ω
〉

)

= ∑
α

λ α
i λ̄ α

j e−mα t , (2.1)

where the operator Γ± = 1
2
(γ0 ± I) projects out a definite parity at ~p =~0, λ α

i and λ̄ α
j are the

couplings of the annihilation, χi, and creation, χ j, operators at the sink and source respectively,
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and mα enumerates (in α) the energy eigenstates of mass mα . We then search for an appropriate

linear combination of operators

φ̄ α = χ̄ j uα
j and φ α = χi vα

i (2.2)

such that φ and φ̄ couple solely to a single energy eigenstate. It can then be shown that for a given

choice of variational parameters (t0,dt), uα
j and vα

i can be obtained by solving the left and right

eigenvalue equations

[

G−1(t0)G(t0 +dt)
]

i j
uα

j = cα uα
i (2.3)

vα
i

[

G(t0 +dt)G−1(t0)
]

i j
= cα vα

j , (2.4)

with eigenvalue cα = e−mα dt .

These eigenvectors uα
j and vα

i diagonalise the correlation matrix at t0 and t0+dt, which enables

us to write down the eigenstate-projected correlation function as

Gα(t) = vα
i Gi j(t)uα

j . (2.5)

which is used to extract masses. Further technical details that differentiate our method from other

methods, along with an outline of our fitting technique can be found in Refs. [6] and [7].

3. Interpolating Fields

Previous work with five-quark interpolators [6, 8] have successfully extracted states consistent

with multi-particle scattering thresholds in the negative-parity nucleon channel. Motivated by this

success, we employ a similar tactic constructing five-quark operators in the positive-parity channel.

Making use of the operators for the positive-parity isocsalar σ and isovector a0
0 and a+0 mesons

σ =
1√
2

[

ūe I ue + d̄e I de
]

,

a0
0 =

1√
2

[

ūe I ue − d̄e I de
]

,

a+0 =
[

d̄e I ue
]

, (3.1)

we are able to construct five-quark σN- and a0N-type interpolators. Naturally, we employ the

labels (πN,σN,a0N) only to distinguish the mathematical structure of the states, as each of these

operators couple to multiple states on the lattice. The general form of the σN-type operators is

given by

χσN(x) =
1

2
εabc

[

uTa(x)Γ1 db(x)
]

Γ2 uc(x)

×
[

ūe(x) I ue(x)+ d̄e(x) I de(x)
]

. (3.2)

The choices of (Γ1,Γ2) = (Cγ5, I) and (C,γ5) then provide us with two five-quark operators χσN(x)

and χ ′
σN(x) respectively.
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Similarly, using the Clebsch-Gordan coefficients to project isospin I = 1/2, I3 = +1/2 the

general form of the a0N-type interpolators is given by

χa0N(x) =
1√
6

εabc×
{

2
[

uTa(x)Γ1 db(x)
]

Γ2 dc(x)
[

d̄e(x) I ue(x)
]

−
[

uTa(x)Γ1 db(x)
]

Γ2 uc(x)
[

d̄e(x) I de(x)
]

+
[

uTa(x)Γ1 db(x)
]

Γ2 uc(x)
[

ū(x)e I ue(x)
]

}

. (3.3)

Once again the two aforementioned choices of (Γ1,Γ2) provide χa0N(x) and χ ′
a0N(x) respectively.

We also utilize the two five-quark operators χπN and χ ′
πN based on the form

χπN(x) =
1√
6

εabc γ5×
{

2
[

uTa(x)Γ1 db(x)
]

Γ2 dc(x)
[

d̄e(x)γ5 ue(x)
]

−
[

uTa(x)Γ1 db(x)
]

Γ2 uc(x)
[

d̄e(x)γ5 de(x)
]

+
[

uTa(x)Γ1 db(x)
]

Γ2 uc(x)
[

ū(x)e γ5 ue(x)
]

}

, (3.4)

and detailed in Ref. [6]. Our basis of interpolating fields is completed with the inclusion of the

standard three-quark nucleon operators χ1 and χ2 given by

χ1 = εabc[uaT (Cγ5)db]uc

χ2 = εabc[uaT (C)db]γ5 uc. (3.5)

The introduction of five-quark operators necessarily introduces diagrams with loop propagator

contributions. Loop propagators at the source, S(0,0), are a subset of standard point-to-all propa-

gators via S(x,0)|x=0 while loops at the sink, S(x,x), are estimated stochastically by averaging over

four independent Z4 noise vectors. We employ full dilution in time, spin and colour. Further details

can be found in our previous work [6].

4. Simulation Details

Throughout this work we use the PACS-CS 2+1 flavour dynamical-fermion configurations [9]

that are made available through the the ILDG [10]. There are 323×64 lattice points with a spacing

of 0.0907 fm which provides a physical volume of ≈ (2.90 fm)3. The light quark mass is set by

κud = 0.13754 which leads to a pion mass of mπ = 411 MeV. Gauge invariant Gaussian smear-

ing [11] is used at the source and sink to alter the overlap of our operators with states with in the

spectrum. We employ ns = 35,100 and 200 sweeps of Gaussian smearing. Further information

about the gauge configurations and other relevant simulation details can be found in Ref. [7].

3
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5. Results

5.1 Correlation Matrix Construction

In Section 3 we constructed eight qualitatively distinct interpolators, and we employ three

different levels of Gaussian smearing on them as discussed in Section 4. Consequently, we posses

twenty-four operators with which to build various correlation matrices. In order to investigate

which possible sub-bases may be instructive to study, we present a plot of correlation function

ratios in Figure 1. This will aid in identifying correlators that display a unique plateau approach,

indicating overlap with a novel superposition of states.
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Figure 1: Correlation function ratios which are formed by dividing the correlator corresponding to each

operator indicated in the legend by the correlation function formed from the χ1 operator. Plots are presented

at 35 (left), 100 (right) and 200 (bottom) sweeps of Gaussian smearing in the quark-propagator source and

sink. The t component of the ratio has been sequentially offset for clarity.

Interestingly, the ratios formed from the σN type operators, that is GχσN
/Gχ1

and Gχ ′
σN
/Gχ1

display remarkably similar behaviour to the ratios Gχ1
/Gχ1

and Gχ2
/Gχ1

. We therefore anticipate

the overlap of states in the spectrum with the χσN operator to be much the same as with the χ1

operator and similarly χ ′
σN to posses a similar overlap with excitations as χ2. Evidently, the novel

σN-type operators provide little new information from that already present in χ1 and χ2, which

comes as no surprise given the σ meson has the quantum numbers of the vacuum. Consequently,
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Table 1: The operators used in constructing each correlation-matrix basis.

Basis Number Operators Used

1 χ1, χ2

2 χ1, χ2, χa0N

3 χ1, χ2, χa0N , χ ′
a0N

4 χπN , χ ′
πN , χa0N

5 χπN , χ ′
πN , χa0N , χ ′

a0N

6 χπN , χ ′
πN , χσN , χ ′

σN

7 χσN , χ ′
σN , χa0N , χ ′

a0N

we omit the χσN and χ ′
σN operators from bases in which the matching χ1 or χ2 operator is also

present.

Of the new a0N-type operators, the ratio formed with χa0N displays the most different approach

to the plateau, and we therefore expect it to be the most promising operator to reveal an alteration

in the low-lying spectrum when compared to previous analyses.

In order to choose a basis of operators sufficiently small so as to readily obtain a solution,

we focus on sub-bases formed from correlators possessing 35 and 100 sweeps of smearing in the

propagator sources and sinks, as these are the smearing levels that provide the most variation at

early times. Although we will not detail the results of bases with 200 sweeps of smearing, the

energy levels extracted were consistent with those presented herein. We investigate seven distinct

sub-bases, all formed with 35 and 100 sweeps or smearing and outlined in Table 1.

5.2 Finite Volume Spectrum of States

In Fig. 2 we present the the low-lying spectra obtained from the correlation matrices built from

the bases detailed in Table 1. In basis number one, we display the results from a 4 × 4 analysis

with the three-quark χ1 and χ2 interpolating fields at two different smearing levels. This basis can

then be used as a benchmark to determine whether the introduction of five-quark operators alters

the low-lying spectrum.

We proceed via the introduction of the operators χa0N and χ ′
a0N in bases two and three re-

spectively. This reveals no new low-lying states. We then turn out attention toward bases only

containing five-quark operators, in order to allow any spectral strength that may have been other-

wise overwhelmed by three-quark operators to participate in the analysis. This approach has proved

beneficial in the negative-parity nucleon channel [6].

The spectra obtained from a 6× 6 analysis using the five-quark operators χπN , χ ′
πN and χa0N

are illustrated as basis number four. In this analysis we extract an energy level that lies between

the two previously observed states, but importantly no new low-lying state is extracted. In the final

three columns we form 8×8 bases with the three possible combinations of pairs of our five-quark

operators. Energy levels consistent with those already extracted are observed, but crucially no new

low-lying states are found. We note here that the spectrum extracted has some common features

with the Hamiltonian effective field theory model in Ref. [1]. We are now in a position to conclude

5
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1 2 3 4 5 6 7
Basis Number

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
(G

eV
)

1 → χ1 + χ2

2 → χ1 + χ2 + χa0N

3 → χ1 + χ2 + χa0N + χ′

a0N

4 → χπN + χ′

πN + χa0N

5 → χπN + χ′

πN + χa0N + χ′

a0N

6 → χπN + χ′

πN + χσN + χ′

σN

7 → χσN + χ′

σN + χa0N + χ′

a0N

Figure 2: The low-lying spectra obtained from each of the correlation-matrix bases studied. For each

operator, two smearing levels of ns = 35 and ns = 100 in all bases. Dashed horizontal lines are present to

guide the eye, and have been set by the central values from basis 1 in all cases except for the state ∼ 2.1

GeV, in which case it is drawn from basis 4.

that the introduction of local five-quark operators with a positive-parity meson contribution does

not provide significant overlap with the low-lying finite-volume scattering states in this channel.

We also note that in bases four through seven, in which only five-quark operators were used, the

ground state nucleon was extracted with a high degree of precision highlighting the meson-baryon

cloud of the nucleon.

6. Conclusions

In this exploratory investigation we introduced local five-quark interpolating fields with positive-

parity meson contributions in the channel of the Roper resonance. Motivated by success in the neg-

ative parity channel, the aim was to extract new low-lying states that had been missed in previous

calculations.

Following the construction of a0N- and σN-type operators, ratios of correlation functions

were constructed to determine which operators held the greatest promise of revealing new states.

Informed by these ratios, correlation matrices were constructed from several different operator

bases, and their associated spectra were produced.

When compared to the spectra produced with solely three-quark operators, no new energy

levels below the first excitation were extracted. The local five-quark operators investigated were

also found to possess a significant overlap with the ground state nucleon, as bases containing solely

these operators enabled the extraction of the ground state with a high degree of precision.

We conclude that the low-lying finite-volume meson-baryon scattering states are not well lo-

calised. Rather, the two-particle scattering states dominate so that the volume suppression asso-

ciated with the overlap of scattering states with local operators prevents their extraction. Our re-

sults strengthen the interpretation of the Roper as a coupled-channel dynamically-generated meson-

baryon resonance that is not closely associated with conventional three-quark states.
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