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Abstract—In this paper we present an approach for acoustic
scene classification, which aggregates spectral and temporal
features. We do this by proposing the first use of the
variable-Q transform (VQT) to generate the time-frequency
representation for acoustic scene classification. The VQT
provides finer control over the resolution compared to the
constant-Q transform (CQT) or STFT and can be tuned to
better capture acoustic scene information. We then adopt a
variant of the local binary pattern (LBP), the Adjacent
Evaluation Completed LBP (AECLBP), which is better suited
to extracting features from acoustic time-frequency images.
Our results yield a 5.2% improvement on the DCASE 2016
dataset compared to the application of standard CQT with
LBP. Fusing our proposed AECLBP with HOG features we
achieve a classification accuracy of 85.5% which outperforms
one of the top performing systems.

Index Terms—acoustic scene, local binary patterns, feature
extraction, time-frequency analysis, fusion

I. INTRODUCTION

T
HE research on acoustic scene classification has been

of interest to researchers in the area of acoustic analysis

for the past two decades. Acoustic scene analysis has been

used in applications such as automatic audio surveillance,

mobile phone sensing, context-aware assistive robots, music

genre classification and multimedia archiving. Audio

surveillance is one of the applications that typically employs

sound content analysis techniques to detect outlier activities

such as gunshot and screaming in a specific indoor

environment [1], [2]. Furthermore, in order to achieve the

environment awareness, a mobile phone application is

expected to be able to identify and automatically adapt to the

surrounding environments [3], [4]. The objective of acoustic

scene classification (ASC) is to identify the environment in

which an audio stream has been produced [5]. The DCASE

2013 Challenge was introduced by the IEEE AASP

Technical Committee to provide an evaluation and

comparison of different techniques developed in acoustic

scene classification on a benchmark dataset. Intended for

inspiring the development of novel methodologies and

improving the state-of-the-art in ASC, the DCASE 2016
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Challenge dataset for audio scene classification was released

with more challenging data.

Time-frequency representations (TFR) of discrete-time

signals play an important role in acoustic analysis. A TFR

provides a visual representation of the temporal and spectral

structures that can be viewed as a 2D texture image. The

constant-Q transform (CQT), commonly used for music

processing tasks [6], [7], has now been applied to acoustic

scene analysis [8], [9]. The use of CQT in combination with

feature learning approaches based on nonnegative matrix

factorization (NMF) by [9] has achieved a classification

accuracy of 83.8% which is the state-of-the-art non-neural

network based system on the DCASE 2016 dataset.

However, the CQT lacks flexibility as the Q-factor is

constant throughout the frequency band analysis. Indeed, a

variable-Q factor is necessary to retain the important spectral

and temporal structure of the acoustic signal. A Q-factor

which is adaptable to the acoustic signal is required to

produce a more accurate TFR representation.

The TFR texture image features can be extracted by

well-known feature extraction methods used in computer

vision. The Local Binary Pattern (LBP) is a state-of-the-art

feature extraction method for analyzing image textures due

to its computational simplicity [10]. A number of different

variants of LBP have been developed to improve its

robustness, and to increase its discriminative capability and

applicability to different types of problems in

image-classification applications. The Adjacent Evaluation

LBP (AELBP) [11] is introduced to improve noise

robustness of LBP by introducing the adjacent evaluation

window and modifying the threshold scheme of LBP. It can

be used with existing LBP variants such as the Completed

Local Binary Pattern (CLBP) [12], the Completed Local

Binary Count (CLBC) [13] and the Local Ternary Pattern

(LTP) [14] to derive new image features against noise for

texture classification. The CLBP feature extraction

decomposes the image’s local structure into two

complementary components: the difference signs and the

difference magnitudes to provide more discriminative

information.

Motivated by the advancement of LBP variants, we are

inspired to identify a variant of LBP that is adaptable to the

acoustic signal representation and better suited for ASC. The

micro structure of the image texture is different from the

TFR. The image texture might have rotation and illumination

variations whereas in the case of TFR there is no

illumination or rotation variations. Also, in the case of TFR,
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the random intensity of ‘pixel’ values might be considered as

noise in LBP. The smoothing effect by using adjacent

evaluation window should reduce the interference from the

saltation of neighbors’ values. Moreover, incorporating the

magnitude component of the LBP in the TFR offers local

contrast and variance information to extract more

discriminative patterns, which is necessary for ASC.

In this paper, we propose a novel acoustic scene

classification framework, which uses the unique combination

of variable-Q transform (VQT) and Adjacent Evaluation

Completed LBP (AECLBP) to provide state-of-the-art

performance. A VQT aggregates local spectro-temporal

features suitable for ASC as it has a smoothly varying

Q-factor that captures the time resolution at lower

frequencies better than the CQT [7]. The VQT

representations were used for acoustic event detection (AED)

by [15]. However in [15], the VQT used for generating the

spectrogram and used by the proposed NMF, there was no

mention of its superiority to the CQT. We present a new

contribution by adapting AECLBP [11], to extract relevant

features based on the VQT TFR for ASC. In AECLBP, an

adjacent evaluation window around the neighboring pixel is

constructed to modify the threshold scheme of LBP to

address the issue of noise sensitivity in ASC. Also, it

includes the information contained in the magnitudes of local

differences as complementary to the signs of the traditional

LBP. Since the acoustic scenes have large variations in time,

each TFR is segmented along the frequency axis to extract

local information, which better highlight distinctive spectral

regions of the scene. We apply the zoning techniques as

proposed in our previous work [16], in which the TFR is

segmented into non-overlapping uniform slices. The

AECLBP threshold values are computed distinctively for

each zone to better capture the local intensity information.

AECLBP histograms are computed for each zone and then

concatenated. Finally, we present the results from a simple

feature level fusion of Histogram of Oriented Gradients

(HOG) and AECLBP features. The HOG features provide

complementary information by providing the distribution of

gradients at different orientations of the time-frequency

images. In this work we use the standard SVM as the

classifier. The experimental results show that the proposed

framework outperforms the state-of-the-art systems on the

DCASE 2016 dataset.

The remainder of the paper is organized as follows: In

Section II, a review of relevant work is given. The proposed

framework is explained in Section III, Section IV describes

the experimental setup, results and analysis, and we provide

our conclusions in Section V.

II. PREVIOUS WORK

The analysis of environmental audio was pioneered by

Sawhney and Maes in [17] who used the power spectral

density and Gamma-tone filter-bank to mimic the response

of the human cochlea. The studies of ASC initially focussed

on spectral features, which have been adapted from speech

recognition research such as zero crossing rate,

frequency-band energy, spectral centroid, linear predictive

coefficients and Mel-frequency cepstral coefficients (MFCC)

[18], [19]. The MFCC features provide a short-time spectral

analysis to generate a set of cepstral coefficients per analysis

frame which is widely used for feature extraction. The

combination of MFCC with Gaussian Mixture Models

(GMM) has been a common approach for the baseline

system for ASC [20], [21]. In the DCASE 2013 challenge,

Roma et al. [22] outperformed all of the competing methods

by employing recurrence quantification analysis (RQA)

parameters to encode the series of MFCC coefficients, which

were then classified by an SVM.

In current approaches to accurately discriminate the

acoustic environments, the ASC framework exploits deep

machine learning methods, feature learning with matrix

factorization as well as image features from TFR [5], [23].

The deep learning based techniques such as convolutional

neural networks (CNN) are popularly used for acoustic scene

classification tasks in the DCASE 2016 and DCASE 2017

challenges [23]. The spectrogram and Mel-energy TFR have

been widely used as the input to a CNN for audio

classification problems [24]. In the DCASE 2016 challenge,

Lidy et al. [8], however show that a CQT TFR performs

better than the Mel-energy TFR in providing the input to the

CNN. The classification accuracy was increased by 4% by

using the CQT TFR compared to the Mel-energy TFR. The

deep learning performance can vary significantly with

different feature representation and architecture and a large

amount of data is required to train the feature learners [25].

In [9], [26] and [27], it has been demonstrated that the

acoustic scenes can be learned from a TFR using matrix

factorization techniques. Matrix factorization methods using

Principal Component Analysis (PCA) and Nonnegative

Matrix Factorization (NMF) have been explored with

different variants and tuning strategies to further improve the

classification accuracy. A nonnegative task-driven dictionary

learning was ranked among the top performing system in the

DCASE 2016 challenge [9].

Also, particular attention has been paid on using computer

vision techniques to extract features from time-frequency

images of acoustic scenes. Image features such as LBP,

Sub-band Power Distribution (SPD) [28] and HOG have

been exploited in ASC. The CQT and spectrogram have

been widely used as TFRs to integrate with the feature

learning method or to be coupled with hand-crafted features

such as HOG and LBP [8], [29], [16], [30], [9]. The texture

features extracted from the TFRs capture the time and

frequency discriminative patterns of the audio structure. Ye

et al. [31] incorporated the statistics of local pixel values of

the spectrogram into the LBP. In [30], LBP features were

extracted from the spectrogram and the bag-of-features

model was applied to generate LBP-Codebook features.

Recently, [32] proposed the application of LBP to capture

the temporal dynamic features of MFCC’s representation.

Nevertheless, they showed that the application of LBP on

MFCC and the complementary spectral features do not

provide a significant improvement. The TFR representation

retains the important spectral and temporal structure
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appropriate for ASC and is more suited to being viewed as

2D texture images compared to MFCC.

In our previous work [16], by using the CQT TFR as a

texture pattern, the LBP operator for feature extraction was

applied. A TFR zoning mechanism for LBP features provides

a simple solution to extract spectrally relevant local features,

which better characterize the audio TFRs. On the other hand,

[29] exploited HOG features with a pooling strategy on the

CQT TFRs to locally analyze the features. Pooling over

time, which averages all histograms along the time axis gave

better performance than when averaging over the frequency

axis. A similar idea using the Mel-spaces zones with the

Short Time Fourier Transform (STFT) has been used in [33]

for music genre classification and has provided a 3%

accuracy improvement compared to the global features. To

date, only STFT and CQT TFRs have been used together

with standard computer vision based image features like

LBP and HOG. In this work we propose the VQT as a better

suited TFR for acoustic scenes and identify a variant of LBP

which better exploits the characteristics of these TFR images.

III. PROPOSED TIME FREQUENCY REPRESENTATION WITH

TEXTURE FEATURES

Our proposed framework uses a TFR of the acoustic

signals to be coupled with a variant of LBP for feature

extraction. The audio signals are transformed to a log-scale

frequency band TFR using the VQT and the TFR pixel

values are given by the log magnitude of the VQT.

Considering the VQT TFR as a texture pattern, we apply an

image feature method, AECLBP for feature extraction. Since

the acoustic scenes have large variations in time, each TFR

is segmented along the frequency axis to extract local

information, which better highlight distinctive spectral

regions of the scene. The TFRs are divided into n number of

zones to obtain the localized information of a given texture

pattern. Then, the features are extracted from each zone of

the TFR and the histogram of the AECLBP is computed.

Subsequently, the features are concatenated to form an

enhanced AECLBP feature vector. Furthermore, the

concatenated features are fused with HOG and provide

complementary features to the AECLBP. Finally, for

classification, the SVM classifier is used. Figure 1 illustrates

the conceptual framework of the proposed system and the

key processing stages are discussed in the following sections.

We start by introducing our novel utilization of the VQT

time-frequency representations in III.A, followed by the

proposed application of the AECLBP feature extraction

method (III.B). Then, we explain the zoning mechanism and

the feature level fusion in III.C and III.D respectively.

A. Log-Frequency Resolution of Time-Frequency Images

Transforming an acoustic signal to a TFR will portray the

patterns of the power spectrum across time and frequency

instances. Figure 2 depicts the TFRs for a ‘bus’ scene. Using

the log-scaled STFT spectrogram, shown in Figure 2a, the

linear frequency spacing does not emphasise the information

at the lower frequencies, hence the need for some form of

Fig. 1. The conceptual framework of the proposed ASC system

log scale frequency spacing arises. Conversely, the CQT

provides a TFR in a log scale frequency resolution that is

designed to map the scale of Western music. The CQT TFR

has been adapted to the acoustic scene analysis and shows

better resolution than the STFT spectrogram as shown in

Figure 2b. However, the constant Q-factors of the CQT

provides no control over the time resolution, which is poor

at the lower frequencies. Whereas by using the VQT

representation, shown in Figure 2c, the audio information

can be presented clearer even at the lower frequency to

preserve the information. The VQT is also computed using

the log scale TFR but the Q-factor is allowed to vary in

providing a better representation of TFR.

The VQT has smoothly varying Q-factors, which represent

the TFR with bandwidths that are constant on the auditory

critical-band scale, unlike the commonly used CQT in which

Q-factors are constant throughout the log-frequency scale

and the analysis window sizes increases towards the lower

frequencies. Auditory filters in the human auditory system

are approximately constant-Q only for frequencies above 500

Hz but have a constant bandwidth towards lower frequencies

[7]. Texture patterns presented by the VQT provide the finer

representation of time-frequency information compared to

the CQT.

In CQT, the centre frequencies of the frequency bins are

geometrically spaced and their Q-factor is constant. The Q-

factor, α is given by the ratio of the bandwidth, Bk of the

frequency bin, k to the centre frequencies, fk .

α =
Bk

fk
(1)

However, one considerable problem is the fact that the

time-domain frames get very long towards lower frequencies

hence decreasing the time resolution at these frequencies. In

the regard, a variable-Q representation offers increased

temporal resolution at lower frequencies compared to the

Constant-Q representation. An additional parameter, γ was

introduced by [7] to allow a smooth decrease of the

Q-factors of the bins towards low frequencies:

Bk = α fk + γ (2)
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(a) Spectrogram (b) CQT (c) VQT

Fig. 2. An example of the time frequency representation of the ‘bus’ scene for (a) spectrogram (b) CQT and (c) VQT

In the constant-Q case, the Q-factor, α is a constant when

γ = 0. The comparison of the TFR at different values of γ is

shown in Figure 3. It should be noticed that the TFR

patterns are similar at the high frequencies, but the VQT

shows better temporal resolution at the low frequencies. The

γ parameter provides flexible control of temporal resolution

at low frequency zone, which is more adaptable to the

acoustic scene signal.

B. Adjacent Evaluation Completed LBP Feature Extraction

The LBP feature has attracted increasing interests in the

computer vision community [10], [34]. Ojala et al. [35]

introduced the LBP with circular neighborhoods allowing

any radius and number of neighbors in order to be able to

deal with structure at various scales. For texture

classification, the pattern value depends on the illumination,

rotational variance of the texture and vulnerability to camera

capture degradation (blur, pixel noise, etc.). However, in the

case of an acoustic signal TFR, the texture pattern depends

on the intensity distribution across frequencies and time

instances.

The intensity distribution of these time-frequency

structures are assumed to be the pixel values in the TFR

texture image. The LBP generates a binary code for every

pixel of an image. Figure 4 shows an example of a TFR

with sample pixel values. The LBP encodes the sign of the

relative intensities of a pixel to its neighbor to capture the

micro-structures of the TFR texture.

LBP considers each pixel of an image and it is calculated by

comparing each central pixel, gc , with its neighboring pixels,

gp , where the radius, R is the distance between the central

pixel and P neighboring pixels. The radius, R, determines the

scale of the micro-structures while the number of neighbors,

P, captures the pixel information on the image texture. If the

value of the neighboring pixel, gp , is greater than the level of

central pixel, gc , the binary bit is set to 1, otherwise it is set

to 0.

LBPP,R =

P−1
∑

p=0

s(gp − gc)2
p
, s(x) =

{

1 x > 0

0 x < 0
(3)

This traditional LBP is sensitive to the change of pixel

values which only considers the sign difference of the energy

distribution from the TFR. On the other hand, the AELBP

[11] constructs an adjacent evaluation window which is

around the neighbor pixel to deal with the neighboring pixel

that may vary significantly. The TFR pattern is a random

texture and the random changes of the pixel values can be

avoided by averaging the neighboring pixels in the

evaluation window. An adjacent evaluation window around

the neighboring pixel is constructed to modify the threshold

scheme of LBP and this reduces the interference from the

saltation of neighbors’ values to improve noise robustness.

The difference between the LBP and the AELBP is that the

AELBP replaces the neighboring pixel, gp , with an

evaluation center pixel, ap , which is the average value of the

neighboring pixel in the evaluation window.

AE LBPP,R =

P−1
∑

p=0

s(ap − gc)2
p
, s(x) =

{

1 x > 0

0 x < 0
(4)

Figure 5 depicts an example operation of AELBP.

Adjacent to the center pixel, gc , an evaluation window of

size 3 by 3 is set up around neighboring pixels, gp . From the

evaluation window, the value of evaluation center, ap is

obtained by calculating the average of the pixel values in the

evaluation window excluding the neighboring pixel, gp . The

evaluation center, ap , replaces the traditional neighboring

pixel, gp , value. If the value of the evaluation center pixel,

ap , is greater than the level of central pixel, gc , the binary

bit is set to 1, otherwise it is set to 0. This encoding strategy

will make the local binary pattern more stable with the

random change of neighboring pixels values, thus reducing

the interference of noise.

In order to extract more discriminative patterns, Song et

al. [11] integrated the AELBP with CLBP [12] to derive the

AECLBP. In AECLBP, the image local differences are

decomposed into two complementary components i.e. the

sign difference (sp) and the magnitude difference (mp)

which is described as:

sp = s(ap − gc) (5)

and

mp = |ap − gc | (6)
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(a) γ = 0 (b) γ = 10 (c) γ = 20

Fig. 3. TFRs of a ‘car’ scene with different values for γ are shown. (a) is for the constant-Q case where γ = 0, (b) and (c) are for the variable-Q case where
γ = 10 and 20 respectively.

Fig. 4. An illustration of pixel value from the VQT TFR. A LBP encoding
is computed by comparing the relative intensities of the pixel values to its
neighbors.

Fig. 5. An example of AELBP operation, where the neighboring pixel values
are replaced by the evaluation center pixel.

The sign difference of AECLBP, denoted as AECLBP_S is

the same as the AELBP defined in Eq. (4) and the magnitude

component denoted as AECLBP_M is defined as in Eq. 7.

AECLBP_MP,R =

P−1
∑

p=0

t(mp, c)2
p
, t(x, c) =

{

1 x > c

0 x < c
(7)

The threshold, c, is set as the mean value of the magnitude

difference, mp, calculated over the whole image. However, in

our case, the threshold, c, is calculated as the mean value

of magnitude difference, mp, for each zone. Thus, this will

make the encoding more localized within each zone. The sign

operators, AECLBP_S and magnitude operators, AECLBP_M

are jointly combined by simple concatenation as in Eq. 8.

AECLBP = [AECLBP_S AECLBP_M] (8)

The information contained in the magnitudes of local

differences is included as complementary features to the sign

component of traditional LBP. By using the integrated

feature which combines the sign and magnitude components,

more discriminative information can be obtained.

C. Global and Local Features

In this experiment, the audio files are not independently

processed frame by frame but are considered as a segment of

the texture image from the TFR. Analyzing the TFR as a

global feature will average out the distinctive regions of the

TFR. Each TFR segment contains local time-frequency

information of various events occurring in the scene. It is

observed that in the acoustic scenes, the time sequence

characterizing the same scene can appear in a different order.

The frequency signature of the scene is represented by

segmenting the time-frequency images along the frequency

axis. As proposed in our previous work [16], the TFR image

is divided into n horizontal zones of equal size as shown in

Figure 6. The zoning size, is dependent on the TFR height,

h and the number of zones, n and is given by,

z = round(h/n). The number of zones, n, was varied

empirically to get the best results and we found n = 10

provided the optimal number of zones.

The local AECLBP histograms in each zone are extracted

and concatenated to form a final AECLBP feature vector.

The local histogram will gather in the features pertinent to

the relevant spectral information to discriminate between the

acoustic scenes. By zoning the TFR, a unique value for the

threshold, c, of Eq. 7 can be derived. It is calculated as the

mean value of the magnitude differences, mp, in each zone

to represent the local intensity information. Our novel
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enhanced encoding in a local neighborhood by looking at the

different threshold values represents local intensity difference

information that is not captured by the traditional LBP

features.

Fig. 6. Uniform zoning of TFR to extract the local features.

D. Fusion

The HOG features emphasize different characteristics of

the TFR compared to AECLBP. HOG features derive the

distribution of gradients at different orientations which better

deals with edges and corners compared to LBP or its variant

[36]. In HOG, the gradient of the pixels of the

time-frequency images to characterize the spectro-temporal

variations of acoustic events occurring in a scene is

computed [29]. In order to further improve the recognition

rate, we fused the AECLBP and HOG features to

complement the different textures of the VQT pattern by

concatenating the HOG directly with the AECLBP. We

applied early fusion as it operates at the feature level to

combine all the feature vectors extracted into a single

enhanced vector.

IV. EXPERIMENT

A. Dataset and system parameters

Our experiments were performed on the DCASE 2016

dataset [20] for ASC. The DCASE 2016 development dataset

contains 1170 audio files of 15 diverse labelled indoor and

outdoor scene classes i.e. lakeside beach, bus,

cafe/restaurant, car, city center, forest path, grocery store,

home, library, metro station, office, urban park, residential

area, train and tram. There are 78 samples for each acoustic

scene and the duration for each recording is 30 seconds. The

development set was further partitioned into four folds of

training and testing sets following the set up provided by the

DCASE 2016 organizer.

For each fold, the accuracy is calculated for each scene class

i, where i = 1, 2, . . . , k and k is the number of classes. The

accuracy is calculated as the number of total correct scenes

divided by the total number of test scenes. Accuracies for each

fold are obtained by averaging the 15 scene class accuracies.

Finally, the overall accuracy is evaluated by averaging the four

folds’ accuracies.

For the calculation of the VQT, we used the toolbox from

[7]. We then enhance the image by resizing the TFR to get an

image, which produces less blurring of the edges [37]. Also

by resizing, we obtain a uniform TFR that is robust across

different audio signals without depending on the sampling rate,

signal length and VQT parameters. We have chosen to resize

all TFRs to 512 by 512 pixels, which follows the setting from

[29] to preserve the time-frequency structures of the audio

scene. The configuration parameters for the TFR computation

are shown in Table I.

TABLE I
VQT PARAMETER EXPERIMENTAL VALUES

Gamma, γ 20

Bin per Octave, B 96

Maximum frequency, Fmax 22,050 Hz

Minimum frequency, Fmin 22.05 Hz

Sampling frequency, Fs 44,100 Hz

For the LBP and AECLBP features, we performed

preliminary experiments by varying the values of the radius,

R and the number of neighboring pixels P. More information

on texture micro-structures can be captured with increased

number of P neighbouring pixels, but at the cost of high

dimensionality. We found that P = 12 and R = 2 provided

the best performance for the feature descriptor. We used

uniform LBP encoding from [35], which best corresponds

with the primitive micro-features. The LBP code is

considered as a uniform pattern when the bitwise transitions

from 0 to 1 or vice versa is at most twice in a single LBP

code. The non-uniform patterns are considered as noisy

patterns and hence grouped into an extra bin. The uniform

patterns with P neighboring pixel yields P(P − 1) + 3 feature

dimensions. For example, for P = 12, the size of the LBP

features is 135 for each zone. Following the concatenation of

the features from 10 zones, the size of LBP features is 1350.

It should be noted that the feature dimension for AECLBP is

2700, double the number of features for LBP. The HOG

features are obtained using the best performing features from

[29] and the feature dimension is 1536. For classification,

the SVM classifier with linear kernel is implemented using

the LIBSVM toolkit [38] and a “one-against-one” approach

for multi-class classification was used.

B. Experimental Results and Analysis

In order to evaluate the effect of the proposed input VQT

TFR compared to CQT, we first evaluated the performance

of the two TFRs i.e. CQT and VQT with LBP features. We

performed preliminary experiments by varying the values of

the radius, R and neighboring pixel P (designated as

LBP(P, R)). Table II shows the average accuracy across the

4-fold cross validation. The results are presented for γ= 20

(VQT case) and γ= 0 (CQT case), which show that the

performance with VQT provides a 2.2% improvement over
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CQT. The VQT with LBP features improves the

classification accuracy of the baseline system from 71.3% to

80.2%. This result clearly demonstrates the benefit of using a

VQT representation. The better temporal resolution of the

VQT at the lower frequency may explain the better

performance of VQT over CQT.

TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) BY USING CQT AND VQT

WITH ORIGINAL LBP FEATURES COMPARED TO THE BASELINE SYSTEM.

Method Average Accuracy (%)

Baseline
MFCC + GMM 71.3

CQT, γ = 0

LBP(8,1) + SVM 76.0

LBP(12,2) + SVM 78.0

LBP(16,2) + SVM 79.3

VQT, γ = 20

LBP(8,1) + SVM 75.3

LBP(12,2) + SVM 80.2

LBP(16,2) + SVM 80.3

Then, we carried out an analysis using AELBP. The

AELBP performance is presented in Table III, which shows

an improvement of 2.1% in accuracy compared to the

traditional LBP. By utilizing AELBP which used an

evaluation window, the spectro-temporal information can be

extracted as it considers the influence of other neighboring

pixels around the center pixel. The neighboring pixels of the

TFRs convey a different intensity that cannot be captured by

the traditional LBP since the traditional LBP features are

calculated over a local neighborhood. The adjacent

evaluation window function overcomes the issue of random

intensity of pixel values that might be considered as noise in

ASC.

TABLE III
CLASSIFICATION ACCURACY (%) OF USING VQT WITH AELBP

FEATURES

VQT, γ = 20 Average Accuracy (%)

AELBP(8,1) + SVM 78.9

AELBP(12,2) + SVM 82.3

AELBP(16,2) + SVM 82.1

We examine the effect of using different gamma, γ, for

ASC shown in Table IV. We can see from the results, that

the gamma value is important in improving the classification

accuracy. This confirms that the variable-Q factor is essential

to retain the important spectral and temporal structure of the

acoustic signal. In our experiment, using gamma, γ = 20

provides the best performance accuracy with the AELBP

features.

In order to extract more discriminative patterns of the

TFRs, we carried out an analysis using AECLBP, which is

reported in Table V. By integrating the VQT with AECLBP,

the acoustic scene classification accuracy is further

improved. The AECLBP yielded a 3% improvement in

accuracy compared to the traditional LBP and up to 11.9%

improvement over the baseline system. In AECLBP, we

TABLE IV
CLASSIFICATION ACCURACY (%) OF USING DIFFERENT GAMMA FOR VQT

WITH AELBP FEATURES

AELBP (12,2) Average Accuracy (%)

γ = 0 80.8

γ = 5 81.0

γ = 10 80.9

γ = 15 81.3

γ = 20 82.3

obtained an accuracy of 83.2% compared to 80.2% using

traditional LBP. AECLBP incorporates the magnitude

component as additional information to extract more

discriminative patterns. By considering both sign and

magnitude, 2 different codes are assigned to each pixel in

the TFR. Joint distribution of these codes resulted in more

accurate information of the acoustic scene. Notice that, by

using P = 12 and R = 2 this provided the best performance

for the feature descriptor as described in Section IV.A. Also,

we compare the the performance of the zoning technique to

the global TFR (without zoning). The result shows that the

zoning technique provides a better accuracy by an 8.7%

improvement compared to the global TFR. This confirms

that the zoning technique is beneficial to retain the spectral

information pertinent to each zone.

The Student’s t-test was employed to evaluate the

statistically significant differences between CQT and VQT

with the LBP (12,2) features. The statistical test has shown

that the p-value of the statistical test was less than the

critical value at 85% confidence level (p < 0.15). However

the proposed system of VQT with AECLBP (12,2) achieves

5.2% improvement over CQT with LBP (12,2), which is

competitive with the top performing systems for

DCASE2016 challenge.

TABLE V
CLASSIFICATION ACCURACY (%) OF VQT+AECLBP WITHOUT ZONING,

VQT+HOG AND VQT+AECLBP

VQT, γ = 20 Average Accuracy (%)

AECLBP(12,2) + SVM
74.5

Without zoning

HOG + SVM 81.0

AECLBP(8,1) + SVM 80.2

AECLBP(12,2) + SVM 83.2
AECLBP(16,2) + SVM 82.9

As HOG emphasizes different capabilities in image

analysis, we also experimented on the performance of HOG

with VQT. Table V presents the performance of VQT with

HOG features. We can see that the accuracy score of

AECLBP features outperforms HOG features by 2.2%. This

make sense as the HOG features are not able to totally

capture the fine-grained discriminative features compared to

AECLBP.

We investigate the per-class accuracies by having a look at

the classification accuracy across the 15 scene classes for the

baseline, LBP, HOG and AECLBP features. The obtained

result is shown in Figure 7. The results show that AECLBP
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and HOG features produced the highest accuracy for the

majority number of scene classes. The HOG features

performed well for vehicle sounds (car and bus), while

AECLBP performed better for outdoor sounds (beach, city

centre and forest path). On the other hand, the baseline

system exhibited a volatile performance, with the best

performance only for indoor scenes such office, café and

home but a weak performance for other classes such as park

and train. The baseline system is indeed superior for these

three classes which are typically mildly noisy indoor scenes.

One possible explanation is that the use of extracting visual

based features from a TFR loses some critical information

which discriminates these scenes. The pattern variations

caused by the audio noise may significantly change the TFR

representation. However, our system performs better overall

and is less volatile compared to the baseline system, but this

does highlight further improvements are possible by

improving the performance of these three classes. Also, it

should be noted that all features had difficulties in

discriminating scenes such as park, residential area, train and

home with an accuracy of less than 80%.

Further, with the fusion of AECLBP with HOG, the

performance accuracy is significantly improved compared to

the individual features as shown in the confusion matrix of

Figure 8. The classification accuracy of park, residential area

and home improve as HOG and AECLBP emphasize

different capabilities in image analysis. HOG is excellent at

capturing edges and corners in images, while AECLBP

captured the fine-grained of local texture pattern. This

explains the successful fusion in providing complementary

features. However, in some cases e.g., cafe/restaurant the

weak performance of HOG provides a lower accuracy than

AECLBP alone.

We also compared the accuracy scores of the proposed

fusion method with the state-of-the-art [32], [8] and the top

non-neural network based system from DCASE 2016 [9], as

shown in Table VI. Compared to [32], which adopted LBP

Fig. 7. Performance comparison of different features on the DCASE 2016
dataset.

features based on MFCC TFRs, and [8] that uses CQT with

CNN, our use of the VQT with AECLBP and HOG yielded

a superior classification accuracy. The VQT time-frequency

representation retains the important spectral and temporal

structure of the acoustic signal and is more suited to being

viewed as texture images compared to MFCC. Our proposed

method obtained an accuracy of 85.5% to outperform one of

the top systems [9] using CQT with matrix factorization.

This confirms that vision based features extracted from TFR

images provides competitive performance in line with deep

learning and matrix factorization methods.

TABLE VI
ACCURACY SCORES OF THE PROPOSED FUSION FEATURES COMPARED TO

THE STATE-OF-THE-ART RESULTS.

Method Accuracy (%)

LBP+MFCC[32] 80.3

CQT + CNN[8] 80.3

CQT+Matrix Factorization[9] 83.8

VQT+AECLBP+HOG 85.5

V. CONCLUSIONS

This work has demonstrated the capability of AECLBP

features extracted from a time-frequency representation for

acoustic scene classification. The micro structure of the

image texture is different from the TFR, hence the variant of

LBP that is adaptable to the acoustic signal representation

and better suited for ASC has been presented. The VQT TFR

retains the important spectral and temporal structure of the

acoustic signal and is suitable to be viewed as texture images

for ASC. VQT is more adaptable to the acoustic signal since

it enhances the TFR resolution representation. The unique

combination of VQT and AECLBP provides a better

discriminative performance over the CQT and LBP with a

5.2% improvement in classification accuracy. The proposed

uniform zoning with AECLBP allows different threshold

values to be calculated relevant for each zone. Furthermore,

the fusion of AECLBP with HOG features further improves

the results providing a state of the art performance. However,

due to the similarity characteristics of the acoustic scene

classes, the VQT and AECLBP parameters could be

customized for specific scene classes in order to offer local

contrast and variance information, which is necessary for

ASC. Our work shows the potential of image-based variants,

with deep learning networks in future work for ASC.
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