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Abstract. The excitation of internal gravity waves by penetrative convective plumes is investigated using 2-D direct simula-
tions of compressible convection. The wave generation is quantitatively studied from the linear response of the radiative zone
to the plumes penetration, using projections onto the g-modes solutions of the associated linear eigenvalue problem for the
perturbations. This allows an accurate determination of both the spectrum and amplitudes of the stochastically excited modes.
Using time-frequency diagrams of the mode amplitudes, we then show that the lifetime of a mode is around twice its period
and that during times of significant excitation up to 40% of the total kinetic energy may be contained into g-modes.
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1. Introduction

Although their detection in the spectrum of solar oscillations
has been not clearly confirmed (e.g., Turck-Chièze et al. 2004;
Gabriel et al. 2002), internal gravity waves (hereafter IGWs)
propagating in the radiative zones of late-type stars have re-
cently been invoked in attempts to explain the Li abundance of
cool stars and the rigid rotation of their radiative interiors.

The former problem is also referred to as the Li-dip prob-
lem and concerns the dependence of the lithium abundance on
the spectral type for some main-sequence stars. Models based
on the extension of the surface convection zone down to the
nuclear burning region (Iben 1965) and models which take into
account the transport of Li both by meridional circulation and
shear-induced turbulence (Talon & Charbonnel 1998) are in-
deed not quite satisfactory to reproduce the Li-dip. The lat-
ter problem concerning the rigidity of the Sun’s radiative inte-
rior is most clearly revealed by helioseismology (Brown et al.
1989). Both rotation-induced turbulent diffusion and wind-
driven meridional circulation fail to redistribute enough angular
momentum over the lifetime of the Sun to rotate rigidly (Zahn
et al. 1997). Likewise, the hypothesis of a large-scale poloidal
magnetic field leads to problems, because it may transmit under
certain circumstances the differential rotation of the convection
zone to the core (owing to Ferraro’s law; e.g., MacGregor &
Charbonneau 1999).

Zahn (1994) showed that the two problems are coupled
and that they should to be explained by a single model. Being

inspired by meteorological studies of the wave transport taking
place in the Earth stratosphere (Bretherton 1969; Alexander &
Pfister 1995), Schatzman (1993) was the first to propose inter-
nal gravity waves as an efficient transport mechanism in stellar
radiative zones. Later, this idea was tested by many authors
(Zahn et al. 1997; Kumar & Quataert 1997; Kumar et al. 1999;
Talon et al. 2002) who showed that internal gravity waves trans-
port momentum on a rather short timescale such that the rota-
tion of the solar core becomes nearly uniform. A remaining
problem is the excitation of these deep gravity waves since, un-
like pulsating white dwarfs, a κ-mechanism based on hydrogen
and helium ionization zones is not applicable here.

The most wide-spread excitation model is based on pene-
trative convection from neighboring convection zones. Strong
downward plumes are known to extend a substantial distance
into the adjacent stable zones so that internal gravity waves can
be randomly generated. 2-D and 3-D direct numerical simula-
tions of superposed stable and unstable layers have confirmed
this scenario since gravity-like waves have been well observed
in stable regions (Hurlburt et al. 1986, 1994; Brandenburg et al.
1996; Brummell et al. 2002).

The aim of this paper is to investigate in detail the exci-
tation of IGWs by overshooting in an high-resolution 2-D hy-
drodynamical simulation of a three-layer model, consisting of
a convective zone (hereafter CZ) embedded between an upper
cooling zone and a lower stably stratified radiative zone (here-
after RZ). In all previous numerical studies, gravity waves have
been detected using Fourier’s analysis such as, for example, the
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(k, ω)-diagram. However, the link with the eigenmodes of sta-
ble regions was not investigated. In particular, it has not clearly
been demonstrated that the excited waves really correspond to
gravity waves since the only criterion was the Brunt-Väisälä
frequency as an upper bound.

In this work, g-modes are rigorously measured using the
method that we have presented and tested on the gravity
mode oscillations of an isothermal atmosphere in Dintrans &
Brandenburg (2004, hereafter Paper I). Our method mainly re-
lies on the projection of the velocity field of the simulation onto
the basis shaped from the solutions of the associated linear
eigenvalue problem for the perturbations; i.e., the theoretical
g-modes of the RZ. Hence the mode amplitudes are simply
given by the time-dependent basis coefficients, which allows a
quantitative study of the excitation mechanism. In other words,
we investigate the generation of IGWs by penetrative convec-
tion from the linear response of the RZ to this penetration.

We begin by presenting our hydrodynamical 2-D model
consisting in three superposed polytropic layers, and give some
details on the code we use to solve it numerically (Sect. 2).
We then give the main properties of the obtained simulation
of penetrative convection and show that the classical detection
method of gravity mode oscillations based on Fourier’s trans-
forms in both space and time fails to give reliable results on
this problem (Sect. 3). We then introduce our detection tech-
nique based on the anelastic subspace and apply it to find the
properties of the g-modes propagating in the numerical simu-
lation (Sect. 4). Finally, we conclude in Sect. 5 by giving some
outlooks of this work.

2. The hydrodynamical model

2.1. The basic equations

We adopt Cartesian coordinates (x, z) where x denotes the hor-
izontal direction and z is depth pointing downward as the grav-
ity g. Our system is composed of a convection zone of depth
d = z3 − z2, embedded between two stable layers (Fig. 1). We
assume that the gas is monatomic and perfect, so its equation
of state is given by

p = (γ − 1)ρe with γ = cp/cv = 5/3,

where p is the pressure, ρ the density, e the internal energy, and
γ is the ratio of specific heats cp and cv.

We solve the following set of hydrodynamical equations
(conservation of mass, momentum and energy):



D ln ρ
Dt

= − div u,

Du

Dt
= −(γ − 1) (∇e + e∇ ln ρ) + g +

2
ρ
∇ · (ρνS),

De

Dt
= −(γ − 1)e div u +

1
ρ
∇ · (K∇e) + 2νS2 + Q,

(1)

where u is the velocity and D/Dt = ∂/∂t + u · ∇ is the to-
tal derivative. In addition, ν denotes the constant kinematic
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Fig. 1. Geometry of the computational domain.

viscosity1 and K = K/cv the radiative conductivity divided
by cv

2. To reproduce the radiative cooling taking place at a
star’s surface, we add a cooling term Q in the energy equation
given by

Q = −
(
e − etop

)
τ−1(z), (2)

where τ−1(z) is the cooling rate profile which is set equal to zero
everywhere except close to the surface, i.e. τ−1(z) � 0 only for
z = [z1, z2]. Because of this efficient cooling, the surface layer
tends to be isothermal and the internal energy e is almost con-
stant there. Finally, S denotes the traceless strain tensor given
by

Si j =
1
2

(
∂ui

∂x j

+
∂u j

∂xi

)
− 1

3
δi j∇ · u.

2.2. Boundary conditions and the initial setup

We assume that ln ρ, u and e are periodic in the horizontal di-
rection and adopt the following conditions at the upper and
lower boundaries:


∂u

∂z
=
∂w

∂z
= w = 0 at z = z1, z4;

e = etop at z = z1 and
∂e

∂z
fixed at z = z4,

(3)

where u and w correspond to the horizontal and vertical veloc-
ities, respectively.

Following Brandenburg et al. (1996), we choose the depth
of the unstable layer d as the unit of length, (d/g)1/2 as the unit
of time and the initial value ρbot of the density at the bottom
of the convection zone (hereafter BCZ) as the unit of density
[velocities are thus measured in units of

√
gd, i.e. the free-fall

1 In Hurlburt et al. (1986, 1994), Cattaneo et al. (1991) or Bogdan
et al. (1993), it is the dynamical viscosity µ = ρν which is constant.
However, the kinematic viscosity becomes very large as the density
tends to zero leading to a highly viscous surface layer.

2 Hereafter, we will simply refer to K as the radiative conductivity.
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velocity of the unstable layer divided by
√

2, and fluxes in units
of ρbot(gd)3/2]. Finally, the dimensionless gravity is set equal to
unity in the whole domain, i.e. g = 1 everywhere.

The initial state is computed using polytropes in hydro-
static and radiative equilibrium (e.g., Hurlburt et al. 1986). In
Appendix A we give the details of the initial setup, in particular
the mixing length solution in the calculation of the CZ strati-
fication, which helps to accelerate the numerical convergence
towards the thermally relaxed state.

2.3. The numerical method

We use the hydrodynamical code described in Nordlund &
Stein (1990) to advance the fully nonlinear set of Eqs. (1). In
this code, spatial derivatives are computed using sixth order
compact finite differences (Lele 1992) whereas the time ad-
vance is performed using a third order explicit Hyman scheme
(Hyman 1979). Corresponding timesteps are usually 25% of
the Courant-Friedrich-Levy timestep defined by

δtCFL = ∆z/max(cs, |u|, αν/∆z, αχ/∆z),

where cs is the sound speed, χ = K/(γρ) the radiative diffusiv-
ity and α ≃ 4 an empirical factor determining the length of the
diffusive timestep. In practice, it is the radiative diffusion term
which limits the timestep due to both the high vertical resolu-
tion and large radiative diffusivities of radiative zones.

Contrary to acoustic modes, gravity modes correspond to
waves with long periods, of about twenty time units in our nu-
merical simulations, typically. Hence, once achieved the ther-
mal relaxation of the radiative zone, we still need to integrate
the dynamical equations over very long times to capture so
much periods as possible (one typically needs runs as long
as one thousand time units). We then chose to concentrate
on a particular 2-D simulation with an high spatial resolution
256×512 (i.e. 256 mesh points in the horizontal and 512 points
in the vertical) and an aspect ratio A ≡ Lx/d = 4 (Lx being
the horizontal extent of the computational domain). The main
properties of this simulation are the following:



m1 = −0.9, m2 = −0.8, m3 = 3, etop = 0.3,

Ftot = 5 × 10−3, ν = 5 × 10−3,

Pr2 = 12.5, Pr3 = 0.625,

(4)

where Pr = ν/χ denotes the Prandtl number. The correspond-
ing Rayleigh number of the unstable layer is Ra ≃ 8.5 × 105,
using the definition in Gough et al. (1976). The kinematic vis-
cosity ν cannot be too small for a given resolution as it should
satisfy d/∆z ∼ Re3/4, where ∆z is the smallest mesh interval
in the vertical direction and Re is the Reynolds number (e.g.,
Landau & Lifshitz 1980). The value we chose is a reasonably
“safe” one as this is around fifty times larger than the minimum
viscosity νmin ∼ 10−4 imposed by both the resolution 256×512
and the mean Reynolds number of our simulation.

3. Nature of the penetrative convection

and the IGW detection problem

Since the pioneering numerical simulations of Hurlburt et al.
(1986), the general features of penetrative compressible con-
vection are well known and we are simply giving here the main
properties of such a flow.

Figures 2 and 3 represent typical asymmetrical patterns and
mean vertical radiative, convective and kinetic fluxes that we
obtain in our numerical simulation of compressible convection
with penetration, the fluxes being computed from their usual
definition (e.g., Hurlburt et al. 1986)



Frad = K
d
dz
〈T 〉t,

Fconv = −cp〈ρwT ′〉t,

Fkin = −
1
2
〈wρ(u2 + w2)〉t,

(5)

where the overbars and brackets denote the horizontal and tem-
poral means, respectively, and T ′ is the temperature fluctu-
ation about the horizontal mean. Compressibility effects de-
stroy the usual symmetric velocity field observed in Boussinesq
convection as downdrafts become stronger and more concen-
trated than the broader upward flow (Graham 1975; Hurlburt
et al. 1984). The main consequence is that some localized
downward-directed narrow plumes appear which transport a
significant kinetic flux in this direction (around 30% of the to-
tal flux at the BCZ in this simulation; see the dashed line in
Fig. 3).

The presence of a lower stable layer below the convection
zone allows these downward plumes to penetrate some distance
into the RZ. This convective penetration has been theoretically
investigated in the astrophysical context by Zahn (1991) who
showed that it strongly depends on the value of the local Péclet
number Pe = wL/χ (w and L being the typical vertical velocity
and size of those motions, respectively).

Following Brummell et al. (2002), we define the penetra-
tion extent ∆ as the vertical distance from the BCZ where the
horizontally-averaged kinetic flux decreases to 1% of its max-
imum value and Fig. 4 shows an example of its evolution with
time. The averaged penetration is 〈∆〉 ≃ 0.56, that is, of or-
der the half-size of the CZ, which is typical of hydrodynamical
simulations at low Péclet numbers. Indeed, Pe falls down very
rapidly just below the CZ due to the large radiative diffusivity
of the radiative zone. In polytropic models, the radiative diffu-
sivity is proportional to 1+m, where m is the polytropic index,
see Eq. (A.3), so a convective blob experiences a jump in the
Péclet number when it crosses the interface between the CZ
and RZ zones

Pe3

Pe2
∼ χ2

χ3
∝ 1 + m2

1 + m3
· (6)

Figure 5 shows the vertical profile of the Péclet number. The
estimate of the Péclet jump across the CZ-RZ interface using
Eq. (6) gives Pe3/Pe2 ≃ 0.05 or Pe3 ≃ Pe2/20, which is ef-
fectively the one in Fig. 6, where Pe3/Pe2 ≃ 13/250 = 0.05.
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Fig. 2. Snapshots of the velocity field superimposed on a grey scale
representation of the internal energy fluctuations (i.e. or temperature)
at three different times t = [900, 903, 906]. The horizontal dashed
lines delimit the convection zone z = [0, 1] located above the radiative
zone z = [1, 3].

Fig. 3. Normalized vertical profiles of the radiative (solid dark line),
convective (dotted line) and kinetic (dashed line) fluxes, with their
sum (solid grey line). The vertical dotted lines denote the CZ limits.

As a result, the cold blob thermalizes very rapidly in the radia-
tive zone and loses its identity compared to its environment: the
buoyancy braking thus disappears and allows the blob to con-
tinue by inertia in the stable zone, leading to the observed large
penetration. (In solar-type stars the relevant extent is actually
much smaller, because here the thermal conductivity is still too

Fig. 4. Evolution with time of the penetration extent ∆, with its time-
averaged value 〈∆〉 ≃ 0.56 denoted by the horizontal dotted line.

Fig. 5. Mean vertical profile of the Péclet number, where dotted lines
mark the CZ limits.

large and therefore the overall fluxes, and hence the amount of
flux is too large.)

3.1. Finding the g-modes: The problem of the random

excitation

As discussed in Paper I, the classical technique to detect the
g-modes propagating in an hydrodynamical simulation con-
sists first of taking horizontal Fourier transforms of the verti-
cal mass flux ρw(x, z, t) for every time step, to get ρ̂w(ℓ, z, t)3.
Second, one computes power spectra for the individual time se-
ries ρ̂w(ℓ, z, t), to get ρ̂w(ℓ, z, ω), and plots the resulting power
spectra at a given degree ℓ in a (z, ω)-plane to highlight the
“shark fin” peaks corresponding to the eigenmodes (e.g., Fig. 5
in Paper I).

Figure 6 shows the result of applying this method to the de-
tection of ℓ = 1, ℓ = 2 and ℓ = 3 g-modes propagating in the
simulation. Low-frequency peaks appear in the RZ (1 ≤ z ≤ 3),
mainly in the ℓ = 1 diagram, but these peaks are not as well
defined as in Paper I. Indeed, we have focused in the previ-
ous paper on the simpler case of the g-modes of an isother-
mal atmosphere where IGWs were excited by the vertical free

3 Here and in the following, we define the horizontal wavenumber
as kx = (2π/Lx) ℓ = (π/2) ℓ, where ℓ denotes the mode degree and is
a non-zero positive integer, ℓ = [1, 2, . . .], as purely radial g-modes
cannot exist (e.g., Turner 1973).
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Fig. 6. Left: gray scale representations in the (z, ω)-plane of the low-
frequency part of the temporal power spectra for two degrees ℓ =
[1, 2]. Right: the resulting spectra after integrating over depth.

oscillations of a cold bubble: once emitted, each global mode
“stayed in the box” during a time that depends on the efficiency
of the dissipation, which was mainly due to a weak viscosity.
As a consequence, large-scale nonradial g-modes survived over
long times and were very well visible in the temporal spectra,
both in the (z, ω)-plane and in its depth-integrated representa-
tion (see Fig. 3 in Paper I).

The situation is clearly different with penetrative convec-
tion as we have now to deal with a random excitation of IGWs.
Indeed, strong downward plumes are not stationary structures:
they are born in the upper layers of the convection zone, are
accelerated by the Archimedes force during their CZ crossing
and, finally, end their life in the overshoot region where they
transfer a large amount of their stored kinetic energy to the
stably stratified medium, resulting in an internal gravity wave
field. As the birth of these plumes is random, the resulting forc-
ing of the RZ wave field is itself a random one, exactly as an
hammer which randomly strikes the upper part of the RZ. We
then understand why the detection of these IGWs is more diffi-
cult than the simpler case of free bubble oscillations: once emit-
ted by a penetrating plume, a global mode first propagates in
the radiative zone while being subjected to the viscous and ra-
diative dissipations. However, if a second plume arrives shorter
afterwards, the mode pattern may be destroyed, resulting in
partial interference and the corresponding frequency peak may
disappear from the spectrum. In other words, the lifetime of
a mode is not simply related to the diffusive processes but
also to the frequency of plume penetration (as we will show
in Sect. 4.2).

With this in mind, it is also clear that the classical detection
method based on successive Fourier transforms both in space
and time of the vertical mass flux is not well adapted to de-
tecting IGWs in simulations with penetrative convection. The
temporal Fourier transforms are computed over the whole sim-
ulation while IGWs are only present during a short time in-
terval. This results in a mixing of wave events with non-wavy

turbulent events such that the spectra lack a well defined fre-
quency (Fig. 6, right).

4. Results

4.1. IGW identification using the anelastic subspace

We have presented in Paper I a new detection method of IGWs
in hydrodynamical simulations which is based on the anelastic
subspace and we will give here only its main stages. The idea
is to project the simulated velocity field onto the basis built
with the anelastic eigenvectors which are solutions of the fol-
lowing linear problem for the adiabatic perturbations (see also
Dintrans & Rieutord 2001; Rieutord & Dintrans 2002)


ω2

(
ξz −

1
kx

dξx

dz

)
= N2ξz,

−kxξx +
dξz
dz
+

d ln ρ0

dz
ξz = 0,

ξz = 0 for z = z1, z4,

(7)

where ξ = (ξx, ξz) denotes the Lagrangian displacement vector
(the velocity field being u = iωξ), ρ0 the mean density (i.e.,
ρ0 = 〈ρ〉t) and N2 the square of the Brunt-Väisälä frequency
given by

N2 = g

[
1
γ

d ln e0

dz
−
(
1 − 1
γ

)
d lnρ0

dz

]
.

To derive the anelastic subset (7), we first filtered out the acous-
tic waves in the governing equations for the linear perturba-
tions, second assumed that the time dependence of normal
modes is of the form exp(iωt) and, finally, that their horizontal
dependence follows from the imposed periodicity in this direc-
tion as

ξx ∝ cos(kxx) and ξz ∝ sin(kxx).

The coupled differential Eqs. (7) form a generalized eigenvalue
problem of the form

MAψℓn = ω
2
ℓnMBψℓn, (8)

where ψℓn = (ξx, ξz)T is the eigenvector of degree ℓ and radial
order n associated with the eigenvalue ω2

ℓn
, whileMA andMB

denote two differential operators.
The profile of the Brunt-Väisälä frequency N in the ra-

diative zone is shown in Fig. 7. The g-modes spectrum is
bounded by its maximum value, max(N) ≃ 0.46, while the
typical frequency of a low-degree and low-order g-mode is
given by ωℓn ∼ N ≃ 0.35, hence a nondimensional period
Tℓn = 2π/ωℓn ≃ 18 (e.g., Turner 1973).

Figure 8 shows the vertical profiles of the first three anelas-
tic eigenvectors of degree ℓ = 1 and radial orders n =

[0, 1, 2]. The associated (dimensionless) eigenvalues areω10 =

0.278, ω11 = 0.184 and ω12 = 0.133. As g-modes are
evanescent in a convectively unstable layer, each eigenvector
is trapped in the bottom stably stratified zone and its amplitude
rapidly decreases in the convection zone, as observed for z ≤ 1
where both ξx and ξz stop oscillating and tend to zero.
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Fig. 7. Mean vertical profile of the Brunt-Väisälä frequency N in the
RZ, the dotted line denoting the BCZ.

Fig. 8. First three anelastic eigenvectors ψℓn = (ξx, ξz)T at ℓ = 1 and
radial orders n = 0 (solid line), n = 1 (dashed line) and n = 2 (dashed-
dotted line). Upper and lower panels show the vertical and horizon-
tal displacements, respectively. Eigenvectors have been normalized by
imposing

∫ z4

z1
ρ0|ψℓn|2 dz = 1.

Once the anelastic eigenvectors ψℓn are computed, we can
determine the amplitudes of the g-modes propagating in our
simulation. Indeed, we have showed in Paper I that these eigen-
vectors are orthogonal to each other and form an orthogonal ba-
sis onto which the simulated velocity field can be projected as

ûℓ(z, t) =
∞∑

n=0

〈ψℓn, ûℓ〉ψℓn + “rest”, (9)

where the symbol 〈 , 〉 denotes a scalar product defined by

〈ψ1,ψ2〉 =
∫ z4

z1

ψ
†
1 · ψ2 ρ0 dz,

and the term “rest” contains all velocity components that are
not due to IGWs (e.g., acoustic waves, convective velocities,
etc). Here ûℓ denotes the velocity field of degree ℓ, that is, the
horizontal Fourier transform of the velocity field u(x, z, t). We
then define the amplitude of the g-mode of degree ℓ and order
n as the time-dependent complex coefficient

cℓn(t) = 〈ψℓn, ûℓ〉, (10)

which corresponds to the basis coefficient for the anelastic
eigenvector ψℓn.

Fig. 9. Evolution with time of the real (solid lines) and imaginary
(dotted lines) parts of the amplitude cℓn of the g-modes of degrees
ℓ = [1, 2] and orders n = [0, 1].

4.2. The evolution of the mode amplitudes

We show in Fig. 9 the resulting amplitudes obtained by ap-
plying our projection technique to the numerical simulation. In
this figure, we have plotted the real and imaginary parts of the
complex amplitude (10) for four g-modes of degrees ℓ = [1, 2]
and radial orders n = [0, 1]. When a standing gravity wave
occurs in a hydrodynamical simulation, its complex amplitude
cℓn behaves as

cℓn ∝ exp(−αt) exp(iωℓnt), (11)

where ωℓn is the mode eigenfrequency and α a coefficient pro-
portional to the diffusion process. For instance in the case of
an excitation by an oscillating bubble dealt with in Paper I,
the temporal Fourier transform of the mode amplitude leads to
a single peak centered around the eigenfrequency ωℓn, with a
width that is proportional to the viscosity (see Fig. 6 in Paper I).
In other words, each g-mode obeys in this situation the same
law as that of a linearly damped free harmonic oscillator.

However, in the case of a random excitation by penetrat-
ing plumes shown in Fig. 9, the real or imaginary parts now
evolve either chaotically around zero when the mode is not ex-
cited, or in a periodic fashion as cosωℓnt or sinωℓnt when the
mode is excited. Indeed, some wave events are well visible,
particularly for times t = [400−600] in the ℓ = 1, n = 0 dia-
gram, but the time evolution is mainly chaotic, suggesting that
such wave events are difficult to extract. As a consequence,
taking a temporal Fourier transform over the whole simula-
tion of the mode amplitude cℓn(t) makes no sense as we will
mix together wave and non-wave events. This is illustrated in
Fig. 10 where we computed the temporal Fourier transform of
the mode amplitude in Fig. 9 for ℓ = 1 and n = 0. Comparing to
Paper I, single peaks centered around the theoretical eigenfre-
quencies ωℓn have been replaced by a forest of peaks roughly
centered around ω10, i.e. the mixing of wave events with non-
wave events degrades the quality of the anelastic projection.
Nevertheless, we remark that the spectrum in Fig. 10 is better
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Fig. 10. Corresponding temporal power spectrum of the mode ampli-
tude cℓn(t) used in Fig. 9, for ℓ = 1 and n = 0. The vertical dotted line
marks the location of the theoretical frequency ω10 of the underlying
g-mode. Amplitudes have been magnified by 105 for clarity.

than the one obtained in the right-hand panel of Fig. 6 with the
classical method as peaks are now concentrated around the the-
oretical eigenfrequency. However, such spectra do not permit
a detailed study of the amplitudes of g-modes propagating in
the RZ, as other contributions (e.g., convective velocities in the
overshoot region as well as penetrations of downward plumes)
interfere with the time evolution of each mode amplitude.

4.3. Time-frequency diagrams to extract wave events

In order to accurately extract the hidden wave events, we use
time-frequency diagrams of the mode amplitude cℓn(t), that is,
the temporal Fourier transforms are computed by using a slid-
ing window of fixed width (e.g., Flandrin & Stockler 1999).
Assuming that this width is ∆t (it is moreover beneficial to
choose a multiple of the mode period), we perform the follow-
ing Fourier transform at time t

ĉℓn(t, ω) =
∫ t+∆t/2

t−∆t/2
cℓn(t′) eiωt′ dt′,

and thus iterate the process at the next time t + δt, δt being the
timestep of the simulation. We then obtain a 2-D representa-
tion of the power spectrum |ĉℓn(ω)|2 in a time-frequency plane
(t, ω) which highlights the time intervals during which the cor-
responding g-mode is really excited in the RZ.

To illustrate the utility of this method, we focus on the
g-mode at ℓ = 1 and n = 0 before applying it to other modes;
see Fig. 11. Time intervals during which this mode is excited
to significant amplitudes are well extracted, as many bumps ap-
pear along the line ω10, especially in the range t = [400−600]
where three bumps are present. In order to isolate precisely and
automatically the most powerful wave events, we apply the fol-
lowing procedure, illustrated in Fig. 12 still with our test mode
at ℓ = 1 and n = 0:

– we first compute a mean profile of the time-frequency dia-
gram around the mode frequency ωℓn (shown in the upper
panel);

Fig. 11. Time-frequency diagram of the amplitude of the g-mode at
ℓ = 1 and n = 0 using a temporal window of width ∆t = 2T10, with
T10 = 2π/ω10 ≃ 22.6 the mode period. The horizontal dotted line
corresponds to the mode frequency ω10.

– we then build what we call the “event function E”, that is,
a function which is non-zero only when the previous mean
profile is higher than its mean value:


if f (t) < 〈 f 〉t then E = 0,

if f (t) ≥ 〈 f 〉t then E = 1,
(12)

and iterate the process four times by restarting from the
new amplitude profile E × f . We then obtain the final event
function E under a binary form (i.e. a succession of 0
and 1), shown in the middle panel in Fig. 12. Six events are
clearly isolated, four of them being clustered in the range
t = [250−620];

– finally, we apply the event functionE to the time-dependent
amplitude cℓn(t). It thus emphasizes the time intervals dur-
ing which cℓn(t) behaves as exp(iωℓnt), that is, during which
the corresponding g-mode is excited in the RZ; see the fil-
tered real and imaginary parts of c10 in the lower panel of
Fig. 12.

We obtain the longest wave event at ℓ = 1 and n = 0 dur-
ing times t = [344−435], which approximately corresponds
to four mode periods, i.e. δt = 91 ≃ 4T10. This is confirmed
in the snapshot of the velocity field at time t = 405 where a
large-scale velocity field, signature of the propagation of the
g-mode at ℓ = 1 and n = 0, is present in the bottom radiative
zone (Fig. 13). Now, why do modes die out? The answer lies in
Fig. 14, where we plot four snapshots of the velocity field for
times t = [618−624] which correspond to the end of the events
group clustered in the range t = [250−620]. The mode pattern
is simply destroyed by the penetration of a plume which is born
in the upper part of the CZ at time t ≃ 615, then crosses the
CZ and enters the RZ at time t = 620 where it kills the mode
propagation. As a consequence, the large scale velocity field
associated with the mode disappears and the event function E
becomes zero.

Before generalizing this formalism to more modes, it is in-
structive to re-apply during this longest wave event the clas-
sical method discussed in Sect. 3.1, in order to compare both
the spectrum and the simulated vertical mass flux with the the-
oretical ones. This is what we did in Fig. 15, which is the
same as Fig. 6 at ℓ = 1 except that we focus now on times
t = [300−450]. As expected, the bump aroundω10 is more pro-
nounced in the RZ (upper panel) and a comparison between the
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Event function E

Fig. 12. Filtering of the mode ℓ = 1, n = 0: zoom in Fig. 11 around
the frequency ω10 (upper panel); the resulting event function E given
by Eq. (12) (middle panel); the corresponding real (solid line) and
imaginary (dotted line) parts of the mode amplitude after the filtering
(lower panel).

Fig. 13. Snapshot of the velocity field superimposed on the internal
energy fluctuations for time t = 405. Note the large-scale velocity
field in the bottom radiative zone mainly due to the standing g-mode
at ℓ = 1 and n = 0.

shark fin vertical profile deduced from a zoom around ω10 with
the one computed from the theoretical anelastic mode shows an
almost perfect agreement there (lower panel). It means that the
dynamics of this region is well reproduced by our linear anelas-
tic model. On the contrary, as g-modes cannot propagate in an
unstable layer, it is normal to find a large discrepancy between
these two profiles in the convection zone.

We then apply this method to the g-modes of the first three
degrees ℓ = [1, 2, 3] and radial orders n = [0, 1, 2], with
resulting event functions E given in Fig. 16. That allows us
first to show that the second bump located around ω ∼ 0.2
in the upper panel in Fig. 15 is due to the propagation of
the mode ℓ = 1, n = 1, as the corresponding event func-
tion is not zero for times t ≃ 400. Second, the assembly of
the whole event function permits us to perform a statistical
study of the mode lifetimes, that is, to compute the PDF of
the duration of events (Fig. 17). This PDF is peaked around
2, meaning that the lifetime of a mode is approximately twice
its period. Compared to the solar acoustic modes for which

Fig. 14. Destruction of the g-mode ℓ = 1, n = 0 by a penetrating
plume entering in the RZ at time t ≃ 620.

Fig. 15. Upper panel: same as in Fig. 6 for ℓ = 1 except that the tem-
poral Fourier transform has been computed for time t = [300−450]
only. Lower panel: comparison between the corresponding vertical
mass flux ρ̂w (solid line) and the theoretical one (dashed line) com-
puted from the anelastic eigenvector at ℓ = 1 and n = 0.

Tosc ≃ 5 min and Tlife ∼ hour ∼ 20Tosc, such a ratio is very
small, i.e. g-modes patterns are rapidly destroyed by the fol-
lowing penetrating plumes and it may be a problem for their
detection at the star surface.

4.4. Kinetic energy due to g-modes

Using the previous time-frequency diagrams for every g-mode
allows us to find the time intervals during which IGWs propa-
gate in the RZ. Now we want to quantify the efficiency of this
stochastic excitation by using, say, some wave flux in the ver-
tical direction. However, as we impose the reflective boundary
condition w = 0 for the vertical velocity both at the surface
z = z1 and the bottom z = z4 of our computational domain, we
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Fig. 16. The event functions E for g-modes of degrees ℓ = [1, 2, 3] and
radial orders n = [0, 1, 2], with their associated periods Tℓn.

Fig. 17. PDF of the lifetime of wave events, in units of the mode
periods.

have standing waves rather than propagating waves and no flux
is carried by waves in the vertical direction. As in Paper I, we
thus chose to focus on the kinetic energy embedded in g-modes
using the following Parseval type relation valid in the anelastic
subspace
∫

V

ρu2(x, z) dx dz =

+∞∑

ℓ, n

|cℓn|2 + “rest”, (13)

where the left-hand side corresponds to the total kinetic energy
in the simulation at a given time t and the term “rest” contains
all the contributions which are not due to IGWs (the demon-
stration is given in Paper I). This relation is very useful as it al-
lows to quantify the kinetic energy embedded in every g-mode
(ℓ, n). Indeed, using the classical Parseval relation just allows

Fig. 18. a) Time evolution of the total kinetic energy (solid line) em-
bedded in the simulation, with its component which is only due to
g-modes (dot-dashed line); b) ratio between the two.

one to quantify the amount of (say) kinetic energy contained
in a mode of given degree ℓ and contributions coming from
g-modes as well as p-modes or any turbulent motion are mixed
together. The advantage of our anelastic subspace relation (13)
is that it lifts this degeneracy in the radial order n by isolating
the g-mode contributions. Of course, this relation should be ap-
plied only during times when IGWs effectively propagate, i.e.
when cℓn ∝ exp(iωℓnt) or E = 1, such that the |cℓn|2 contribu-
tions make sense.

The temporal evolution of the total kinetic energy Etot em-
bedded in the simulation (i.e. the left-hand side in Eq. (13)) is
illustrated as the solid line in Fig. 18a, while the dot-dashed line
in the same panel corresponds to the contribution EIGW coming
from g-modes only (the right-hand side sum in Eq. (13), where
the ℓ = [1−3] and n = [0−2] modes have been considered).
The interesting quantity is of course the ratio between the two,
that is EIGW/Etot, which emphasizes the efficiency of the IGW
excitation by the downward plumes (Fig. 18b). It emerges that
g-modes contribute up to about 40% of the total kinetic energy
when they are excited, for example in the range t ≃ [400−600]
when the l = 1, n = 0 mode is strongly excited. This large
ratio is interesting, since it means that internal gravity waves
may contain a non-negligible part of the total kinetic energy of
the coupled system formed by the two neighboring convective
and radiative zones. This is a direct demonstration that the ex-
citation of IGWs by penetration plumes can be quite efficient,
at least in 2-D.

5. Conclusions

We have investigated numerically the excitation of internal
gravity waves by the penetration of convective plumes into an
adjacent stably stratified zone. This problem is intimately re-
lated to the transport processes of chemicals and/or angular
momentum in radiative zones of cool stars, such as the Sun.
The knowledge of both spectrum and amplitudes of the inter-
nal waves field is crucial.

After recalling the main features of 2-D hydrodynami-
cal simulations of penetrative convection, we focused on the
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problem of the mode identification by first using a classical
method based on successive Fourier transforms of the vertical
mass flux over the whole simulation. We thus showed that this
tool is not adapted to detect the g-modes propagating in these
simulations as the resulting spectra are very noisy, preventing
a quantitative study of the phenomenon.

We then introduced our method for detecting accurately the
internal waves in the radiative zone. It is based on the projection
of the simulated velocity field onto the anelastic eigenmodes
that are solutions of the associated linear eigenvalue problem
for the perturbations. Indeed, when a standing wave is present
near the bottom radiative zone, its spatial structure is that of an
eigenmode and the coefficient of the projection onto this eigen-
mode gives the mode amplitude. This amplitude is of course
time-dependent as the internal wave is only generated after the
penetration of plumes, and is then dissipated under the action of
both viscous and radiative diffusions. This leads us to use time-
frequency diagrams to isolate the most powerful wave events
and to construct what we called “the event function E”, that is,
a binary function (0/1) which is set to 1 only when the mode
amplitude is higher than a given threshold. As an example, we
focused on the g-mode at ℓ = 1 and n = 0, whose period is
T10 = 22.6. We extracted six wave events in our particular 2-D
simulation, the longest one corresponding to four mode peri-
ods. We then showed the intricate link existing between the
mode and the downward plumes as they can either excite it or
destroy it!

The extension of this study to the g-modes at ℓ = [1−3]
and n = [0−2] allowed us to compute the PDF of the mode
lifetimes. We found that the mean lifetime is only around twice
the period of the mode. The shortness of this lifetime may
be a problem from an observational point of view where one
needs lifetimes as big as possible (the large-scale solar acous-
tic modes have lifetimes of about the day, i.e. several hundreds
of times their mean period).

Finally, we looked at the kinetic energy content of the ex-
cited g-modes and showed that up to 40% of the total kinetic
energy at times may reside in g-modes. This level is only
reached during a fraction of the time, and the mode kinetic
energy varies considerable with time. Nevertheless, when the
modes are excited, the corresponding velocity field in the ra-
diative zone has an amplitude that may lead to an efficient wave
transport there (through the advective term uwave · ∇).

It is clear that our detection method allows a quantitative

analysis of the problem of g-mode excitation by penetrative
convection. Following this work, we have been doing a para-
metric study of the influence of the convective flux on the mode
amplitudes, by trying to predict these amplitudes from mixing-
length arguments. Some recent 2-D simulations by Kiraga et al.
(2003) indeed suggest that such mixing length models system-
atically underestimate the strength of the internal wave field.

In the same way, the depth of the penetration in the sta-
bly stratified zone is without doubt a key parameter in the
excitation mechanism by penetrative plumes. This penetration
strongly depends on the local value of the Péclet number Pe:
(i) large values of Pe mean that the advection is greater than
the radiative diffusion such that the plume keeps its identity
and is stopped very rapidly by the buoyancy braking, leading

to a tiny penetration; (ii) small values of Pe mean that the plume
thermalizes very rapidly with its surrounding and the buoyancy
braking disappears, leading to a large penetration. It would then
be interesting to further study the influence of the Péclet num-
ber on the mode amplitudes, by computing for example a grid
of 2-D polytropic models with different indexes m3, in order to
play with the Péclet number jump at the base of the convection
zone (Eq. (6)). Likewise, the influence of the dimensionality;
i.e. the differences between 2-D and 3-D also need be investi-
gated.
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Appendix A: The initial stratification in the three

layers

The initial vertical stratification is computed using polytropes
of various indexes for which

P ∝ ρ1+1/m or ρ ∝ T m,

where m denotes the polytropic index. Such polytropic solu-
tions are useful in numerical simulations of convection as they
allow to easily specify the stability (or not) of a layer to con-
vection. Indeed, the well known Schwarzschild criteria for con-
vection are (e.g., Hansen & Kawaler 1994)


∇ < ∇ad ⇒ STABLE,

∇ > ∇ad ⇒ UNSTABLE,
(A.1)

where ∇ ≡ d ln T/d ln P and ∇ad = 1 − 1/γ is its value in the
case of an adiabatic stratification. The using of polytropic so-
lutions leads to the following simple form for the “del”

∇ = 1
1 + m

,

meaning that a polytropic layer of index m will be stable or
unstable to convection following



∇ < ∇ad ⇒ m > mad : STABLE,

∇ > ∇ad ⇒ m < mad : UNSTABLE.
(A.2)

Since γ = 5/3, we have ∇ad = 2/5 and mad = 3/2 in this case
and a polytropic layer will be convectively stable if m > 3/2
and unstable if m < 3/2.

Once the three polytropic indexes of the superposed layers
have been fixed we first compute the corresponding radiative
conductivity profile by assuming that all of the energy flux Fbot

that we impose at the bottom is initially transported by radia-
tion, that is,

Ki =
Fbot

g
(γ − 1)(1 + mi), (A.3)
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Fig. A.1. Initial vertical profiles for a layered system with m =

[−0.9,−0.5, 3] of the radiative conductivity a) and entropy b). The
vertical dotted lines delimit the convection zone, whereas the hori-
zontal dashed line in the a)-plot corresponds to the critical value Kad
below which the layer is convectively unstable. The dot-dashed line in
the b)-plot corresponds to the entropy profile in the relaxed state.

in the layer i (i = [1, 2, 3]). In this formalism, the radiative con-
ductivity is thus a constant in each layer and its three different
values are joined using polynomials of the third-order.

In Fig. A.1a we show an example of such a profile for a
polytropic layered system with indexes m1 = −0.9, m2 = −0.5
and m3 = 3. As expected, the radiative conductivity in the CZ
is below the critical valueKad given by

Kad =
Fbot

g
(γ − 1)(1 + mad),

that is, the value deduced from Eq. (A.3) using m = mad. More
surprising could be the value K1 < Kad in the surface layer as
one rather expects a stably stratified layer here, as observed in
solar-like stars where a very thin superficial stable layer exists.
In fact, this layer is stable due to its efficient cooling (Eq. (2))
such that the Schwarzschild criterion does not apply. We thus
adopt a very weak value for K1, by taking m1 = −0.9 in all of
the simulations, and compute the initial hydrostatic stratifica-
tion of this layer by assuming that it is already isothermal with
de/dz = 0.

Concerning the initial stratification of the CZ, things are
more involved. Assuming an initial polytropic stratification
with ∇2 = 1/(1 + m2) is clearly not a good idea, as an ef-
ficient convection is always associated with an almost adia-
batic stratification with ∇2 ≃ ∇ad. In this case, the relaxation
of the CZ towards its adiabatic state would take a lot of numer-
ical timesteps. One simple solution of this problem consists in
starting from an adiabatic stratification in the CZ by imposing
∇2 = ∇ad. However, this solution does not take into account the
entropy jump which appears at the top of the CZ (the difference
between constant entropy in the CZ and the entropy minimum
in the photosphere; see e.g., Abbett et al. 1997; Ludwig et al.
1999) such that the relaxation time would stay important.

One solution of this relaxation time problem consists in
starting from a mixing length stratification where the (local)
superadiabatic gradient in the CZ is modeled using the follow-
ing mixing-length argument

∇mlt
2 = ∇ad + α

(
Fconv

ρc3
s

)2/3
,

where cs =
√
γ(γ − 1)e denotes the local sound speed, α ≃ 1.5

is a free mixing-length parameter and Fconv is the convective
flux given by

Fconv = Fbot − Frad = Fbot

[
1 − 1
g

(γ − 1)(1 + m2)

]
.

Finally, the initial stratification of the bottom RZ is simply
computed by assuming that all of the bottom flux is transported
in this layer by radiation and one sets ∇rad

3 = 1/(1 + m3).
To summarize, the initial stratification of our three-layer

model is computed from

d lnρ
dz
=

1
γ − 1

g

e
,

where e obeys to the following set of equations in the three
layers


de

dz
= 0 if z1 ≤ z ≤ z2,

de

dz
=
g

γ − 1
∇mlt

2 if z2 < z < z3,

de

dz
=
g

γ − 1
∇rad

3 if z3 ≤ z ≤ z4,

and these differential equations are iterated until the density at
the BCZ is equal to 1; i.e. we impose ρ(z = z3) = 1.

In Fig. A.1b we show the resulting vertical profile of
the initial entropy s/cp = ln(p/ργ)/γ for the same indexes
m = [−0.9,−0.5, 3.]. The solid line denotes the initial entropy
whereas the dot-dashed line corresponds to its profile in the
relaxed state. First, as the entropy gradient in an isothermal
layer is a constant, one verifies that s ∝ z for z = [z1, z2].
Second, the comparison between the initial and relaxed profiles
shows that the mixing-length stratification well reproduces the
entropy jump at the top of the CZ: the strong mixing taking
place in the deep layers of the CZ leads to an almost flat en-
tropy profile, which disappears at the base of the photosphere.
As a consequence, the computing time needed to relax towards
this solution is considerably reduced by using mixing-length
solutions.
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