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Abstract. Let G be a finite group. The power graph P(G) and its main supergraph S(G) are two simple
graphs with the same vertex set G. Two elements x, y ∈ G are adjacent in the power graph if and only if
one is a power of the other. They are joined in S(G) if and only if o(x)|o(y) or o(y)|o(x). The aim of this paper
is to compute the characteristic polynomial of these graph for certain finite groups. As a consequence, the
spectrum and Laplacian spectrum of these graphs for dihedral, semi-dihedral, cyclic and dicyclic groups
were computed.

1. Basic Concepts

All groups and graphs considered here are assumed to be finite and graph means simple graph. Only
basic concepts about graphs will be needed for this paper. They can be found in any book about graph
theory, for example [34]. Our group theory notations are taken from [31] and we refer to [10, 11] for the
algebraic graph theory concepts and notations.

Suppose Γ is a graph with edge set E(Γ), vertex set V(Γ), adjacency matrix A(Γ) and Laplacian matrix
L(Γ). The cardinality of V(Γ) is called the order of Γ and if e ∈ E(Γ) has end points u and v, then we write
e = uv. Define NΓ(u) = {v ∈ V(G) : uv ∈ E(Γ)}. It is easy to see that the cardinality of NΓ(u) is the degree
of u in Γ. If all degrees are equal to p then the graph Γ is called to be p-regular. The multi-sets of all
eigenvalues and Laplacian eigenvalues of Γ are denoted by σ(Γ) and σL(Γ), respectively. We usually write
σ(Γ) = {λ(s1)

1 , . . . , λ(sm)
m }, where λ1, . . . , λm are different Γ−eigenvalues and s j is the multiplicity of λ j, 1 ≤ j ≤ m.

The polynomial Φ(Γ, x) = det(xI −A(Γ)) is called the characteristic polynomial of Γ. By an undirected graph
Σ, we mean a pair (V(Σ),E(Σ)) in which V(Σ) is a non-empty set and E(Σ) is a subset of all unordered pairs
of distinct elements of V(Σ). If we consider the elements of E(Σ) to be ordered pairs, then the graph Σ will
be directed.

A partition V1 ∪ V2 ∪ · · · ∪ Vm of the vertex set of a graph Γ is called equitable if for each i and for all
u, v ∈ Vi, |NΓ(u) ∩ V j| = |NΓ(v) ∩ V j|, for all j. The set of all positive divisors of an integer n is denoted by
D(n).
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Following Sabidussi [32, p. 396], the A−join of a set of graphs {Γa}a∈A is the graph ∆ with vertex and
edge sets

V(∆) = {(x, y) | x ∈ V(A) & y ∈ V(Γx)},
E(∆) = {(x, y)(x′, y′) | xx′ ∈ E(A) or else x = x′ & yy′ ∈ E(Γx)}.

One can easily see that this graph can be constructed from A by replacing each vertex a ∈ V(A) by the graph
Γa and inserting either all or none of the possible edges between vertices of Γa and Γb depending on whether
or not a and b are joined by an edge in A. If A is an p−vertex labeled graph then the A−join of ∆1,∆2, . . . ,∆p
is denoted by A[∆1,∆2, . . . ,∆p].

Let G be a finite group. The order of x ∈ G is denoted by o(x). The set of all element orders of G is
denoted by πe(G) and Ωi(G) stands for the number of all elements of G of order i. The notation φ is used
for the Eulers totient function.

2. Power Graph of Finite Groups: A Literature Review

For a group G, there are two simple graphs with the same vertex set G as follows:

• The power graph P(G) with edge set

E(P(G)) = {xy | x, y ∈ G & (〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉)};

• The main supergraph S(G) with edge set

E(S(G)) = {xy | x, y ∈ G & (o(x) | o(y) or o(y) | o(x))}.

The proper power graph P∗(G) [4] and its proper main supergraph S∗(G) are defined as graphs constructed
from P(G) and S(G) by removing identity element of G, respectively.

Let G be a group. The power digraph ~P(G) is a digraph with the group G as its vertex set. There is
an arc from x to y if x , y and y = xr, for some positive integer r. This graph was introduced by Kelarev
and Quinn in their seminal paper [24]. Kelarev and Quinn focused on the study of semigroups by directed
graph, but a very technical description of the structure of the power digraph of all finite abelian groups
can be found in [24]. The power digraphs of semigroups were also considered in [21–23]. Motivated by
the work of Kelarev and Quinn, Chakrabarty et al. considered undirected power graphs (power graph for
short) of semigroups [8]. In recent years, there has been considerable interest to the study of power graphs,
but the second graph introduced very recently by the present authors [19, 20]. In [19], the authors focused
on the relationship between power graph and its main supergraph and some basic properties of this graph
are studied. In [20], the automorphism group of this graph in general are computed, but this paper devotes
to the study of graph eigenvalues of main supergraph.

It is clear that the power graph of finite group is connected. Chakrabarty et al. [8] studied the
completeness of P(G) and proved that this graph is complete if and only if G is a finite cyclic p−group. It
were also proved that for n ≥ 3, the power graph P(Un) is not Hamiltonian, when n = 2mp1p2 . . . pk, where
Un denotes the unit group of the cyclic group Zn, p1, p2, . . . , pk are distinct Fermat primes, m and k are
nonnegative integers, m ≥ 2 for k = 0, 1 and k ≥ 2 for m = 0, 1. They conjectured that P(Un) is Hamiltonian
for all values of n ≥ 3 except those listed above. Pourgholi et al. [30] presented several counterexamples
for this conjecture.

Cameron and Ghosh [5] proved that abelian groups with isomorphic power graphs must be isomorphic
and conjectured that two finite groups with isomorphic power graphs have the same number of elements
of each order. This conjecture is affirmatively proved by Cameron in [6].

In 2012, Mirzargar et al. proved that the power graph of cyclic groups of order pm, p is prime, has the
maximum number of edges among the power graph of all finite groups with the same order and conjectured
that among all finite groups of any given order, the cyclic group of that order has the maximum number of
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edges in its power graph [27]. They also conjectured that the clique number of the power graph of a finite
group and its largest cyclic subgroup are equal. The first conjecture was the starting point of a series of
papers by Curtin and Pourgholi. These authors have shown the first conjecture for both directed [15] and
undirected [12] power graphs. It is merit to mention here that Amiri et al. [3] was previously shown that
the directed power graph of the cyclic group of order n has the maximum number of edges, among the
directed power graphs of finite groups of order n. In [13], Curtin and Pourgholi studied the proper power
graph of finite groups and proved that the diameter of this graph is ≤ 2 if and only if the group is nilpotent
and every Sylow subgroup is either cyclic or a generalized quaternion. They finally applied an elegant
number theory discussion to present an infinite family of counterexamples for the second conjecture [14].

Moghaddamfar et al. [28] considered the proper power graph of a finite group into account. Note that
the power graph will always contain at least one vertex that is connected to every other vertex. In this
paper, the authors established a number of ways in which the connectivity of proper power graph depends
on the structural properties of the group under consideration. They proved that the proper power graph of
a finite group G is connected if and only if G has a unique minimal subgroup. Moreover, if the order of the
center of G has at least two prime divisors then the proper power graph of G will be connected, and if the
center is a p−subgroup of G and the order of G has at least two prime divisors, then the proper power graph
of G is connected if and only if every non-central element of order p in G is connected to a non−p−element in
P
∗(G). In [29], the authors computed the number of spanning trees of power graphs of some finite groups.

A survey of recent works on this topic together with some open questions can be found in [1].
In [30], the authors asked the structure of all non-abelian simple groups with 2-connected power graphs.

Doostabadi et al. [16] computed the number of component in the proper power graphs of the alternating
groups which shows that the power graph of these simple groups can be 2−connected. This result recently
corrected by Bubboloni et al. [4] which again shows the existence of simple group with 2−connected power
graph. Akbari and Ashrafi [2] proved that the power graph of some classes of finite simple groups are not
2−connected and conjectured that a simple group with 2−connected power graph is of alternating type.
Doostabadi et al. [17], started the study of the automorphism group of power graph and presented a
conjecture about the automorphism group of P(Zn) that proved affirmatively in [25].

3. Main Results

One of the key tools to studying a graph Γ is spectrum or Laplacian spectrum (L−spectrum for short) of
Γ. In this field of study, there are two main questions that arise. Which set of algebraic integers can occur as
Sepc(Γ) or L− Sepc(Γ), for some graph Γ, and if there is some set X so that X = Sepc(Γ) or X = L− Sepc(Γ), for
a graph Γ, what can be said about the structure of Γ? To aid in the study of these questions for power graph
and main supergraph of a finite group we will compute the spectrum and L−spectrum of some important
classes of finite groups.

Chattopadhyaya et al. [9] started the study of the Laplacian spectrum of the power graph of cyclic and
dihedral groups and in [26], the authors investigated the spectrum of cyclic, dicyclic, dihedral groups. Our
results given this section generalize some results in the mentioned papers.

Suppose G is a finite group. Define the graph ∆G with vertex set πe(G), the set of all element orders of
G, and two vertices x and y are adjacent if and only if x|y or y|x. Then S(G) = ∆G[KΩa1 (G), . . . ,KΩar (G)], where
πe(G) = {a1, . . . , ar}. By definition of the main supergraph this gives an equitable partition for the S(G).

For the sake of completeness, we mention here some results which are crucial throughout this paper.

Theorem 3.1. [33] Let Γ be a graph and V1,V2, · · · ,Vm be an equitable partition for Γ. If for v ∈ Vi, ti j = |N(v)∩V j|

and T is the matrix (ti j), then Φ(T, x) divide Φ(Γ, x).

Theorem 3.2. [33] Let Hi, 1 ≤ i ≤ p be all ri-regular. Then V(H1) ∪ V(H2) ∪ . . . ∪ V(Hp) is an equitable
partition of Γ[H1,H2, . . . ,Hp]. If T is the matrix associated with this partition, then the characteristic polynomial of
Γ[H1,H2, . . . ,Hp] is Φ(Γ[H1,H2, . . . ,Hp], x) = Φ(T, x).

∏p
i=1 Φ(Hi)/(x − ri).
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Theorem 3.3. [26] The characteristic polynomial of the power graph of Zn can be computed as Φ(P(Zn), x) =
Φ(T, x)(x + 1)n−t−1, where di, 1 ≤ i ≤ t, are all non-trivial divisors of n.

T =


φ(n) φ(d1) φ(d2) · · · φ(dt)

φ(n) + 1 φ(d1) − 1 αd1d2 · · ·αd1dt

φ(n) + 1 αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(n) + 1 αdtd1 αdtd2 · · · φ(dt) − 1


and

αdid j =


φ(d j) di|d j or d j|di

0 otherwise
.

Theorem 3.4. [26] With notation of Theorem 3.3, the characteristic polynomial of P∗(Zn) is as follows:

Φ(P∗(Zn), x) = Φ(T, x)(x + 1)n−t−2,

where

T =


φ(n) − 1 φ(d1) φ(d2) · · · φ(dt)
φ(n) φ(d1) − 1 αd1d2 · · · αd1dt

φ(n) αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(n) αdtd1 αdtd2 · · · φ(dt) − 1


.

In the next theorem, characteristic polynomial of the main supergraph S(G) is obtained.

Theorem 3.5. Let G be a group of order n with πe(G) = {a1, . . . , ak}. Then the characteristic polynomial of S(G) is
as follows:

Φ(S(G), x) = Φ(T, x)(x + 1)(n−k),

where

T =


Ωa1 (G) − 1 αa1a2 αa1a3 · · · αa1ak

αa2a1 Ωa2 (G) − 1 αa2a3 · · · αa2ak

αa3a1 αa3a2 Ωa3 (G) − 1 · · · αa3ak

...
...

...
. . .

...
αaka1 αaka2 αaka3 · · · Ωak (G) − 1


and

αaia j =


Ωa j (G) ai|a j or a j|ai

0 otherwise
.

Proof. By Theorem 3.2 and the structure of S(G),

Φ(S(G), x) = Φ(T, x)

 k∏
i=1

(x − (Ωai (G) − 1))(x + 1)Ωai (G)−1

(x − (Ωai (G) − 1))


= Φ(T, x)

k∏
i=1

(x + 1)Ωai (G)−1

= Φ(T, x)(x + 1)
∑k

i=1(Ωai (G)−1)

= Φ(T, x)(x + 1)(n−k),

proving the result.
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The dihedral, semi-dihedral and dicyclic groups can be presented as follows:

D2n = < a, b|an = b2 = 1, bab = a−1 >,

SD8n = < a, b|a4n = b2 = 1, bab = a2n−1 >,

T4n = < a, b|a2n = 1, an = b2, b−1ab = a−1 > .

Example 3.6. Consider the dihedral group D2n. If n = 2k, then the main supergraph of D2n is isomorphic to the
complete graph K2n. So, the characteristic polynomial of D2n is Φ(S(D2n), x) = (x + 1)2n−1(x − 2n + 1). We now
assume that n is an odd number. If n is a prime power power then S(D2n) = P3[Kn−1,K1,Kn]. Apply Theorem 3.2 to
calculate the characteristic polynomial of S(D2n) as follows:

Φ(S(D2n), x) = (x + 1)2n−3[x3 + (−2n + 3)x2 + (n2
− 5n + 3)x + (2n2

− 4n + 1)].

In the case that n is an even number which is not a power of 2 or n is an odd number which is not a prime power, it is
easy to calculate the matrix T in Theorem 3.4.

Definition 3.7. If G and H are two rooted graphs with roots r and s, then a coalescence of these graphs is another
graph G.H obtained from G and H by identifying their roots.

In [26], the characteristic polynomial of P(D2n), P(T4n) and P(SD8n) in some special cases are calculated.
In what follows, we will compute these polynomials in general. To do this, we state here a useful result of
[33].

Theorem 3.8. [33] If G and H are two rooted graphs with roots r and s, then the characteristic polynomial of
coalescence G.H can be computed as follows:

Φ(G.H, x) = Φ(G, x)Φ(H − s, x) + Φ(G − r, x)Φ(H, x) − xΦ(G − r, x)Φ(H − s, x).

Theorem 3.9. The characteristic polynomial of P(D2n) can be computed as follows:

Φ(P(D2n), x) = xn−1(x + 1)n−t−2[x(x + 1)Φ(T, x) − nΦ(T′, x)].

Where di, 1 ≤ i ≤ t, are all non-trivial divisors of n,

T =


φ(n) φ(d1) φ(d2) · · · φ(dt)

φ(n) + 1 φ(d1) − 1 αd1d2 · · · αd1dt

φ(n) + 1 αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(n) + 1 αdtd1 αdtd2 · · · φ(dt) − 1


,

T′ =


φ(n) − 1 φ(d1) φ(d2) · · · φ(dt)
φ(n) φ(d1) − 1 αd1d2 · · · αd1dt

φ(n) αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(n) αdtd1 αdtd2 · · · φ(dt) − 1


,

and

αdid j =


φ(d j) di|d j or d j|di

0 otherwise
.
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Proof. By the structure of P(D2n) and Definition 3.7, P(D2n) = Sn.P(Zn), where Sn is the star graph with
root vertex of degree n − 1 and P(Zn) is an induced subgraph of P(D2n) obtained from 〈a〉. Moreover,
Φ(Sn, x) = (x2

− n)xn−1 and Φ(Kn, x) = xn. Hence by Theorems 3.3, 3.4 and 3.8,

Φ(P(D2n), x) = Φ(Sn.P(Zn), x) = Φ(Sn, x)Φ(P∗(Zn), x) + Φ(K̄n, x)Φ(P(Zn), x)
− xΦ(K̄n, x)Φ(P∗(Zn), x)
= xn−1(x + 1)n−t−2[x(x + 1)Φ(T, x) − nΦ(T′, x)],

which completes the proof.

We are now ready to compute the characteristic polynomial of P∗(SD8n).

Theorem 3.10. The characteristic polynomial of P∗(SD8n) is computed as follows:

Φ(P∗(SD8n), x) = x2n(x + 1)5n−t−2[Φ(T, x)(x − 1)n + Φ(T
′′

, x)Φ(T′, x) − x(x − 1)nΦ(T
′′

, x)],

where di, 1 ≤ i ≤ t, are all non-trivial divisors of 4n,

T =


φ(4n) − 1 φ(d1) φ(d2) · · · φ(dt)
φ(4n) φ(d1) − 1 αd1d2 · · · αd1dt

φ(4n) αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(4n) αdtd1 αdtd2 · · · φ(dt) − 1


,

T
′′

=


φ(4n) − 2 φ(d1) φ(d2) · · · φ(dt)
φ(4n) − 1 φ(d1) − 1 αd1d2 · · · αd1dt

φ(4n) − 1 αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(4n) − 1 αdtd1 αdtd2 · · · φ(dt) − 1


,

T′ =


0 2 2 · · · 2
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1


,

and

αdid j =


φ(d j) di|d j or d j|di

0 otherwise
.

Proof. Define the rooted graph B as B = K1 +(
⋃n

i=1 K2) with root vertex r, where V(K1) = {r}. We also consider
P
∗(Z4n) as a rooted graph with root vertex a connected to all other vertices of P∗(Z4n). To apply Theorem

3.8, we construct a graph A by identifying the vertex a in P∗(Z4n) and the vertex r in B, i.e. A = P∗(Z4n).B.
By the structure of P∗(SD8n),

P
∗(SD8n) = A

⋃
K2n.

Thus, Φ(P∗(SD8n), x) = Φ(A, x)Φ(K2n, x) and Φ(K2n, x) = x2n. So for computing the characteristic polynomial
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ofP∗(SD8n), it is enough to compute the characteristic polynomial of graph A. By Theorems 3.3, 3.4 and 3.8,

Φ(A, x) = Φ(P∗(Z4n).B, x)
= Φ(P∗(Z4n), x)Φ(B − r, x) + Φ(P∗(Z4n) − a, x)Φ(B, x)
− xΦ(P∗(Z4n) − a, x)Φ(B − r, x)
= Φ(T, x)(x + 1)4n−t−2(x − 1)n(x + 1)n + Φ(T

′′

, x)(x + 1)4n−t−2Φ(T′, x)(x + 1)n

− xΦ(T
′′

, x)(x + 1)4n−t−2(x − 1)n(x + 1)n

= (x + 1)5n−t−2[Φ(T, x)(x − 1)n + Φ(T
′′

, x)Φ(T′, x) − x(x − 1)nΦ(T
′′

, x)].

Therefore,

Φ(P∗(SD8n), x) = x2n(x + 1)5n−t−2[Φ(T, x)(x − 1)n + Φ(T
′′

, x)Φ(T′, x) − x(x − 1)nΦ(T
′′

, x)],

proving the result.

The characteristic polynomial of P∗(T4n) is the subject of our next result. We have:

Theorem 3.11. The characteristic polynomial of P∗(T4n) can be computed as follows:

Φ(P∗(T4n), x) = (x + 1)3n−t−2[Φ(T, x)(x − 1)n + Φ(T
′′

, x)Φ(T′, x) − x(x − 1)nΦ(T
′′

, x)],

where di, 1 ≤ i ≤ t, are all non-trivial divisors of 2n,

T =


φ(2n) − 1 φ(d1) φ(d2) · · · φ(dt)
φ(2n) φ(d1) − 1 αd1d2 · · · αd1dt

φ(2n) αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(2n) αdtd1 αdtd2 · · · φ(dt) − 1


,

T
′′

=


φ(2n) − 2 φ(d1) φ(d2) · · · φ(dt)
φ(2n) − 1 φ(d1) − 1 αd1d2 · · · αd1dt

φ(2n) − 1 αd2d1 φ(d2) − 1 · · · αd2dt

...
...

...
. . .

...
φ(2n) − 1 αdtd1 αdtd2 · · · φ(dt) − 1


,

T′ =


0 2 2 · · · 2
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1


,

and

αdid j =


φ(d j) di|d j or d j|di

0 otherwise
.

Proof. Define the rooted graph B as B = K1 + (
⋃n

i=1 K2) with root r, where V(K1) = {r}. We considerP∗(Z2n) as
a rooted graph with root vertex a such that a is adjacent with all vertices of this graph and construct P∗(T4n)
by identifying the vertex a in P∗(Z2n) and the vertex r in B, i.e. P∗(T4n) = P∗(Z2n).B. By Theorems 3.3, 3.4
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and 3.8,

Φ(P∗(T4n), x) = Φ(P∗(Z2n).B, x)
= Φ(P∗(Z2n), x)Φ(B − r, x) + Φ(P∗(Z2n) − a, x)Φ(B, x)
− xΦ(P∗(Z2n) − a, x)Φ(B − r, x)
= Φ(T, x)(x + 1)2n−t−2(x − 1)n(x + 1)n

+ Φ(T
′′

, x)(x + 1)2n−t−2Φ(T′, x)(x + 1)n

− xΦ(T
′′

, x)(x + 1)2n−t−2(x − 1)n(x + 1)n

= (x + 1)3n−t−2[Φ(T, x)(x − 1)n + Φ(T
′′

, x)Φ(T′, x)
− x(x − 1)nΦ(T

′′

, x)].

This completes the proof.

We now state a result of [7] which is important in our next result.

Theorem 3.12. [7] Let G j’s be graphs of order n j, with j ∈ {1, . . . , k}, with Laplacian spectrum σL(G j). If H is a
graph such that V(H) = {1, . . . , k}, then the Laplacian spectrum of H[G1,G2, . . . ,Gk] can be computed as follows:

σL(H[G1,G2, . . . ,Gk]) =

 k⋃
j=1

(N j + (σL(G j)\{0}))

⋃ σ(C),

where

N j =


∑

i∈NH( j) ni NH( j) , ∅

0 otherwise
.

ρl,q = ρq,l =


√nlnq i f lq ∈ E(H)

0 otherwise
.

and

C =


N1 −ρ1,2 · · · − ρ1,k
−ρ2,1 N2 · · · − ρ2,k
...

...
. . . − ρk−1,k

−ρ1,k −ρ2,k · · · Nk

 .
The following result is an immediate consequence of Theorem 3.12 and the fact that σL(Kn) = {0,n(n−1)

}.

Corollary 3.13. Suppose S(G) = ∆[KΩa1 (G), . . . ,KΩak (G)]. Then the Laplacian spectrum of the main supergraph is
computed as follows:

σL(S(G)) =

 k⋃
j=1

(N j + Ωa j (G))(Ωaj (G)−1)

⋃ σ(C),

where

N j =


∑

ai∈N∆(a j) Ωai (G), N∆(a j) , ∅

0, otherwise
,

ρl,q = ρq,l =


√

Ωal (G)Ωaq (G) al|aq or aq|al

0 otherwise
,
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and

C =


N1 −ρ1,2 · · · − ρ1,k
−ρ2,1 N2 · · · − ρ2,k
...

...
. . . − ρk−1,k

−ρ1,k −ρ2,k · · · Nk

 .
In [9], the authors computed Laplacian spectrum of the power graph of cyclic and dihedral groups. In the
following example, the Laplacian spectrum of the power graph and main supergraph of T4n and SD8n are
computed in some special cases.

Example 3.14. In this example, the Laplacian eigenvalues of S(D2n) in the case that n is a prime power is computed.
Suppose n is odd. Since S(D2n) = P3[Kn−1,K1,Kn], by Theorem 3.12,

C =


1 −

√
n − 1 0

−
√

n − 1 2n − 1 −
√

n
0 −

√
n 1

 .
Now by computing eigenvalues of the matrix C, it follows that σ(C) = {0, 1, 2n}. Therefore, σL(S(D2n)) =

{0, 1, 2n,n(n−2),n + 1(n−1)
}. If n = 2k, then S(D2n) = K2n and σL(S(D2n)) = {0, 2n(2n−1)

}.

In the next two examples, the Laplacian spectrum of the power graphs of T4n and SD8n are computed.

Example 3.15. Consider the dicyclic group T4n. If n is power of 2, then

P(T4n) = W[K2n−2,K2,K2,K2, · · · ,K2︸           ︷︷           ︸
n

],

where the graph W is depicted in Figure 1.

Figure 1: The Graph W in the Power Graph of T4n

.

By Theorem 3.12,
σL(P(T4n)) = {4n, 4(n), 2n(2n−3), σ(C)},

where elements of the matrix C are N1 = 2,N2 = 4n − 2,N3 = . . . = Nn+2 = 2, ρ1,2 = ρ2,1 = 2
√

n − 1, ρ1,3 =
ρ3,1 = ρ1,4 = ρ4,1 = . . . = ρn+2,1 = 0, ρ2,3 = ρ3,2 = 2, ρ2,4 = ρ4,2 = 2, ρ2,5 = ρ5,2 = ρ2,6 = ρ6,2 = . . . = ρn+2,2 = 2,
ρ3,4 = ρ4,3 = . . . = ρn+2,3 = 0, ρ4,5 = ρ5,4 = . . . = ρn+2,4 = 0, . . . , ρn+1,n+2 = 0.
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Example 3.16. Consider the semi-dihedral group SD8n. If n is power of 2, then

P(SD8n) = U[K4n−2,K1,K1,K2n,K2,K2, · · · ,K2︸           ︷︷           ︸
n

],

where U is depicted in Figure 2.

Figure 2: The Labeled Graph U in the Power Graph of SD8n.

By Theorem 3.12,
σL(P(SD8n)) = {4(n), 4n(4n−3), 1(2n−1), σ(C)},

where elements of the matrix C are N1 = 2,N2 = 6n − 1,N3 = 8n − 1,N4 = 1,N5 = . . . = Nn+4 = 2, ρ1,2 = ρ2,1 =
√

4n − 2, ρ1,3 = ρ3,1 =
√

4n − 2, ρ1,4 = ρ4,1 = . . . = ρn+4,1 = 0, ρ2,3 = ρ3,2 = 1, ρ2,4 = ρ4,2 = 0, ρ2,5 = ρ5,2 = ρ2,6 =

ρ6,2 = . . . = ρn+4,2 =
√

2, ρ3,4 = ρ4,3 =
√

2n, ρ3,5 = ρ5,3 = . . . = ρn+4,3 =
√

2, ρ4,5 = ρ5,4 = . . . = ρn+4,4 = 0,
ρ5,6 = ρ6,5 = . . . = ρn+4,5 = 0, . . . ρn+3,n+4 = 0.

Let G be a group and C(G) = {C1, . . . ,Ck} be the set of all cyclic subgroups of G. Set LG to be the graph
with vertex set C(G), and two cyclic subgroups are adjacent if one is contained in the other. Let Kai be the
complete graph of order ai = φ(|Ci|). If KG = {Kai |ai = φ(|Ci|),Ci ∈ C(G)}, then the power graph P(G) is
isomorphic to LG−join of Ka1 ,Ka2 , . . . ,Kak (LG[Ka1 ,Ka2 , . . . ,Kak ]), see [18] for details.

Theorem 3.17. The Laplacian spectrum of P(G) = LG[Ka1 ,Ka2 , . . . ,Kak ] can be calculated as follows:

σL(P(G)) =

 k⋃
j=1

(N j + a j)(a j−1)

⋃ σ(C),

where

N j =


∑

Ci∈NLG (C j) ai NLG (C j) , ∅

0 otherwise
,

ρl,q = ρq,l =


√alaq Cl ⊆ Cq or Cq ⊆ Cl

0 otherwise
,

and

C =


N1 −ρ1,2 · · · − ρ1,k
−ρ2,1 N2 · · · − ρ2,k
...

...
. . . − ρk−1,k

−ρ1,k −ρ2,k · · · Nk

 .
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Proof. The proof follows from the Theorem 3.12, the graph structure of P(G) and the fact that σL(Kn) =
{0,n(n−1)

}.

The Laplacian polynomial of P(Zn) is obtained in [9]. We now apply the previous theorem to find a
complete description of the Laplacian spectrum of P(Zn).

Corollary 3.18. Suppose {d1, . . . , dk} is the set of all divisors of n, d1 = 1 and d2 = n. Then C(G) = {C1, . . . ,Ck},
P(Zn) = LG[K1,Kφ(n),Kφ(d3), . . . ,Kφ(dk)], N1 = φ(n) + φ(d3) + · · · + φ(dk), N2 = 1 + φ(d3) + · · · + φ(dk), N j =∑

di |d j
φ(di) +

∑
d j |dr

φ(dr) − 2φ(d j), 3 ≤ j ≤ k, 1 ≤ i ≤ k, 1 ≤ r ≤ k, ρ1,2 = ρ2,1 =
√
φ(n), ρ1, j = ρ j,1 =

√
φ(d j), 3 ≤

j ≤ k, ρ2, j = ρ j,2 =
√
φ(d j)φ(n), 3 ≤ j ≤ k. If 4 ≤ j ≤ k then

ρ3, j = ρ j,3 =


√
φ(d j)φ(d3) d3|d j or d j|d3

0 otherwise
.

For 5 ≤ j ≤ k,

ρ4, j = ρ j,4 =


√
φ(d j)φ(d4) d4|d j or d j|d4

0 otherwise
.

Finally,

ρk−1,k = ρk,k−1 =


√
φ(dk)φ(dk−1) dk|dk−1 or dk−1|dk

0 otherwise
,

and for 1 ≤ i ≤ k and 1 ≤ r ≤ k,

σL(P(Zn)) = n(φ(n)−1)
⋃
{

k⋃
j=3

(
∑
di |d j

φ(di) +
∑
d j |dr

φ(dr) − φ(d j))(φ(d j)−1)
}

⋃
σ(C).

Corollary 3.19. (See [9, Corollary 2.3]) If n is a prime power then the Laplacian spectrum of P(Zn) is σL(P(Zn)) =
{0,n(n−1)

}.

Proof. By Corollary 3.18, σL(P(Zn)) = {n(n−2)
}
⋃
σ(C), where the matrix C is as follows:

C =

(
n − 1 −

√
(n − 1)

−
√

(n − 1) 1

)
.

The proof now follows from the fact that σ(C) = {n, 0}.

Corollary 3.20. (See [9, Theorem 2.5]) If n = pq, p and q are distinct primes, then the Laplacian spectrum of P(Zn)
is as follows:

σL(P(Zn)) = {0, φ(n) + 1,n − p + 1(q−2),n − q + 1(p−2),nφ(n)+1
}.

Proof. By Corollary 3.18, σL(P(Zn)) = {n − p + 1(q−2),n − q + 1(p−2),nφ(n)−1
}
⋃
σ(C), where

C =


n − 1 −

√
n − p − q + 1 −

√
p − 1 −

√
q − 1

−
√

n − p − q + 1 p + q − 1 −(p − 1)
√

q − 1 −(q − 1)
√

p − 1
−

√
p − 1 −(p − 1)

√
q − 1 n − p − q + 2 0

−sqrtq − 1 −(q − 1)
√

p − 1 0 n − p − q + 2

 .
Now the proof follows from the fact that σ(C) = {0, φ(n) + 1,n(2)

}.
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