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ABSTRACT
Feature localization (FL) is a basic activity in re-engineering legacy
systems into software product lines. In this work, we explore the
use of the Spectrum-based localization technique for this task. This
technique is traditionally used for fault localization but with practi-
cal applications in other tasks like the dynamic FL approach that
we propose. The ArgoUML SPL benchmark is used as a case study
and we compare it with a previous hybrid (static and dynamic)
approach from which we reuse the manual and testing execution
traces of the features. We conclude that it is feasible and sound to
use the Spectrum-based approach providing promising results in
the benchmark metrics.

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing; Software product lines.
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1 INTRODUCTION
The increasing demand for tailored software-intensive products
makes companies start considering the transition from monolithic
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single-purpose systems, or families of systems created with an
opportunistic copy-paste-modify approach, to higher levels of sys-
tematic reuse for the creation of variants [11]. One of the usually
desired transition destinations is Software Product Line (SPL) En-
gineering and the creation of feature-oriented SPLs [2]. In this
context of extractive SPL adoption [10], feature localization (FL) is
an important task in the “Detection” phase of the re-engineering
process, being the basis for the following phases of “Analysis” and
“Transformation” [3]. FL consists of taking some feature informa-
tion as input and recovering the traces from where this feature is
implemented (e.g., source code classes, methods, etc., depending on
the desired results granularity). One main separation of categories
of FL techniques is based on whether the system under study needs
to be executed or not, i.e., dynamic, static, or hybrid (combination
of two or more) FL techniques [21].

The ArgoUML SPL benchmark [12] was proposed for comparable
results in FL for families of systems. The use of benchmarks in the
SPL research field has been acknowledged as an important direction
to advance the state of the art [22] and, for this specific benchmark,
static FL techniques have been proposed to locate features in sets
of variants [6, 14, 16, 17] as well as a hybrid approach [15]. The
benchmark [12] provides a feature location ground-truth for eight
features within the ArgoUML Java source code based on the source
code annotations of a manual extraction [5] using the original Ar-
goUML. To show that certain automation can be desired, according
to an analysis [13], the manual localization took around 4 months
per feature and 0.7 months per feature-specific KLoC.

In this work, we focus on dynamic FL andwe explore the usage of
Spectrum-based localization [24]. Similar to the mentioned hybrid
approach [15], we consider only the original scenario, i.e., the single
system of the original ArgoUML, aiming to contribute to the state of
the art of FL for re-engineering single systems into SPLs. Therefore,
our contributions are: (i) a dynamic FL approach using Spectrum-
based FL, and (ii) a comparison and discussion of our approach with
the previous ones: hybrid [15] and static [14], for the ArgoUML SPL
Benchmark [12]. We do not claim novelty but soundness as a new
solution to the challenge. Source code, instructions, and results’
data are publicly available1 to reproduce or reuse our solution, or
to reason with the results.

1https://github.com/jabiercoding/DynamicFL commit 023e56b on 7𝑡ℎ June, 2021
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2 SPECTRUM-BASED LOCALIZATION
Spectrum-based localization (SBL) techniques have been mainly
used for fault localization [24]. Figure 1a shows an illustration
of a spectrum where each trace (column) represents a test case,
and the nodes (rows) are the lines of code of the program under
study with a 1 when the line has been executed at least once for
this given test. The last row is the result of the test with 1 when
the test passes and 0 when it fails. Using a spectrum, numerous
ranking metrics [24] have been proposed to create a ranking of
suspiciousness, i.e., trying to point developers to the lines that are
potentially creating the issue or at least narrowing the part of the
source code that is worthy to examine or debug. Ranking metrics
are based on formulas mainly considering the number of executed
lines failing or passing the test (𝑒𝑓 and 𝑒𝑝 , respectively), and those
that are not executed represented as 𝑛𝑓 and 𝑛𝑝 . Well established
ranking metrics are Ochiai [1] or Tarantula [9]:

𝑂𝑐ℎ𝑖𝑎𝑖 =
𝑒𝑓√

(𝑒𝑓 +𝑛𝑓 ))×(𝑒𝑓 +𝑒𝑝 )
, 𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎 =

𝑒𝑓

𝑒𝑓 +𝑛𝑓
𝑒𝑓

𝑒𝑓 +𝑛𝑓
+ 𝑒𝑝

𝑒𝑝+𝑛𝑝
Other simpler ranking metrics are Wong1 (𝑒𝑓 ), Wong2 (𝑒𝑓 − 𝑒𝑝 ),

or Hamming (𝑒𝑓 +𝑛𝑝 ). Each node is assigned by the ranking metric
with a continuous value normalized to a range from 0 (apparently
completely unrelated) to 1 (apparently faulty). Values in between
will have to be analyzed under a certain user-defined threshold.
Wong et al. [23] present an overview of SBL ranking metrics.

SBL has been used for other purposes beyond fault localization
(e.g., FL [20], or program comprehension [4, 19]). In this work, we
use it for FL using a Spectrum like the one shown in Figure 1b.
Compared to fault localization, our traces are executions of the
program purposely exercising a given feature (manual executions
or tests that we know are related to a given feature), and the result
will be 0 for the traces that belong to the feature that we want to
locate, i.e., as if it was the “faulty” code to locate. The obtained
ranking when applying one of the ranking metrics will be based
on the suspiciousness of each line of code belonging to a feature
under analysis.
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Figure 1: Illustration of a spectrum for different purposes.

3 STUDY DESIGN AND EXECUTION
Figure 2 illustrates the design of our study, which we explain next.

Exercising the features.We reused execution traces fromMichelon
et al. [15]. These traces were made publicly available2 in files with
data about the lines of code that were executed per feature. Two

2Dataset with feature execution traces: http://doi.org/10.5281/zenodo.5035177
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Figure 2: Approach.

scenarios were analyzed: (i) manual exercises and (ii) exercises from
existing tests that are related to the features. Videos of the manual
feature executions can be watched as part of the supplementary
material of that work [15], and the tests (1198 in total) stem from
Fischer et al. work [8]. By reusing the feature execution files, we
are able to compare the current results with the ones reported by
the hybrid approach [15]. Creating our own manual executions or
using different tests might introduce a significant bias as, given
the nature of dynamic approaches, the obtained results are highly
sensitive to this input.

Table 1 presents a characterization of these feature exercises
where: ELoC (Exercise LoC) is the total number of unique LoC
for the exercise of each feature. FSLoC (Fully-specific LoC) is the
number of LoC from ELoC which are part of the feature and never
appear in the exercise of other features. FLoC (Feature LoC) is the
total number of LoC of the feature as per the benchmark data [12].
Notice that each FSLoC is not necessarily a FLoC as it might be just a
“coincidence” that, in the execution traces, no other feature executed
that line. EFLoC (Exercise Feature LoC) is the percentage of the total
number of LoC of the feature exercised from the execution traces
reused from Michelon et al. [15]. EFLoC is the ratio of FLoC to the
execution traces of the corresponding feature scenario, and also in

Table 1: Characteristics of the feature exercises.

Manual

Feature ELoC FSLoC FLoC [12] EFLoC [15]

ActivityDiagram 20185 1139 2282 29% (34%)
CollaborationDiagram 19000 1028 1579 34% (37%)
DeploymentDiagram 19980 1590 3147 41% (41%)
SequenceDiagram 18537 1562 5379 30% (30%)
StateDiagram 19534 1288 3917 36% (36%)
UsecaseDiagram 19320 1312 2712 36% (36%)

Average 19426 1320 2169 34% (36%)

Tests

Feature ELoC FSLoC FLoC [12] EFLoC [15]

ActivityDiagram 3091 78 2282 1% (2%)
CollaborationDiagram 3095 42 1579 2% (2%)
DeploymentDiagram 2965 22 3147 ≈ 0% (0%)
SequenceDiagram 2984 5 5379 ≈ 0% (0%)
StateDiagram 3542 482 3917 6% (6%)
UsecaseDiagram 3061 64 2712 1% (1%)
Logging 3009 940 2159 3% (8%)
Cognitive 9119 6071 16319 14% (14%)

Average 3858 963 4687 3% (4%)

http://doi.org/10.5281/zenodo.5035177
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parentheses, the ratio considering traces of all feature scenarios.
On average, only around 36% of the FLoC were executed for the
manual executions and 4% for the tests.

Feature localization.We use SBL, and as mentioned before, two
aspects are key for SBL techniques, (i) the metric used to rank,
and (ii) the threshold to decide when a line of code is suspicious
enough to be considered part of a feature. The threshold is needed
as the benchmark does not consider probability as part of the met-
rics computation. In this work, we report the results using several
combinations of ranking metrics and threshold values. Concretely,
33 ranking metrics with 10 threshold values for each one (0.1, 0.2,
..., 0.9, 1.0) are used. The goal is not to overfit the technique to
this dataset by using those 330 combinations but to provide an
overview of what can be the results of SBL. We implemented the
SBL technique using an existing Java library3.

Comparison. In Michelon et al. [15], metrics based on line- and
method-level were used due to existing feature location techniques
being limited to method-level or do not yield satisfactory results
when applied to single systems. Similarly to the feature traces, we
reused the code to calculate the line- and method-level metrics
from [15] to compare the two FL techniques in equal conditions.
In addition, Michelon et al. [15] computed the benchmark metrics
(similar to statement-level). However, the execution traces granular-
ity is at the line-level and then the results are also based on lines of
code, so it is not straightforward how to transform them to the con-
vention established by the benchmark [12]. This convention mixes
class-level, method-level, and refinements of classes and methods
(e.g., a “Refinement” tag in a method indicates that some lines in
the method correspond to a feature but not the whole method). We
implemented our own transformer with a simple implementation
consisting of always adding a class-level localization when there is
at least one line in the class. By using this naive approach, which
does not consider methods or Refinement tags at class- and method-
level, we assume a certain loss in recall. Other more sophisticated
approaches have been explored, leading to worse results, and thus
a better transformer for this specific benchmark will have to be
part of further work. Nonetheless, the results are positive.

3https://github.com/FaKeller/stardust commit 0071fe3 on 27𝑡ℎ Jan., 2016

4 RESULTS
Comparison with the Hybrid approach. The static analysis imple-
mented in ECCO tool [7] was used in [15] for refining overlapping
traces from the execution traces. In [15], the FL is intended for re-
engineering single systems into SPLs for creating variants, which
should contain the base plus a/set of feature-specific source code.
Thus, line- and method-level metrics reported in [15] consider true
positives, not only the feature-specific line and methods but also
the source code that is common for all features, i.e., the base of
ArgoUML. For the SBL techniques, including the source code of the
base in the precision and recall metrics is not potentially beneficial,
given that the standard ranking metrics are not designed for identi-
fying the base plus the target feature, but only the target feature.
However, the results are also competitive in this comparison.

Figures 3 and 4 present the results of the different rankingmetrics
for the manual and test execution traces using the line- and method-
level metrics as defined in [15]. The vertical dashed lines show the
boundaries regarding recall given that even if we include all the
source code executed through the input execution traces, these
execution traces did not include all the feature source code and
base code.

In Figure 3, the average of the six diagram features from manual
execution from Michelon et al. [15] approach mostly dominates at
line-level (the dominated area has a light background). However,
ranking metrics in the extremes of precision (e.g., Wong2 1.0) and
recall (e.g., Hamming 0.1) are also part of the pareto front (i.e.,
non-dominated solutions). At the method-level, SBL techniques
get closer to [15] even if they were not specifically designed to
locate the base source code. Figure 4 shows the results for the tests
execution traces for the eight features. At line-level, [15] dominates
in terms of precision, but several SBL techniques are close to it, such
as Wong1 1.0, which also has a higher recall. The highest precision
for SBL is obtained with Wong3 1.0. At the method-level, we have
solutions that slightly outperform [15] both in precision and recall,
such as Wong1 1.0, Ochiai 0.1 to 0.3, or Tarantula 0.1 to 0.5.
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Figure 3: Manual: Each point of “Spectrum-based” is a different ranking metric and threshold. Comparison with Michelon et
al. Hybrid 2021 [15] using their precision and recall metrics that considered as true positives the retrieved source code from
the feature-specific plus the base source code.
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Figure 4: Similar to Figure 3 but using tests feature exercises.

Spectrum-based localization results. Figure 5 shows the results
with our own transformer to benchmark convention for the manual
and test exercises. For comparison, we include the results reported
by the hybrid approach [15] using the benchmark convention, and
we additionally include Michelon et al. Static [14] results, which
is a static approach reasoning on variants overlap. The latter is
successful in scenarios with an increasing number of variants and
it also considers feature interactions. From this work, we include
only the results in the benchmark scenario with only one variant
and using the average of the considered features.

In Figure 5a, the results with the highest precision, in which
the manual exercises are obtained with the same values through
different rankingmetrics (Wong2 0.9 to 1, Ochiai 0.8 to 1, Ochiai2 0.7
to 1, Tarantula 0.9 to 1, Hamming 0.9 to 1, Euclid 1, ArithmeticMean
0.9 to 1, HarmonicMean 0.9 to 1, Anderberg 0.4 to 1, among others).
Those are also the ones that obtained the highest F1 (harmonicmean
of the precision and recall). For recall, not surprisingly, the highest
values are obtained with low thresholds with different techniques
(e.g., Wong2 0.1, Hamming 0.1, ArithmeticMean 0.1 to 0.4, among
others). We can observe how Michelon et al. Static is in the Pareto
front because of its recall value. Michelon et al. Hybrid got lower
values in both precision and recall compared to SBL ranking metrics
and thresholds (Ample 0.5 to 0.6). Figure 5b shows the results for
the testing exercises. In this case, Michelon et al. Hybrid dominates
the SBL technique in both dimensions. The ones closer to Michelon
et al. Hybrid are Wong2, Tarantula, Hamming, ArithmeticMean 0.9
to 1, Anderberg 0.4 to 1, Ochiai 0.8 to 1, and Ochiai2 0.7 to 1.

Regarding the performance, we computed the average of 30
runs using a laptop model Latitude 5480, Intel(R) Core(TM) i5-
7300U processor (2.60GHz), running the Windows 10 operating
system. The Dataset Reader takes around 18 seconds as it needs
to parse all the execution traces’ files. After that, for the creation
of the spectrum, the computation of the ranks using the ranking
metric for the six features, getting the results under the defined
threshold (whichwe forced to be 0.1 for all the runs in the performed
experiment as the worst case given that most of the nodes will be
retrieved this way), took less than a second or around a second.
Thus, scalability regarding performance does not seem to be a
problem for SBL techniques. The runtime performance of the static
approach used in [15], after having the execution traces, took on
average≈ 19 seconds per feature.We cannot compare the runtime of
our approach and with [15] because the laptops’ model is different,
but both performed in a reasonable time. As a drawback, we should
remember the time needed to exercise the features, a required step
in any dynamic FL technique, which can add several minutes for
preparation and obtaining the execution traces.

5 DISCUSSION AND CONCLUSIONS
As already acknowledged by the fault localization community, there
is no optimal ranking metric in practice [18, 23]. We provide the
results of the ones that obtained the highest precision and recall
with their corresponding thresholds as candidate suggestions, e.g.,
Wong2 1.0 seems appropriate if precision is to be optimized. The
results also depend on how one “exercises” the features. As we
can see in Table 1, the coverage of the features LoC from traces
was obtained by exercising the features in Michelon et al. [15] is
relatively low. According to these numbers, we can understand
how much recall is affected by the execution traces and how much
dynamic FL could be improved to reach higher recall.

We explored the use of the Spectrum-based Localization tech-
nique for FL and applied it in the ArgoUML SPL Benchmark. Stan-
dard spectrum-based ranking metrics obtain competitive results
using existing execution traces compared to a previous hybrid ap-
proach. As further work, we consider calculating feature interaction
locations and use other benchmark scenarios with several variants
to refine the results through hybrid approaches. Also, techniques
combining ranking metrics through a machine learning phase with
already located features can be explored (e.g., [25]).
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Figure 5: Feature exercises: using manual (six diagram features) and tests (all eight features) traces.
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