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Abstract—Fault diagnosis approaches can generally be cate-
gorized into spectrum-based fault localization (SFL, correlating
failures with abstractions of program traces), and model-based
diagnosis (MBD, logic reasoning over a behavioral model).
Although MBD approaches are inherently more accurate than
SFL, their high computational complexity prohibits application
to large programs. We present a framework to combine
the best of both worlds, coined BARINEL. The program is
modeled using abstractions of program traces (as in SFL) while
Bayesian reasoning is used to deduce multiple-fault candidates
and their probabilities (as in MBD). A particular feature of
BARINEL is the usage of a probabilistic component model
that accounts for the fact that faulty components may fail
intermittently. Experimental results on both synthetic and real
software programs show that BARINEL typically outperforms
current SFL approaches at a cost complexity that is only
marginally higher. In the context of single faults this superiority
is established by formal proof.

Keywords-Software fault diagnosis, program spectra, statis-
tical and reasoning approaches.

I. INTRODUCTION

Automatic fault localization techniques aid developer-
s/testers to pinpoint the root cause of software failures,
thereby reducing the debugging effort. Two major ap-
proaches can be distinguished, (1) spectrum-based fault

localization (SFL), and (2) model-based diagnosis or de-

bugging (MBD). SFL uses abstraction of program traces to
correlate software component activity with program failures
(a statistical approach) [4], [14], [20], [24], [29], [37].
Although statistical approaches are very attractive from
complexity point of view, there is no reasoning in terms of
multiple faults to explain all failures. However, with current
defect densities and program sizes multiple faults are a
fact of life. Inherently taking a single-fault approach, SFL
performs less when failures are caused by different faults as
no specific correlation between a failure and a fault can be
established.

MBD approaches deduce component failure through logic

reasoning [9], [11], [12], [26], [28], [35] using propositional
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responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the
BSIK03021 program.

models of component behavior. An inherent, strong point
of MBD is that it reasons in terms of multiple faults. In
contrast to SFL’s simple component ranking, its diagnostic
report contains multiple-fault candidates, providing more
diagnostic information compared to the one-dimensional list
in SFL. Ranking is determined in terms of (multiple) fault
probability, a more solid basis for candidate ranking than
statistical similarity. While inherently more accurate than
statistical approaches, the main disadvantages of reasoning
approaches are (1) the need for model generation, usually
with the help of static analysis that is unable to capture
dynamic data dependencies / conditional control flow, and
(2) the exponential cost of diagnosis candidates generation,
typically prohibiting its use for programs larger than a few
hundred lines [26].

Aimed to combine the best of both worlds, in this pa-
per we present a novel, Bayesian reasoning approach to
spectrum-based multiple fault localization. Similar to SFL,
we model program behavior in terms of program spectra,
abstracting from modeling specific components and data
dependencies. Similar to MBD, we employ a probabilistic
(Bayesian) approach to deduce multiple-fault candidates and
their probabilities, yielding an information-rich diagnostic
ranking. To solve the inherent exponential complexity prob-
lem in MBD, we use a novel, heuristic approach to generate
the most significant diagnosis candidates only, dramatically
reducing computational complexity. As a result, our ap-
proach can be used on large, real-world programs without
any problem.

A central feature of our contribution is the use of a
generic, probabilistic component failure model that accounts
for the fact that a faulty component j may still behave as
expected (with health probability hj), i.e., need not con-
tribute to a program failure (aka intermittent fault behavior).
Such an intermittency model is crucial for MBD approaches
where (deterministic) component behavior is abstracted to a
modeling level where particular input and output values are
mapped to, e.g., ranges, as shown in [3], [8]. Our diagnosis
approach is based on computing hj using a maximum
likelihood estimation procedure, optimally exploiting all
information contained by the program spectra. The result
is an improved probability computation for each diagnostic



candidate, thus improving ranking quality. As for large
systems the number of diagnostic candidates is extremely
large (the actual faults being amongst them), increased
ranking quality is a critical to diagnostic performance.

Results on synthetic program models show that our
approach provides better diagnostic performance than all
similarity coefficients known to date in SFL, as well as
other spectrum-based MBD approaches (including our pre-
vious contribution [3]). This confirms that Bayesian reason-
ing inherently delivers better diagnostic performance than
similarity-based ranking. Similarly, results on real programs
demonstrate that our approach is equal or better than all
SFL approaches at a time and space complexity that is only
marginally higher than SFL.

In particular, the paper makes the following contributions

• We present our new approach for the candidate prob-
ability computation which features a maximum like-
lihood estimation algorithm to compute the hj of all
components involved in the diagnosis. The approach is
coined BARINEL1, which is the name of the software
implementation of our method;

• We study the inherent performance properties of our
approach using synthetic program spectra based on
multiple injected faults of which the hj are given, and
compare the accuracy with statistical approaches, as
well as previous spectrum-based reasoning work;

• We prove that for the single-fault case our approach
is optimal. We empirically demonstrate this result by
comparing diagnostic accuracy of our approach with
a large body of existing results for the (single-fault)
Siemens benchmark suite;

• We compare BARINEL with existing work (Taran-
tula, Ochiai, and a previous, approximate Bayesian
approach) for a set of programs commonly used, ex-
tended with multiple faults, demonstrating the improved
performance of our approach and the low computation
complexity involved.

To the best of our knowledge, our Bayesian approach
to spectrum-based fault localization has not been described
before. The paper is organized as follows. In the next section
we present the current approach to SFL and illustrate why
a reasoning approach can improve diagnostic performance.
In Section III we present our BARINEL approach to fault
localization. In Section IV, the approach is theoretically
evaluated, while in Section V real programs are used to as-
sess the capabilities of our technique. We compare BARINEL

with related work in Section VI. In Section VII we conclude
and discuss future work.

1BARINEL stands for Bayesian AppRoach to dIagnose iNtErmittent
fauLts. A barinel is a type of caravel used by the Portuguese sailors during
their discoveries.
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Figure 1. Input to SFL

II. CURRENT SFL APPROACH

In the following we summarize the traditional, statistical
approach to spectrum-based fault localization. A program
under analysis comprises a set of M components (e.g.,
functions, statements) cj where j ∈ {1, . . . ,M}, and can
have multiple faults, the number being denoted C (fault
cardinality). A diagnostic report D =< . . . , dk, . . . > is an
ordered set of diagnostic (possible multiple-fault) candidates
dk ordered in terms of likelihood to be the true diagnosis.
Statistical approaches yield a single-fault diagnostic report
with the M components ordered in terms of statistical
similarity (e.g., < {3}, {1}, . . . >, in terms of the indices j
of the components cj).

Program (component) activity is recorded in terms of
program spectra [15]. This data is collected at run-time, and
typically consists of a number of counters or flags for the
different components of a program. In this paper we use the
so-called hit spectra, which indicate whether a component
was involved in a (test) run or not.

Both spectra and program pass/fail (test) information is
input to SFL (see Figure 1). The program spectra are
expressed in terms of the N × M activity matrix A. An
element aij is equal to 1 if component j was observed to
be involved in the execution of run i, and 0 otherwise. For
j ≤ M , the row Ai∗ indicates whether a component was
executed in run i, whereas the column A∗j indicates in which
runs component j was involved. The pass/fail information
is stored in a vector e, the error vector, where ei signifies
whether run i has passed (ei = 0) or failed (ei = 1). Note
that the pair (A, e) is the only input to SFL.

In SFL one measures the statistical similarity between the
error vector e and the activity profile column A∗j for each
component cj . This similarity is quantified by a similarity
coefficient, expressed in terms of four counters npq(j) that
count the number of elements in which A∗j and e contain
respective values p and q, i.e, for p, q ∈ {0, 1}, we define

npq(j) = |{i | aij = p ∧ ei = q}|

An example of a well-known similarity coefficient is the
Ochiai coefficient [4]

sO(j) =
n11(j)

√

(n11(j) + n10(j)) · (n11(j) + n01(j))
(1)



To illustrate how SFL works, consider the following toy
program:

if (a == 1)
y = f1(x);

if (b == 1)
y = f2(x);

if (x == 0)
y = f3(y);

where the three functions are given by

f1(x){ return x * 100; // c1; fault: should be 10}

f2(x){ return x / 100; // c2; fault: should be 10}

f3(y){ return y + 10; // c3; correct code}

Consider a function spectrum based on the three
function components c1, c2, and c3. Suppose,
we have 5 test runs with inputs (a b x) equal
to (1 0 0), (0 1 0), (1 0 1), (0 1 1),
(1 1 1), respectively. The spectra (A) and pass/fail
information (e) are given in Table I. As can be seen, the

c1 c2 c3 e
1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1
1 1 0 0

n11(j) 2 2 2
n10(j) 1 1 0
n01(j) 2 2 2

sO(j) 0.6 0.6 0.7

Table I
(A, e) OF TOY PROGRAM, INCLUDING HIT COUNTERS AND OCHIAI

SIMILARITY COEFFICIENTS.

Ochiai coefficient (and all other similarity coefficients such
as Tarantula [20] and Jaccard [4]) rank c3 highest although
c1, c2 are actually at fault. This is due to the fact that the
statistical approaches do not reason over (A, e) in terms of
a behavioral model of the program.

III. SPECTRUM-BASED REASONING

In this section we describe our BARINEL approach. If one
considers the above spectrum (and error vector), a number
of facts are evident. From the third row it is obvious that
c1 must be among the faulty components, as the failure can
only be caused by at least one faulty component. From the
fourth row it follows that c2 must also be faulty. In contrast,
from third and fourth rows it also follows that c3 can never
be a single fault. In addition, c3 can also not be part of
a double fault such as {1, 3} due to the fourth row, nor
{2, 3} due to the third row. Although the last row partially
exonerates c1 and c2 in the statistical technique (through
n10 in Eq. (1)), in a reasoning approach this row cannot
change the only possible outcome: {1, 2} is the only possible
diagnosis. Note, that we do not have to model the program
in great detail (e.g., at the statement level, such as in [26]).

Only the dynamic observations available at the spectral
level have served as the basis for our above reasoning.
In the following we describe our spectrum-based reasoning
approach in which we apply MBD principles based on the
observations from (A, e).

A. Candidate Generation

Model-based reasoning approaches yield a diagnostic re-
port that comprise multiple-fault candidates dk ordered in
terms of probability (e.g., < {4}, {1, 3}, . . . >, meaning
that either component c4 is at fault, or components c1 and

c3 are at fault, etc.). As in any MBD approach we base
ourselves on a model of the program. Unlike many MBD
approaches, however, we refrain from detailed modeling,
e.g., at the statement level, but assume a generic component
model (actually, in this paper, we will model statements as
components). Each component (cj) is modeled in terms of
the logical proposition

hj ⇒ (okinpj
⇒ okoutj ) (2)

where the booleans hj , okinpj
, and okoutj model component

health, and the (value) correctness of the component’s input
and output variables, respectively. The above model specifies
nominal (required) behavior: when the component is correct
and its inputs are correct, then the outputs must be correct.
Note that the above model does not specify faulty behavior.
Even when the component is faulty and/or the input values
are incorrect it is still possible that the component delivers
a correct output. Hence, a program pass does not imply
correctness of the components involved (the last row in the
example (A, e) does not logically exonerate c1 nor c2).

By instantiating the above equation for each component
involved in a particular run (row in A) a set of logical
propositions is formed. Since the input variables of each
test can be assumed to be correct, and since the output
correctness of the final component in the invocation chain is
given by e (pass implies correct, fail implies incorrect), we
can logically infer component health information from each
row in (A, e). For the above example we directly obtain the
following health propositions for hj :

¬h1 ∨ ¬h3 (c1 and/or c3 faulty)

¬h2 ∨ ¬h3 (c2 and/or c3 faulty)

¬h1 (c1 faulty)

¬h2 (c2 faulty)

The above health propositions have a direct correspondence
with the original matrix structure. Note that only failing
runs lead to a corresponding health propositions, as, due
to the conservative component model, from a passing run
no additional health information can be inferred.

As in most MBD approaches, the above health proposi-
tions are subsequently combined to a diagnosis by comput-
ing the so-called minimal hitting sets (MHS, aka minimal set



cover [7]), i.e., the minimal health propositions that cover
the above propositions. In the above case, there is only one
MHS, given by

¬h1 ∧ ¬h2 (c1 and c2 faulty)

that covers all four previous health propositions. Thus D =<
{1, 2} > comprises only 1 (double-fault) candidate, which
therefore is the actual diagnosis.

In summary, our spectrum-based model-based reasoning
approach uses a generic component model to compile (A, e)
into corresponding health propositions, which are subse-
quently transformed into D using an MHS algorithm. The
latter step is generally responsible for the prohibitive cost of
reasoning approaches. However, in our approach we use an
ultra-low-cost heuristic MHS algorithm called STACCATO

(STAtistiCs-direCted minimAl hiTing set algOrithm) [2] to
extract only the significant set of multiple-fault candidates
dk, avoiding the needless generation of a possibly expo-
nential number of diagnostic candidates. This feature allows
our Bayesian reasoning approach to be applied to real-world
programs without any problem as shown later on.

B. Candidate Ranking

As mentioned earlier, unlike statistical approaches which
return all M component indices, model-based reasoning
approaches only return diagnosis candidates dk that are
logically consistent with the observations. Despite this can-
didate reduction, the number of remaining candidates dk is
typically large, and not all of them are equally probable.
Hence, the computation of diagnosis candidate probabilities
Pr(dk) to establish a ranking is critical to the diagnostic
performance of model-based reasoning approaches. In MBD
the probability that a diagnosis candidate is the actual
diagnosis is computed using Bayes’ rule, that updates the
probability of a particular candidate dk given new observa-
tional evidence (from a new program run).

The Bayesian probability update, in fact, can be seen as
the foundation for the derivation of diagnostic candidates
in any reasoning approach, i.e., (1) deducing whether a
candidate diagnosis dk is consistent with the observations,
and (2) computing the posterior probability Pr(dk) of that
candidate being the actual diagnosis. Rather than computing
Pr(dk) for all possible candidates, just to find that most of
them have Pr(dk) = 0, candidate generation algorithms are
used as shown before, but the Bayesian reasoning framework
remains the formal basis.

For each diagnosis candidate dk the probability that it
describes the actual system fault state depends on the extent
to which dk explains all observations. To compute the
posterior probability that dk is the true diagnosis given
observation obsi (obsi refers to the coverage and error info
for test i) Bayes’ rule is used:

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk|obsi−1) (3)

The denominator Pr(obsi) is a normalizing term that is
identical for all dk and thus needs not be computed directly.
Pr(dk|obsi−1) is the prior probability of dk. In absence
of any observation, Pr(dk|obsi−1) defaults to Pr(dk) =
p|dk| ·(1−p)M−|dk|, where p denotes the a priori probability
that component cj is at fault, which in practice we set to
pj = p. Pr(obsi|dk) is defined as

Pr(obsi|dk) =







0 if obsi ∧ dk are inconsistent;
1 if obsi is unique to dk;
ε otherwise.

(4)

As mentioned earlier, rather than updating each candidate
only candidates derived from the candidate generation algo-
rithm are updated, implying that the 0-clause need not be
considered in practice.

In model-based reasoning, many policies exist for ε [8]. A
well-known, intuitive policy is to approximate ε = 1/#obs
where #obs is the number of observations that can be
explained by diagnosis dk (the approximation comes from
the fact that not all observations belonging to dk may be
equally likely). Our epsilon policy differs, however, due to
our choice to use an intermittent component failure model,
extending hj’s binary definition to hj ∈ [0, 1], where hj

expresses the probability that faulty component j produces
correct output (hj = 0 means persistently failing, and
hj = 1 essentially means healthy, i.e., never inducing
failures). The reasons for the intermittent failure model are
as follows.

• In many practical situations faults manifest themselves
intermittently. This especially applies to software where
faulty components typically deliver a fraction of incor-
rect outputs when executed repeatedly (with different
inputs). Note that this directly relates to the fact that
in our model we abstract from actual input and output
values as mentioned earlier.

• Although the component model in Eq. (2) does allow a
faulty component to exhibit correct behavior, the binary
health hj does not enable us to exploit the information
contained in the number of passing or failing runs
in which the component is involved. The intermittent
model enables us to more precisely indict or exonerate
a component as more information (runs) are available.
Thus the resulting probability ranking can be refined,
optimally exploiting the information present in (A, e).

Given the intermittency model, for an observation obsi =
(Ai∗, ei), the epsilon policy in Eq. (4) becomes

ε =















∏

j∈dk∧aij=1

hj if ei = 0

1−
∏

j∈dk∧aij=1

hj if ei = 1
(5)

Eq. (5) follows from the fact that the probability that
a run passes is the product of the probability that each



involved, faulty component exhibits correct behavior (or-
model, we assume components fail independently, a standard
assumption in fault diagnosis for tractability reasons).

C. Health Probability Estimation

A particular problem with the use of intermittent compo-
nent models is that the hj are now real-valued. In traditional
approaches, Pr(dk) given a set of observations (A, e) is
computed by equating the hj to false or true corresponding
to the candidate dk under study. Now that Pr(dk) has become
a real-valued function of hj a new approach is needed. The
key idea underlying our approach is that for each candidate
dk we compute the hj for the candidate’s faulty components
that maximizes the probability Pr(e|dk) of the outcome e
occurring, conditioned on that candidate dk (maximum
likelihood estimation for naive Bayes classifier dk). Hence,
hj is solved by maximizing Pr(e|dk) under the above epsilon
policy, according to

H = argmax
H

Pr(e|dk)

where H = {hj | j ∈ dk}. For example, suppose we
measure the following spectrum (the previous example spec-
trum yielded a single diagnosis, defeating the purpose of the
current illustration):

c1 c2 c3 e
1 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0

Candidate generation yields two double-fault candidates
d1 = {1, 2}, and d2 = {1,3}. Consider the computation of
Pr(d1). From Eq. (4) and Eq. (5) it follows

Pr(e1|d1) = 1− h1h2

Pr(e2|d1) = 1− h2

Pr(e3|d1) = 1− h1

Pr(e4|d1) = h1

As the 4 observations e1, . . . , e4 are independent it follows

Pr(e|d1) = (1− h1 · h2) · (1 − h2) · (1− h1) · h1 (6)

Assuming candidate d1 is the actual diagnosis, the corre-
sponding hj are determined by maximum likelihood es-
timation, i.e., maximizing Eq. (6). For d1 it follows that
h1 = 0.47 and h2 = 0.19 yielding Pr(e|d1) = 0.185 (note,
that c2 has much lower health than c1 as c2 is not exonerated
in the last matrix row, in contrast to c1). Applying the same
procedure for d2 yields Pr(e|d2) = 0.036 (with correspond-
ing h1 = 0.41, h3 = 0.50). Assuming both candidates have
equal prior probability p2 (both are double-fault candidates)
and applying Eq. (3) it follows Pr(d1|e) = 0.185 · p2/Pr(e)
and Pr(d2|e) = 0.036 · p2/Pr(e). After normalization it fol-
lows Pr(d1|e) = 0.839 and Pr(d2|e) = 0.161. Consequently,
the ranked diagnosis is given by D =< {1, 2}, {1, 3} >.
Thus, apart from c1, c2 is much more likely to be at fault
than c3 and debugging would commence with c1 and c2.

Algorithm 1 Diagnostic Algorithm: BARINEL

Inputs: Activity matrix A, error vector e,
Output:Diagnostic Report D

1 γ ← ε
2 D ← STACCATO((A, e)) % Compute MHS
3 for all dk ∈ D do
4 expr← GENERATEPR((A, e), dk)
5 i← 0
6 Pr[dk]i ← 0
7 repeat

8 i← i+ 1
9 for all j ∈ dk do

10 gj ← gj + γ ·∇expr(gj)
11 end for
12 Pr[dk]i ← EVALUATE(expr, ∀j∈dk

gj)
13 until |Pr[dk]i−1 − Pr[dk]i| ≤ ξ
14 end for
15 return SORT(D, Pr)

D. Algorithm

Our spectrum-based reasoning approach is described in
Algorithm 1 and comprises three main phases. In the first
phase a list of candidates D is computed from (A, e) using
STACCATO, a ultra-low cost algorithm. This performance
is achieved at the cost of completeness as solutions are
truncated at 100 candidates. Nevertheless, experiments [2]
have shown that no significant solution was ever missed.

In the second phase Pr(dk) is computed for each candidate
in D. First, GENERATEPR derives for every candidate dk
the probability Pr(e|dk) for the set of observations (A, e).
Subsequently, all hj are computed such that they maximize
Pr(e|dk). To solve the maximization problem we apply a
simple gradient ascent procedure [5] bounded within the
domain 0 ≤ hj ≤ 1 (the ∇ operator signifies the gradi-
ent computation). As the hj expressions that need to be
maximized are simple, and the domain is bounded to [0, 1],
the gradient ascent procedure exhibits reasonably rapid con-
vergence for all M and C (see Section V-C for detailed
complexity analysis). Note that the linear convergence of
the simple, gradient ascent procedure can be improved to
a quadratic convergence (e.g., Newton’s method), yielding
significant speedup. However, the current implementation
already delivers satisfactory performance.

In the third and final phase, for each dk the diagnoses are
ranked according to Pr(dk|(A, e)), which is computed by
EVALUATE based on the usual Bayesian update (Eq. (3) for
each row. The algorithm has been implemented within the
BARINEL toolset that comprises C program instrumentation
(using LLVM [21]) and off-line diagnostic analysis support.
The analysis module supports the BARINEL algorithm as
well as most statistical methods [16]. Note that our approach
is independent of test case ordering.
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(a) C = 1 and h = 0.1
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(b) C = 2 and h = 0.1
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(c) C = 5 and h = 0.1
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(d) C = 1 and h = 0.9
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(e) C = 2 and h = 0.9
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(f) C = 5 and h = 0.9

Figure 2. Wasted effort W vs. N for several settings of C and h

IV. THEORETICAL EVALUATION

In order to assess the diagnostic performance properties
of our approach we generate synthetic observations based on
random (A, e) generated for various values of N , M , and
the number of injected faults C (cardinality). The reason for
the synthetic experiments (next to the real programs in the
next section) is that we can vary parameters of interest in a
controlled setting, whereas real programs typically represent
only one particular parameter setting. Component activity
aij is sampled from a Bernoulli distribution with parameter
r, i.e., the probability a component is involved in a row of
A equals r. For the faulty components cj (without loss of
generality we select the first C components, i.e., c1, . . . , cC
are faulty) we set the component healths (intermittency rates)
hj . Thus the probability of a component j being involved
and generating a failure equals r · (1 − hj). A row i in A
generates an error (ei = 1) if at least 1 of the C components
generates a failure (or-model). Measurements for a specific
(N,M,C, r, g) scenario are averaged over 1, 000 sample
matrices, yielding a coefficient of variance of approximately
0.02.

We compare the accuracy of our Bayesian framework
with two state-of-the-art spectrum-based fault localization
methods Ochiai and Tarantula, and with a previous Bayesian
approach, called BAYES-A [3]. The difference between
BARINEL and BAYES-A is the epsilon policy. In BAYES-A
a simple policy is used that is based on an approximation of
the hj values instead of executing the maximum likelihood
estimation procedure (for details see [3]).

Diagnostic performance is measured in terms of a diag-
nostic performance metric W that measures the percentage
of excess work incurred in finding all components at fault.

The metric is an improvement on metrics typically found
in software debugging which measure debugging effort [4],
[29]. We use wasted effort instead of total effort because
in our multiple-fault research context we wish the metric to
be independent of the number of faults C in the program
to enable an unbiased evaluation of the effect of C on
W . Thus, regardless of C, W = 0 represents an ideal
diagnosis technique (all C faulty components on top of
the ranking, no effort wasted on testing other components
to find they are not faulty), while W = 1 represents the
worst case (testing all M − C healthy components until
arriving at the C faulty ones). For example, consider a
M = 5 component program with the following diagnostic
report D =< {4, 5}, {4, 3}, {1, 2} >, while c1 and c2
are actually faulty. The first diagnosis candidate leads the
developer to inspect c4 and c5. As both components are
healthy, W is increased with 2

5 . Using the new information
that h4 = h5 = 1.0 the probabilities of the remaining
candidates are updated by rerunning BARINEL, leading to
Pr({4, 3}) = 0 (c4 can no longer be part of a multiple fault).
Consequently, candidate {4, 3} is also discarded, avoiding
wasting additional debugging effort. The next components
to be inspected are c1 and c2. As they are both faulty, no
more effort is wasted2. Consequently, W = 2

5 .

The graphs in Figure 2 plot W versus N for M = 20,
r = 0.6 (the trends for other M and r values are essentially
the same, r = 0.6 is typical for the Siemens suite), and
different values for C and h (in our experiments we set all
hj = h). A number of common properties emerge. All plots
show that W for N = 1 is similar to r, which agrees with the

2Effort, as defined in [4], [29], would be increased by 2

5
to account for

the fact that both components were inspected.



fact that there are on average (M−C) ·r components which
would have to be inspected in vain. For sufficiently large N
all approaches produce an optimal diagnosis, as there are
sufficient runs for all approaches to correctly single out the
faulty components. For small hj , W converges quicker than
for large hj as computations involving the faulty components
are much more prone to failure, while for large hj the faulty
components behave almost similar to healthy components,
requiring more observations (larger N ) to stand out in the
ranking. Also for larger C more observations are required
before the faulty components are isolated. This is due to
the fact that failure behavior can be caused by much more
components, reducing the correlation between failure and
particular component involvement.

The plots confirm that BARINEL is the best performing
approach. Only for C = 1 the BAYES-A approach has equal
performance to BARINEL, as for this trivial case the approx-
imations for the hj are exact. For C ≥ 2 the plots confirm
that BARINEL has superior performance, demonstrating that
an exact estimation of hj is quite relevant. The more
challenging the diagnostic problem becomes (higher fault
densities), the more BARINEL stands out compared to the
statistical approaches and the previous Bayesian reasoning
approaches.

V. EMPIRICAL EVALUATION

In this section, we evaluate the diagnostic capabilities and
efficiency of the diagnosis techniques for real programs.

A. Experimental Setup

For evaluating the performance of our approach we use the
well-known Siemens benchmark set, as well as gzip, sed
and space (obtained from SIR [10]). The Siemens suite
is composed of seven programs. Every single program has
a correct version and a set of faulty versions of the same
program. Although the faulty may span through multiple
statements and/or functions, each faulty version contains
exactly one fault. For each program a set of inputs is also
provided, which were created with the intention to test full
coverage. In particular, the Space package provides 1, 000
test suites that consist of a random selection of (on average)
150 test cases out of 13, 585 and guarantees that each branch
of the program is exercised by at least 30 test cases. In our
experiments, the test suite used is randomly chosen from the
1, 000 suites provided. Table II provides more information
about the programs used in your experiments, where M
corresponds to the number of lines of code (components
in this context).

For our experiments, we have extended the subject pro-
grams with program versions where we can activate arbitrary
combinations of multiple faults. For this purpose, we limit
ourselves to a selection of 143 out of the 183 faults, based
on criteria such as faults being attributable to a single line
of code, to enable unambiguous evaluation.

Program Faulty Versions M N Description
print_tokens 7 539 4,130 Lexical Analyzer
print_tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation
tot_info 23 398 1,052 Information Measure
space 38 9,564 150 ADL Interpreter

gzip-1.3 7 5,680 210 Data compression
sed-4.1.5 6 14,427 370 Textual manipulator

Table II
THE SUBJECT PROGRAMS

As each program suite includes a correct version, we
use the output of the correct version as reference. We
characterize a run as failed if its output differs from the
corresponding output of the correct version, and as passed
otherwise.

B. Performance Results

In this section we evaluate the diagnostic capabilities
of BARINEL and compare it with several fault localization
techniques. We first evaluate the performance in the context
of single faults, and then for multiple fault programs.

1) Single Faults: We compare BARINEL with several
well-known statistics-based techniques which have used the
Siemens benchmark set described in the previous section.
Although the set comprises 132 faulty programs, two of
these programs, namely version 9 of schedule2 and
version 32 of replace, are discarded as no failures are
observed. Besides, we also discard versions 4 and 6 of
print_tokens because the faults are not in the program
itself but in a header file. In summary, we discarded 4
versions out of 132 provided by the suite, using 128 versions
in our experiments. For compatibility with previous work in
(single-) fault localization, we use the effort/score metric [4],
[29] which is the percentage of statements that need to
be inspected to find the fault - in other words, the rank
position of the faulty statement divided by the total number
of statements. Note that some techniques such as in [24],
[29] do not rank all statements in the code, and their rankings
are therefore based on the program dependence graph of the
program.

Figure 3 plots the percentage of located faults in terms
of debugging effort. Apart from Ochiai and Tarantula,
the following techniques are also plotted: Intersection and
Union [29], Delta Debugging (DD) [37], Nearest Neighbor
(NN) [29], Sober [24], PPDG [6], and CrossTab [34],
which are amongst the best statistics-based techniques (see
Section VI). In the single fault context, as mentioned in
the previous section, BAYES-A performs equally well as
BARINEL. As Sober is publicly available, we run it in our
own environment. The values for the other techniques are,
however, directly taken from their respective papers. From
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Figure 3. Effectiveness Comparison (C = 1)

Figure 3, we conclude that BARINEL is consistently the
best performing technique, finding 60% of the faults by
examining less than 10% of the source code. For the same
effort, using Ochiai would lead a developer to find 52% of
the faulty versions, and with Tarantula only 46% would be
found. For an effort of less than 1% PPDG performs equally
well as BARINEL. Our approach outperforms Ochiai, which
is consistently better than Sober and Tarantula. The former
two yield similar performance, as also concluded in [24].
Finally, the other techniques plotted are clearly outperformed
by the spectrum-based techniques.

The reason for BARINEL’s superiority for single-fault
programs is established in terms of the following theorem.

Theorem For single-fault programs, given the available set

of observations (A, e), the diagnostic ranking produced by

BARINEL is theoretically optimal.

Proof In the single-fault case, the maximum likelihood
estimation for hj reduces from a numerical procedure to
a simple analytic expression given by

hj =
n10(j)

n10(j) + n11(j)
=

x(j)

x(j) + 1

as, by definition, hj is the pass fraction of the runs where
cj is involved. Consequently, Pr(dk|e) can be written as

Pr(dk|e) = hx(j)·n11(j)
j · (1− hj)

n11(j)

where x(j) = n10(j)/n11(j). For C = 1 where a run fails
the faulty component has to be involved. In BARINEL, when
a candidate does not explain all failing runs its probability
is set to 0 as a result from the consistency-based reasoning
within BARINEL (cf. the 0-clause of Eq. (4)). This implies
that for the remaining candidates n11(j) equals the number
of failing runs, which is independent of j. Hence, with
respect to the ranking the constant n11(j) can be ignored,
yielding

Pr′(dk|e) =
x(j)x(j)

(x(j) + 1)(x(j)+1)

Since x(j) > 0, Pr′(dk|e), and therefore Pr(dk|e), is
monotonically decreasing with x(j) and therefore with hj .
Consequently, the ranking in D equals the (inverse) ranking
of hj . As the maximum likelihood estimator for hj is perfect
by definition, the ranking returned by BARINEL is optimal.

While the above theorem establishes BARINEL’s optimal-
ity, the following corollary describes the consequences with
respect to similarity coefficients.

Corollary For single-fault programs, any similarity coeffi-
cient that includes n10(j) in the denominator is optimal,

provided components cj are removed from the ranking for

which n01(j) ,= 0.

Proof From the above theorem it follows that the ranking
in terms of hj is optimal for the subset of components
indicted by the reasoning process, i.e., those components
that are always involved in a failing run. The latter condition
implies that only components for which n01(j) = 0 can
be considered. The former implies that (for this subset) the
similarity coefficient

s(j) = 1− hj =
n11(j)

n11(j) + n10(j)

is optimal. As for the components subset n11(j) is constant,
n10(j) determines the ranking while n01(j) plays no role.
As all similarity coefficients have an n11(j) term in the
numerator, it follows that as long as n10(j) is present in
the denominator (the only term that varies with j), such a
coefficient yields the same, optimal, ranking as the above
BARINEL expression for s(j).

Experiments using the n01(j) = 0 “reasoning” filter, com-
bined with a simple similarity coefficient such as Tarantula
or Ochiai indeed confirm that this approach leads to the best
performance [32] (equal to BARINEL).

2) Multiple Faults: We now proceed to evaluate our
approach in the context of multiple faults, using our ex-
tended Siemens benchmark set, gzip, sed, and space.
In contrast to Section V-B1 we only compare with the
same techniques as in Section IV (BAYES-A, Tarantula,
and Ochiai) as for the other related work no data for
multiple-fault programs are available (also see Section VI).
Similar to Section IV, we aimed at C = 5 for the multiple
fault-cases, but for print_tokens insufficient faults are
available. All measurements except for the four-fault version
of print_tokens are averages over 100 versions, or over
the maximum number of combinations available, where we
verified that all faults are active in at least one failed run.

Table III presents a summary of the diagnostic quality of
the different techniques. The diagnostic quality is quantified
in terms of wasted debugging effort W (see Section IV for
an explanation of the difference between wasted effort and
effort). Again, the results confirm that on average BARINEL



outperforms the other approaches, especially considering
the fact that the variance of W is considerably higher
(coefficient of variance up to 0.5 for schedule2) than in
the synthetic case (1,000 sample matrices versus up to 100
matrices in the experiments with real software programs).
Only in 3 out of 30 cases, BARINEL is not on top. Apart
from the obvious sampling noise (variance), this is due to
particular properties of the programs. Using the paired two-
tailed Student’s t-test, we verified that the differences in the
means of W are not significant for those cases in which
BARINEL does not clearly outperforms the other approaches,
and thus noise is the cause for the small differences in terms
of W. As an example, for print_tokens2 with C = 2
the differences in the means are significant, but it is not the
case for schedule with C = 1. For tcas with C = 2 and
C = 5, BAYES-A marginally outperforms BARINEL (by less
than 0.5%), Ochiai being the best performing approach. This
is caused by the fact that (1) the program is almost branch-
free and small (M = 174) combined with large sampling
noise (σW = 5% for tcas), and (2) almost all failing runs
involve all faulty components (highly correlated occurrence).
Hence, the program effectively has a single fault spreading
over multiple lines. In contrast to the results in the previous
section, the performance of BAYES-A and BARINEL for
C = 1 differ because we also consider valid multiple-fault
diagnosis candidates (in the previous section, we only ranked
single-fault diagnosis candidates).

Our results show that W decreases with increasing pro-
gram size (M ). This confirms our expectation that the
effectiveness of automated diagnosis techniques generally
improves with program size. As an illustration, near-zero
wasted effort is measured in experiments with SFL on a 0.5
MLOC industrial software product, reported in [40], where
the problem reports (tests) typically focus on a particular
anomaly (small C).

C. Time/Space Complexity

In this section we report on the time/space complexity of
BARINEL, compared to other fault localization techniques.
We measure the time efficiency by conducting our exper-
iments on a 2.3 GHz Intel Pentium-6 PC with 4 GB of
memory. As most fault localization techniques have been
evaluated in the context of single faults, in order to allow
us to compare our fault localization approach to related
work we limit ourselves to the original, single-fault Siemens
benchmark set, which is the common benchmark set to most
fault localization approaches. We obtained timings for PPDG
and DD from published results [6], [37].

Table IV summarizes the results of the study. The columns
show the programs, the average CPU time (in seconds)
of BARINEL, BAYES-A, Tarantula/Ochiai, PPDG, and DD,
respectively. As expected, the less expensive techniques are
the statistics-based techniques Tarantula and Ochiai. At the
other extreme are PPDG and DD. BARINEL costs less than

Program BARINEL BAYES-A Tarantula/Ochiai PPDG DD
print_tokens 24.3 4.2 0.37 846.7 2590.1
print_tokens2 19.7 4.7 0.38 243.7 6556.5

replace 9.6 6.2 0.51 335.4 3588.9
schedule 4.1 2.5 0.24 77.3 1909.3
schedule2 2.9 2.5 0.25 199.5 7741.2

tcas 1.5 1.4 0.09 1.7 184.8
tot_info 1.5 1.2 0.08 97.7 521.4
space 41.4 7.4 0.15 N/A N/A
gzip 28.1 6.2 0.19 N/A N/A
sed 92.0 9.7 0.36 N/A N/A

Table IV
DIAGNOSIS COST FOR THE SINGLE-FAULT SUBJECT PROGRAMS (TIME

IN SECONDS)

PPDG and DD. For example, BARINEL requires less than 10
seconds on average for replace, whereas PPDG needs 6
minutes and DD needs approximately 1 hour to produce the
diagnostic report. Note that our implementation of BARINEL

has not been optimized (the gradient ascent algorithm). This
explains the fact that BARINEL is more expensive than the
other approximated Bayesian approach. The effect of the
gradient ascent costs is clearly noticeable for the first three
programs, and is due to a somewhat lower convergence
speed as a result of the fact that the hj are close to 1.
Note, that by using a procedure with quadratic convergence
this difference would largely disappear (e.g., 100 iterations
instead of 10,000, gaining two orders of magnitude). There-
fore, the efficiency results should not be viewed as definitive.
Experiments using the extended Siemens benchmark set to
accommodate multiple faults also show the same trend.

In the following we interpret the above cost measurements
from a complexity point of view. The statistical techniques
(such as Tarantula and Ochiai) update the similarity com-
putation (a few scalar operations) per component and per
row of the matrix (O(N · M)). Subsequently, the report is
ordered (O(M · logM)). Consequently, the time complexity
is O(N ·M +M · logM). In contrast to the M components
in statistical approaches, the Bayesian techniques update
|D| candidate probabilities where |D| is determined by
STACCATO. Although in all our measurements a constant
|D| = 100 suffices [2], it is not unrealistic to assume that for
very large systems |D| would scale with M , again, yielding
O(N · M) for the probability updates. However, there are
two differences with the statistical techniques, (1) the cost
of STACCATO and (2) in case of BARINEL, the cost of the
maximization procedure. The complexity of STACCATO is
estimated to be O(N · M) (for a constant matrix density
r) [2]. The complexity of the maximization procedure ap-
pears to be rather independent of the size of the expression
(i.e., M and C) reducing this term to a constant. As, again,
the report is ordered, the time complexity again equals
O(N · M + M · logM), putting the Bayesian approaches
in the same complexity class as the statistical approaches



print_tokens print_tokens2 replace schedule schedule2
C 1 2 4 1 2 5 1 2 5 1 2 5 1 2 5
versions 4 6 1 10 43 100 23 100 100 7 20 11 9 35 91

M
B

D BAYES-A 1.2 2.4 4.8 5.1 8.9 15.5 3.0 5.2 12.4 0.8 1.5 3.1 21.5 29.4 35.6
BARINEL 1.2 2.4 4.4 1.9 3.4 6.6 3.0 5.0 11.9 0.8 1.5 3.0 21.5 28.1 34.9

S
F

L Ochiai 2.6 5.3 11.5 3.9 7.0 13.5 3.0 5.6 12.4 1.1 2.0 3.7 21.5 29.1 35.5
Tarantula 7.3 13.2 21.0 6.0 10.4 17.8 4.5 7.7 14.9 1.5 2.7 5.4 23.5 31.4 38.3

tcas tot_info space gzip sed
C 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5
versions 30 100 100 19 100 100 28 100 100 7 21 21 5 10 1

M
B

D BAYES-A 16.7 24.1 30.5 6.1 11.7 20.9 2.2 3.7 9.9 1.3 2.7 6.7 0.7 0.6 1.4
BARINEL 16.7 24.5 30.7 5.0 8.5 15.8 1.7 3.0 7.4 1.0 1.9 4.3 0.3 0.4 1.4

S
F

L Ochiai 15.5 22.0 27.4 5.2 9.1 16.5 1.7 3.6 8.6 1.3 2.7 7.4 0.4 0.7 1.7
Tarantula 16.1 22.8 31.6 6.9 11.4 19.4 3.4 6.5 13.9 2.6 5.0 11.4 0.4 0.8 1.7

Table III
WASTED EFFORT W [%] ON COMBINATIONS OF C = 1− 5 FAULTS FOR THE SUBJECT PROGRAMS

modulo a large factor.

With respect to space complexity, statistical techniques
need two store the counters (n11, n10, n01, n00) for the
similarity computation for all M components. Hence, the
space complexity is O(M). BAYES-A also stores simi-
lar counters but per diagnosis candidate. Assuming that
|D| scales with M , these approaches have O(M) space
complexity. BARINEL is slightly more expensive because
for a given diagnosis dk it stores the number of times
a combination of faulty components in dk is observed in
passed runs (2|dk| − 1) and in failed runs (2|dk| − 1). Thus,
BARINEL’s space complexity is estimated to be O(2C ·M) -
being slightly more complex than SFL. In practice, however,
memory consumption is reasonable (e.g., around 5.3 MB for
sed, the largest program used in our experiments).

VI. RELATED WORK

In model-based (logic) reasoning approaches to automatic
debugging the model of the program under analysis is
typically generated using static analysis. In the work of
Mayer and Stumptner [26] an overview of techniques to
automatically generate program models from the source
code is given, concluding that models generated by means
of abstract interpretation [25] are the most accurate for
debugging. Model-based approaches include the ∆-slicing
and explain work of Groce [13], the work of Wotawa,
Stumptner, and Mayer [35], and the work of Yilmaz and
Williams [36]. Although model-based diagnosis inherently
considers multiple faults, thus far the above software debug-
ging approaches only consider single faults. Apart from this,
our approach differs in the fact that we use program spectra
as dynamic information on component activity, which allows
us to exploit execution behavior, unlike static approaches.
Besides, our approach does not rely on the approximations
required by static techniques (i.e., incompleteness). Most
importantly, our approach is less complex, as can also be
deduced by the limited set of programs used by the model-

based techniques (as an indication, from the Siemens set,
these techniques can only handle tcas which is the smallest
program).

As mentioned earlier, statistical approaches are very at-
tractive from complexity-point of view. Well-known ex-
amples are the Tarantula tool by Jones, Harrold, and
Stasko [20], the Nearest Neighbor technique by Renieris
and Reiss [29], the Sober tool by Lui, Yan, Fei, Han,
and Midkiff [24], PPDG by Baah, Podgurski, and Har-
rold [6], CrossTab by Wong, Wei, Qi, and Zap [34], the
Cooperative Bug Isolation by Liblit and his colleagues [22],
[39], the Ochiai coefficient by Abreu, Zoeteweij, and Van
Gemund [4], the work of Stantelices, Jones, Yu, and Har-
rold [30], and the work of Wang, Cheung, Chan, and
Zhang [33]. Although differing in the way they derive
the statistical fault ranking, all techniques are based on
measuring program spectra. Examples of other techniques
that do not require additional knowledge of the program
under analysis are the dynamic program slicing technique
by Zhang, He, Gupta, and Gupta [38] and the state-altering
approaches Delta Debugging technique by Zeller [37], Hi-
erarchical Delta Debugging approach (HDD) by Misherghi
and Zhendong Su [27], and Value-based replacement from
Jeffrey, Gupta, and Gupta [17]. The DEPUTO framework by
Abreu, Mayer, Stumptner, and Van Gemund [1] combines
SFL with a MBD approach [25], where the latter is used
to refine the SFL’s ranking obtained filtering out candidates
that do not explain observed failures when the programs
semantics is considered. BARINEL solves the complexity
problem in MBD, by taking a spectrum-based approach to
MBD, thus scaling to large programs.

Essentially all of the above work have mainly been
studied in the context of single faults, except for recent
work by Liu, Yan, Fei, and Midkiff [23], Jones, Bowring,
and Harrold [19], Abreu, Zoeteweij, and Van Gemund [3],
and Steimann and Bertchler [31], who all take an explicit
multiple-fault, spectrum-based approach. The work in [23]



proposes two pairwise distance metrics for clustering (failed)
test cases that refer to the same fault, after which Sober is
used to each cluster of test cases. Unlike BARINEL, this work
is not fully automatic, requiring the developer to interpret re-
sults during the clustering process. The work in [19] employs
clustering techniques to identify traces (rows in A) which re-
fer to the same fault, after which Tarantula is applied to each
cluster of rows. Unlike in [23], the approach in [19] is fully
automated and does not need the results to be interpreted
by the developer. In these clustering approaches there is a
possibility that multiple developers will still be effectively
fixing the same bug. Our work differs from the above in
that we do not seek to engage multiple developers in finding
bugs (sequential/iterative approach as opposed to parallel),
but in enriching the ranking with multiple-fault diagnosis
candidates information that allows one developer to find
all bugs quickly. At present, we are unable to empirically
compare our approach with [19] as (1) no implementation of
the approach is available for experimental comparison [18],
and (2) results are only published on space, which, in
addition, are not reported using established effort metrics
(unlike, e.g., PPDG and Delta Debugging).

The significant difference between our previous work
in [3] and our approach in this paper is (1) the maxi-
mum likelihood health estimation algorithm, replacing the
previous, approximate approach, and (2) the use of the
STACCATO heuristic reasoning algorithm to bound the num-
ber of multiple-fault candidates. In [31] another ranking
mechanism is introduced for diagnosis candidates that are
derived using a similar technique as in [3], which has
exponential time complexity. Therefore, it does not scale
well to the set of programs used in our experimental setup.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a multiple-fault local-
ization technique, coined BARINEL, which is based on the
dynamic, spectrum-based approach from statistical fault lo-
calization methods, combined with a probabilistic reasoning
approach from model-based diagnosis. BARINEL employs
low-cost, approximate reasoning, employing a novel, maxi-
mum likelihood estimation approach to compute the health
probabilities per component, at a time and space complexity
that is comparable to current SFL approaches due to the use
of a heuristic MHS algorithm (STACCATO) underlying the
candidate generation process. As a result, BARINEL can be
applied to large programs without problems, in contrast to
other MBD approaches.

Next to the formal proof of BARINEL’s optimality in
the single-fault case, synthetic experiments with multiple
injected faults have confirmed that our approach consistently
outperforms statistical spectrum-based approaches, and our
previous Bayesian reasoning approach. Application to a set
of software programs also indicates BARINEL’s advantage
(27 wins out of 30 trials, despite the significant variance),

while the exceptions can be pointed to particular program
properties in combination with sampling noise.

Future work includes extending the activity matrix from
binary to integer, to exploit component involvement fre-
quency (e.g., program loops), reducing the cost of gradient
ascent by introducing quadratic convergence techniques, and
studying the influence of different program spectra on the
diagnostic quality of BARINEL.
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