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Spectrum Efficient MIMO-FBMC System using

Filter Output Truncation
Adnan Zafar, Lei Zhang, Pei Xiao and Muhammad Ali Imran

Abstract—Due to the use of an appropriately designed pulse
shaping prototype filter, filter bank multicarrier (FBMC) system
can achieve low out of band (OoB) emissions and is also robust
to the channel and synchronization errors. However, it comes at
a cost of long filter tails which may reduce the spectral efficiency
significantly when the block size is small. Filter output truncation
(FOT) can reduce the overhead by discarding the filter tails but
may also significantly destroy the orthogonality of FBMC system,
by introducing inter carrier interference (ICI) and inter symbol
interference (ISI) terms in the received signal. As a result, the
signal to interference ratio (SIR) is degraded. In addition, the
presence of intrinsic interference terms in FBMC also proves
to be an obstacle in combining multiple input multiple output
(MIMO) with FBMC. In this paper, we present a theoretical
analysis on the effect of FOT in an MIMO-FBMC system. First,
we derive the matrix model of MIMO-FBMC system which is
subsequently used to analyze the impact of finite filter length and
FOT on the system performance. The analysis reveals that FOT
can avoid the overhead in time domain but also introduces extra
interference in the received symbols. To combat the interference
terms, we then propose a compensation algorithm that considers
odd and even overlapping factors as two separate cases, where
the signals are interfered by the truncation in different ways. The
general form of the compensation algorithm can compensate all
the symbols in a MIMO-FBMC block and can improve the SIR
values of each symbol for better detection at the receiver. It is
also shown that the proposed algorithm requires no overhead
and can still achieve a comparable BER performance to the case
with no filter truncation.

Index terms – filter bank multicarrier, waveform, per-

formance analysis, filter output truncation, intrinsic inter-

ference

I. INTRODUCTION

F ilter bank multicarrier (FBMC) has illustrated profound

advantages over conventional multicarrier modulation

(MCM) schemes such as orthogonal frequency division multi-

plexing (OFDM) in time and frequency dispersive channels

[1]–[4]. Such advantages come from the fact that OFDM

suffers from large out of band (OoB) emissions and thus

require large guard bands to protect neighboring channels,

hence reducing the efficiency of the system. This presents

a major source of problem that limits the applicability of

OFDM in some present and future communication systems [5].

FBMC, on the other hand, is a promising technique that over-

comes this problem by utilizing a specially designed prototype
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filter such as isotropic orthogonal transform algorithm (IOTA)

which is well localized both in time and frequency [6]. This

prototype filter enables FBMC to provide best OoB emission

among the new waveforms proposed for future networks,

such as generalized frequency division multiplexing (GFDM)

[7], universal filtered multi-carrier (UFMC) [8], [9], filtered

orthogonal frequency division multiplexing (FOFDM) [10]

and their variants [11]. This advantage enables FBMC systems

to utilize the fragmented spectrum more efficiently [12].

Other main advantage of FBMC include higher spectral

efficiency compared to conventional OFDM systems. It is due

to the good time and frequency localization properties of the

prototype filter in FBMC that ensures inter carrier interference

(ICI) and inter symbol interference (ISI) are negligible without

the use of cyclic prefix (CP) [1]. The strict synchronization

requirements in conventional OFDM based systems are also

much relaxed for FBMC system. This facilitates low com-

plexity implementation of multi-user (MU) access in uplink

transmissions for FBMC systems [13], [14]. Due to these

advantages, FBMC is considered as a key area of research for

the past several years and one of the most promising waveform

candidate for future wireless networks [15], [16].

Unlike conventional OFDM, the FBMC system utilizes

orthogonal QAM symbols as the system is non-orthogonal

in complex plane. However, FBMC requires more complex

receiver structure, particularly when combined with MIMO

as compared to the MIMO-OFDM based systems. Moreover,

FBMC system may encounter residual interference terms in

the form of ICI and ISI if a low complexity channel equal-

ization is used for highly dispersive channels. The impact of

doubly dispersive channel on a SISO-FBMC system with both

zero forcing (ZF) and minimum mean squared error (MMSE)

based one tap equalization schemes is analyzed in [17]. It

is proposed that a complex multi-tap equalization may be

required as the performance of the FBMC system is severely

limited by strong doubly dispersive channel impact. The

authors in [18] have investigated the performance degeneration

of OFDM and FBMC systems in doubly-selective channels

using a closed-form bit error probability (BEP) expression.

It is shown that FBMC performs better than CP-OFDM in

highly time-varying channels due to the use of well localized

prototype filter.

Unlike OFDM, the use of FBMC in multi-antenna con-

figurations is not as straightforward and the applications are

very limited. Tensubam et al. in [19] have presented a study

on recent advancements in MIMO-FBMC and suggest that

filtered multitone (FMT) based FBMC systems offer the same
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flexibility as OFDM in adopting MIMO technology. However,

it is spectrally inefficient compared to other variants of FBMC

like cosine modulated multitone (CMT) and staggered mod-

ulated multitone (SMT) as it requires guard bands between

the subcarriers. But unlike conventional OFDM system, the

received symbols in CMT and SMT based FBMC systems are

contaminated with pure imaginary intrinsic interference. This

interference proves to be a huge obstacle in combining MIMO

techniques with FBMC.

A two step receiver for MIMO-FBMC is proposed in

[20], where the first stage estimates and cancels this intrinsic

interference, while the second stage improves the estimation

using widely linear processing. The authors in [21] have shown

strong correlation between the real and imaginary components

of FBMC signal and have proposed a new equalizer structure

by exploiting the imaginary intrinsic interference components.

A scheme referred as FFT-FBMC, is proposed by Rostom

Zakaria et al. in [22] and is applied to multiple antenna

systems. Although, FFT-FBMC technique can address the

issue of intrinsic interference by using a CP, however, it

has a poor bit error rate (BER) performance as compared

to the conventional OFDM systems. It was shown in [23]

that the FFT precoded signals in FFT-FBMC can reduce the

frequency band occupied by each subcarrier by reducing the

interference power in the immediate adjacent sub band as

compared to conventional FBMC. Jayasinghe et al. in [24]

have analyzed the effect of intrinsic interference in FBMC

system and proposed a precoder based on signal to leakage

plus noise ratio (SLNR) at the transmitter side to overcome

its effects on the FBMC system. It is shown that the proposed

precoder design at the transmitter outperforms the equalization

based FBMC and OFDM systems. Recent developments in

combining FBMC with massive MIMO are discussed in [25].

There has been investigations on the performance of MIMO-

FBMC system in frequency selective channels. Various pre-

coding and equalization techniques are proposed to achieve

robustness against channel frequency selectivity and to im-

prove the spectral efficiency in a MIMO-FBMC system [26].

The authors in [27] have presented a single-tap precoder

and decoder design for multiuser MIMO-FBMC system for

frequency selective channels by optimizing the MSE formula

under ZF and MMSE design criteria. Mestre et al. in [28]

have proposed a novel architecture for MIMO-FBMC system

by exploiting the structure of the analysis and synthesis filter

banks using approximation of an ideal frequency-selective

precoder and linear receiver. Another precoding and decoding

technique for MIMO-FBMC system is proposed in [29] to

enable multi-user transmission in frequency selective chan-

nels. Soysa et al. in [30] have evaluated the performance

of precoding and receiver processing techniques for mul-

tiple access MIMO-FBMC system for an extended ICI/ISI

scenario in uplink and downlink. A. Ikhlef et al. in [31]

proposed successive interference cancellation (SIC) to extract

the transmitted information in a MIMO-FBMC system. The

proposed solution outperforms the classical one tap equalizers

in case of moderate and high frequency selective channels.

Chang et al. in [32] have presented a precoded SISO-FBMC

system without CSI at the transmitter. The proposed system

is limited by the assumption of perfect equalization at the

receiver whereas, imperfect equalization can lead to residual

ISI and ICI terms. The authors then analyzed the effect of

interference from imperfect equalization in [33]. The results

suggest that multi-tap equalization is required to reduce the

effect of interference in FBMC system for highly frequency

selective channels. Inaki Estella et al. in [34] provided a

comparison between multi-stream MIMO based OFDM and

FBMC systems and suggested that OFDM achieves a lower

energy-efficiency than the FBMC. However, unlike OFDM,

the use of multiple streams increases interference in FBMC

which require new equalization techniques. Ana I. Perez-Neira

et al. have presented a detailed and comprehensive overview of

various challenges in MIMO-FBMC systems and their known

solutions in [35].

The aforementioned studies are mainly focused on the

performance of MIMO-FBMC systems in frequency selective

channels and its spectral efficiency compared to OFDM based

systems. However, despite the fact that FBMC does not require

a CP, it is not completely free from overhead as the filter bank

itself introduces extra tails in the FBMC block that affects the

spectral efficiency of the system. A recent study has considered

improving the spectral efficiency in FBMC system by tackling

the over head (tails) caused by the filter operation. The authors

in [36] have introduced non data symbols (virtual symbols)

before and after each FBMC data packet for shortening the

ramp-up and ramp-down periods. In [12], it is pointed out

that filter output truncation (FOT) or tail cutting can improve

the spectral efficiency of FBMC system but require one extra

tail to be transmitted as overhead along with the FBMC block.

In this paper, we provided an in-depth analysis of FOT

in a MIMO-FBMC system. We investigated the possibili-

ties of completely discarding all the tails (overhead) to im-

prove the spectral efficiency of the MIMO-FBMC system.

To achieve this, we represented the complete MIMO-FBMC

system in a matrix form including the filter operation, tail

cutting/truncating, channel convolution, equalization, detection

etc. The interference terms like ICI and ISI introduced by

the FOT along with the intrinsic interference terms are then

derived using the MIMO-FBMC matrix model. In light of

the analytical results, we proposed a compensation algorithm

to overcome the interferences caused by FOT. The proposed

algorithm enables the complete elimination of the overhead in

a MIMO-FBMC system by compensating the truncation affect

at the receiver. As a result, the spectral efficiency of MIMO-

FBMC systems is improved. The contributions of this paper

are summarized as follows.

• We first derive a compact matrix model of MIMO-FBMC

system which lays the ground for the subsequent in-

depth analysis of the effect of FOT on the detection

performance in terms of the SIR and BER.

• Based on the matrix model, we then analyze the impact

of finite filter length and different types of FOT on

the system performance. Through simulation results, it

is shown numerically that FOT can overcome the high

overhead but significantly degrade the SIR of the symbols
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at the edges.

• Thirdly, based on the observations made in the aforemen-

tioned numerical analysis, a compensation algorithm is

designed to compensate the symbols in a MIMO-FBMC

block to improve the SIR of each symbol. The advantage

of the algorithm is that it requires no overhead but can

still achieve a similar performance compared to the case

with no FOT.

Notations: Vectors and matrices are denoted by lowercase

and uppercase bold letters. {.}H and {.}T represent conjugate

transpose (hermitian conjugate) and transpose operations. F
and FH denote the normalized N point DFT and IDFT

matrices. A ⊗ B represents kronecker product of A and

B. ℜ(A) and ℑ(A) are the real and imaginary part of

scalar/vector/matrix A. IN represents an identity matrix for

dimension N × N . A ∗ B represents the linear convolution

of A and B. A↓l represents l sample delayed version of the

vector A with zero padding at the front. We use {̄.} or {̃.}
over any variable to represent the real and imaginary part of

that scalar/vector/matrix respectively.

II. PROBLEM FORMULATION

A. MIMO-FBMC System Model

In our analysis of MIMO-FBMC system, we assumed

Nt transmit antennas are used to transmit multiple FBMC

signals simultaneously which are received by Nr received

antennas, where Nt ≤ Nr. The block diagram for both

transmitter and receiver of a MIMO-FBMC is shown in

Fig. 1, where real and imaginary branches i.e. I and Q
branches are processed simultaneously and independently.

The MIMO-FBMC system model follows a block based

processing approach where each block contains M FBMC

symbols with each symbol containing N subcarriers in fre-

quency domain. Therefore, we can represent each MIMO-

FBMC block as S = [s0, s1, · · ·, sM−1] ∈ C
NNt×M where

sm = [sm,0, sm,1, · · ·, sm,N−1]
T ∈ C

NNt×1. The transmitted

signal on the nth subcarrier in a MIMO system is an Nt × 1
vector, i.e., sm,n = [sm,n,1, sm,n,2, · · · , sm,n,Nt

]T ∈ C
Nt×1.

Each sm,n,j represents a complex signal on nth subcarrier of

mth FBMC symbol transmitted by jth transmitting antenna.

Hence, MNNt QAM symbols are transmitted in one FBMC

block. Note that a precoding scheme such as ZF can be applied

at the transmitter side when the channel state information

(CSI) is available. In such cases the performance of a system

can be further enhanced. However, the focus of this paper

is to analyze the performance of MIMO-FBMC system with

finite filter length and FOT. Therefore, the analysis presented

in Section IV is based on unitary precoding matrix but is

easily extend-able to the precoding case as well. Moreover,

the power of modulated symbols sm,n,j is represented as δ2

i.e. E{‖sm,n,j‖
2} = δ2. The real and imaginary parts of sm

are represented as s̄m and s̃m respectively.

B. MIMO Channel Impulse Response

We assume the system operates over a slowly-varying fading

channel i.e. quasi-static fading channel. In such a scenario, it

is plausible to assume that the duration of each transmitted

data block is smaller than the coherence time of the channel,

therefore, the random fading coefficients stay constant over

the duration of each block [37]. In this case, we define the

multipath channel as a l-tap channel impulse response (CIR)

matrix with the lth-tap power being ρ2l . It is also assumed

that the average power remains constant during transmission

of whole block. The CIR matrix H is defined as

H = [H0,H1, · · · ,HL−1]
T

= [ρ0Z0, ρ1Z1, · · · , ρL−1ZL−1]
T (1)

where Hl defines the lth matrix valued CIR coefficient of the

channel between all the antennas and is represented as

Hl = ρlZl = ρl






z11(l) · · · z1Nt
(l)

...
. . .

...

zNr1(l) · · · zNrNt
(l)




 ∈ C

Nr×Nt (2)

The random variable zij(l) with complex Gaussian distri-

bution as CN (0, 1) represents the multipath fading factor for

lth tap of the quasi-static rayleigh fading channel between

jth transmit antenna and ith receive antenna. Note that we

consider co-located transmit and receive antennas to simplify

our analysis. However, if we consider either transmit or receive

antennas to be geographically separated, the analysis can easily

be extended by considering the common coefficient ρl to be

different among the antennas.

C. Prototype Filters / Filter Matrices

Ideally, an infinite filter length (K = ∞) is required to

provide the best performance. However, a finite filter length

(e.g. overlapping factor K = 4 ∼ 6) is used in practice

in a FBMC system to achieve comparable system perfor-

mance. To generalize the derivation, the filter overlapping

factor is taken as K, therefore, KN is the total length

of the prototype filter i.e. w̄ = [w̄0, w̄1, · · · , w̄K−1] =
[w̄0, w̄0, · · · , w̄KN−1] ∈ R

1×KN . The I branch filter matrix

P̄orig ∈ R
(K+M−1)NNt×MNNt can be expressed as

P̄orig=















P̄iF

P̄

P̄iR















=































W̄0 0 0 · · · 0 0

W̄1 W̄0 0 · · · 0 0
...

... W̄0 · · · 0 0

W̄t−1 W̄t−2

... · · ·
...

...

W̄t W̄t−1 W̄t−2 · · · 0 0

W̄t+1 W̄t W̄t−1 · · · W̄0 0
... W̄t+1 W̄t · · · W̄1 W̄0

W̄K−1

... W̄t+1 · · ·
... W̄1

0 W̄K−1

... · · · W̄K−t

...

0 0 W̄K−1 · · ·
... W̄K−t

...
...

... · · · W̄K−1

...

0 0 0 · · · 0 W̄K−1































(3)

where, W̄k = diag(w̄k) ∈ R
N×N for k = 0, 1, 2, · · · ,K − 1

and w̄k = [w̄kN , w̄kN+1, · · · , w̄kN+N−1] ∈ R
1×N while

t = ⌊K
2 ⌋. The value of t defines the truncated matrix P̄ as

shown in (3). The prototype filter matrix for the Q branch
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Fig. 1: Blocks diagrams for MIMO-FBMC transmitter and receiver in matrix operation form

is defined in the same manner. The only difference is that

the Q branch filter is a shifted version of the I branch filter

i.e. w̃ = [w̃0, w̃1, · · · , w̃K−1] = [w̃0, w̃0, · · · , w̃KN−1] =
[w̄N

2
, w̄N

2 +1, · · · , w̄KN−1, w̄0, w̄1, · · · , w̃N
2 −1] ∈ R

1×KN .

Shifting prototype filter in the Q branch instead of offset-

ting the QAM symbols makes the overall design simpler.

Similarly, the Q branch truncated filter matrix P̃ is defined

in the same manner as described for the I branch with

W̃k = diag(w̃k) ∈ R
N×N for k = 0, 1, 2, · · · ,K − 1 and

w̃k = [w̃kN , w̄kN+1, · · · , w̃kN+N−1] ∈ R
1×N .

III. MIMO-FBMC MATRIX MODEL

The MIMO-FBMC matrix model is derived by extending

our previous work on a SISO-FBMC system [17]. It is worth

mentioning that the derivation of MIMO-FBMC matrix model

is not a simple SISO to MIMO mapping. Signal definition,

transmit processing, channel modeling, as well as receive

processing including channel equalization has to be redefined.

The derived MIMO-FBMC model also incorporates FOT as

well as the proposed compensation algorithm at the receiver.

A. Transmit Processing

We will only focus on the real branch in detail since the

imaginary branch will follow the same procedure.

1) Real Branch Processing: According to Fig. 1, the signal

s̄m is first multiplied by a phase shifter matrix Φ̄m symbol by

symbol i.e.,
ām = (Φ̄m ⊗ INt

)̄sm

= Φ̄k,ms̄m ∈ C
NNt×1 (4)

where Φ̄m is a diagonal matrix i.e. Φ̄m =

diag[e
−jπ(0+2m)

2 , e
−jπ(1+2m)

2 , · · · , e
−jπ(N−1+2m)

2 ] ∈ C
N×N .

Note that Φ̄k,m represents the kronecker product Φ̄m ⊗ INt

that yields a matrix of size NNt ×NNt.

2) Real Branch IDFT Processing: Signal after the phase

shifter matrix will pass through an N point IDFT (inverse

discrete Fourier transform) block FH i.e.

b̄m = (FH ⊗ INt
)ām

= FH
k ām ∈ C

NNt×1 (5)

where FH
k = FH ⊗ INt

. Signal after the IDFT block

can be represented as b̄ = [b̄0; b̄1; · · ·; b̄M−1] =
[FH

k ā0;F
H
k ā1; · · ·;F

H
k āM−1] ∈ C

MNNt×1. Here IDFT is a

block wise operation since each modulated subcarrier is a

column vector of size Nt × 1 and FH
k is a generalized NNt

point IDFT matrix.

3) Real Branch Prototype Filter: The signal is then passed

through a prototype filter in I and Q branches independently.

In general, prototype filters are linearly convolved with the

input signal. In order to represent a complete system in matrix

form we have defined a prototype filter matrix P̄ in a manner

that when this filter matrix is multiplied by vector b̄; the

multiplication of matrices is equivalent to the required linear

convolution process. The output of the I branch filter can be

written as
ō = P̄k,origb̄ (6)

where P̄k,orig = P̄orig ⊗ INt
. Note that the output of the

real branch filter ō has (K − 1)NNt more samples than the

input due to the linear convolution process. Hence, to keep the

orthogonality (minimum interference from other subcarriers

and symbols), all of these samples have to be transmitted to

the receiver side. However, the transmission efficiency η will

drop by the proportion of

η =
M

K +M − 1
(7)

It can be seen from (7), that transmission efficiency η
is high only if M is large. Another way to achieve higher

η is to truncate P̄orig to improve the spectral efficiency.

However, truncation may lead to interferences in the system

that can significantly degrade the system performance. Without

any compensation, the maximum allowable cut off symbols

would be K − 2 so as to keep the signals detectable [12].

However, with compensation we can completely discard all

the K − 1 symbols while still keeping the signals detectable.

The truncation should take place at the first iF and the last iR
rows of P̄orig such that iF + iR ≤ K − 1 as shown in (3),

where P̄iF is first iFN rows and P̄iR is the last iRN rows of

P̄orig . The middle part of P̄orig i.e. P̄ which is the truncated
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filter matrix will be used at transmitter side to improve the

spectral efficiency of the system. The performance loss due

to the truncation of P̄orig will be compensated at the receiver

side and is discussed later in Section IV. The output of real

branch truncated filter can be written as

ō = (P̄⊗ INt
)b̄

= P̄kb̄ ∈ C
MNNt×1 (8)

4) Imaginary Branch Processing Including Prototype Fil-

tering: Similar process is followed for the Q branch i.e.

the signal s̃m is first multiplied by a phase shifter matrix

Φ̃m = jΦ̄m symbol by symbol i.e.,

ãm = (Φ̃m ⊗ INt
)̃sm

= Φ̃k,ms̃m ∈ C
NNt×1 (9)

After the phase shifter matrix, the signal will pass through an

N point IDFT block FH as

b̃m = (FH ⊗ INt
)ãm

= FH
k ãm ∈ C

NNt×1 (10)

The signal after IDFT block can be represented as b̃ =
[b̃0; b̃1; · · ·; b̃M−1] = [FH

k ã0;F
H
k ã1; · · ·;F

H
k ãM−1] ∈

C
MNNt×1. Likewise, the following matrix multiplication of

truncated filter matrix P̃ and the signal vector b̃ represents

the linear convolution of the imaginary branch prototype filter

and the imaginary branch input signal.

õ = (P̃⊗ INt
)b̃

= P̃kb̃ ∈ C
MNNt×1 (11)

B. Passing through the Channel

The real and imaginary branch signals ō and õ after the

prototype filtering are added together and is then passed

through the channel H. The received signal is now represented

as

r = H ∗ (ō+ õ) + n (12)

where n = [n1,n2, · · · ,nNr
]T ∈ C

MNNr×1 is a Gaussian

noise vector with each element having zero mean and variance

σ2. To represent the convolution process given in (12) as

matrix multiplication, we define the lth tap multipath fading

factor Zl of the MIMO channel as a block diagonal matrix by

taking the kronecker product of an identity matrix I(K+M−1)N

with Zl as

Zl,blk = I(K+M−1) ⊗ Zk,l (13)

where Zk,l = IN ⊗ Zl ∈ C
NNr×NNt . The block diagonal

matrix Zl,blk ∈ C
(K+M−1)NNr×(K+M−1)NNt has Zl as its

diagonal sub matrices. The definition of Zl,blk implies that

each FBMC symbol in a block experiences the same channel

i.e. Zl . Hence, we can write (12) as

r =

L−1∑

l=0

ρlZl,blk(ō
↓Ntl + õ↓Ntl) + n (14)

where ō↓Ntl, õ↓Ntl represents Ntl samples delayed version

of ō and õ with zero padding in the front i.e. ō↓Ntl =

[0Ntl×1; ōq,Ntl] and õ↓Ntl = [0Ntl×1; õq,Ntl] respectively.

Note that ōq,Ntl and õq,Ntl represents the first (K +M −
1)NNt −Ntl elements of ō and õ respectively. From (8)

and (11) we can write ō↓Ntl = P̄
↓Ntl
k b̄ and õ↓Ntl =

P̃
↓Ntl
k b̃, where P̄

↓Ntl
k = [0Ntl×MNNt

; P̄k,q] and P̃
↓Ntl
k =

[0Ntl×MNNt
; P̃k,q]. Here P̄k,q and P̃k,q are the first (K +

M − 1)NNt −Ntl rows of P̄k and P̃k respectively. Eq (14)

can thus be reformed as

r =

L−1∑

l=0

ρlZl,blk(P̄
↓Ntl
k b̄+ P̃

↓Ntl
k b̃) + n (15)

The above equation indicates that the truncated filter matrix

P̄k and P̃k are distorted because of the channel multipath

effect and are represented as P̄
↓Ntl
k and P̃

↓Ntl
k respectively.

To represent (15) in a point-wise multiplication form in

frequency domain, we apply the circular convolution prop-

erty by first introducing a block diagonal exchange matrix

XNtl ∈ R
MNNt×MNNt as

XNtl =








Xsub,Ntl 0 · · · 0

0 Xsub,Ntl · · · 0
...

...
. . .

...

0 0 · · · Xsub,Ntl








(16)

with

Xsub,Ntl =

[
0Ntl×(NNt−Ntl) INtl×Ntl

I(NNt−Ntl)×(NNt−Ntl) 0(NNt−Ntl)×Ntl

]

(17)

As XT
Ntl

XNtl = I, we have

ō↓Ntl = P̄
↓Ntl
k b̄ = P̄

↓Ntl
k XT

Ntl
XNtlb̄ = P̄

↓Ntl
k,e b̄↓Ntl

e (18)

The matrix XT
Ntl

and XNtl are used to exchange the

locations of elements of P̄
↓Ntl
k and b̄ respectively, such that

P̄
↓Ntl
k,e = P̄

↓Ntl
k XT

Ntl
and b̄↓Ntl

e = XNtlb̄. By multiplying the

matrix XNtl with b̄, the last Ntl symbols of its each sub-

vector b̄m will be moved to the front, i.e.,

b̄↓Ntl
e,m = [bm,NNt−Ntl · · · ,bm,NNt−1,bm,0, · · · ,

bm,NNt−Ntl−1]
T ∈ C

NNt×1 (19)

Likewise,

b̄↓Ntl
e = [b̄↓Ntl

e,0 ; b̄↓Ntl
e,1 ; · · · ; b̄↓Ntl

e,M−1] ∈ C
MNNt×1 (20)

The effect is similar when multiplying XT
Ntl

with P̄
↓Ntl
k . XT

Ntl

only changes the elements location in P̄
↓Ntl
k . Similarly, we can

write õ↓Ntl as

õ↓Ntl = P̃
↓Ntl
k b̃ = P̃

↓Ntl
k XT

Ntl
XNtlb̃ = P̃

↓Ntl
k,e b̃↓Ntl

e (21)

Substituting (18) and (21) into (15) yields

r =

L−1∑

l=0

ρlZl,blk(P̄
↓Ntl
k,e b̄↓Ntl

e + P̃
↓Ntl
k,e b̃↓Ntl

e ) + n (22)

It can be observed that the non zero elements of P̄
↓Ntl
k,e and

P̄k are very close i.e. the nonzero elements of P̄
↓Ntl
k,e are only

delayed by Ntl elements as compared to the elements in P̄k.

If the non-zero ith row and kth column element of P̄k is wn,

then the element of P̄
↓Ntl
k,e at the same location will be wn+Ntl.
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Since N ≫ L, the difference between wn and wn+Ntl is very

small as the adjacent elements of the prototype filter are close

to each other. Eq (22) can thus be written as

r ≈
L−1∑

l=0

ρlZl,blk(P̄kb̄
↓Ntl
e + P̃kb̃

↓Ntl
e ) + n (23)

C. Receive Processing

On the receiver side, the signal r is received by Nr received

antennas and is fed to the real and imaginary branches of the

receiver as shown in Fig. 1 for independent processing.

1) Real Branch Processing: Following the similar ap-

proach, we will focus on the real branch processing and the

imaginary branch processing follows the same procedure. In

the real branch, signals from Nr received antennas are passed

through the real branch received filters leading to the following

output

x̄ = P̄H
k r

= P̄H
k P̄k

L−1∑

l=0

ρlZl,blkb̄
↓Ntl
e + P̄H

k P̃k

L−1∑

l=0

ρlZl,blk

b̃↓Ntl
e + P̄H

k n (24)

Autocorrelation and cross-correlation matrices of P̄k and P̃k

are defined as ¯̄Gk = P̄H
k P̄k,

¯̃
Gk = P̄H

k P̃k,
˜̃
Gk = P̃H

k P̃k and
˜̄Gk = P̃H

k P̄k. Here ¯̄Gk,
¯̃
Gk,

˜̃
Gk and ˜̄Gk ∈ R

MNNr×MNNt

The above equation (24) can now be written as

x̄ = ¯̄Gk

L−1∑

l=0

ρlZl,blkb̄
↓Ntl
e + ¯̃

Gk

L−1∑

l=0

ρlZl,blkb̃
↓Ntl
e

+P̄H
k n (25)

2) Real Branch DFT Processing and Phase Shifting: The

signal vector at the output of the real branch filter matrix

i.e. P̄H
k is represented as x̄ = [x̄0, x̄1, · · · , ¯xMNNr−1]

T ∈
C

MNNr×1 and is then passed through a serial to parallel

conversion to split the vector into M segments, each of which

has NNr elements to perform N -point DFT and phase shifting

process. The mth segment of the vector x̄ is represents as

x̄m = [x̄mNNr
, x̄mNNr+1, · · · , x̄mNNr+NNr−1]

T ∈ C
NNr×1

for m ∈ 0, 1, · · · ,M − 1. The signal is now represented

as x̄ = [x̄0, x̄1, · · · , x̄M−1] ∈ C
NNr×M where x̄m =

[x̄m,0, x̄m,1, · · · , x̄m,N−1]
T ∈ C

NNr×1 in which x̄m,n =
[x̄m,n,1, · · · , x̄m,n,Nr

]T ∈ C
Nr×1. Each x̄m,n,i represents the

real signal on nth modulated subcarrier for mth FBMC symbol

received by ith receiving antenna. Using equation (25), we can

write signal vector x̄m as

x̄m =

M−1∑

i=0

¯̄Gk,m,i

L−1∑

l=0

ρlZk,lb̄
↓Ntl
e,i +

M−1∑

i=0

¯̃
Gk,m,i

L−1∑

l=0

ρlZk,lb̃
↓Ntl
e,i + P̄H

k,mn (26)

where ¯̄Gk,m,i and
¯̃
Gk,m,i are the mth row and ith column

sub-matrices of ¯̄Gk and
¯̃
Gk respectively. The signal after DFT

and phase shifting is represented as

ȳm = Φ̄H
k,mFkx̄m (27)

where Φ̄H
k,m = Φ̄H

m ⊗ INr
and Fk = F ⊗ INr

∈ C
NNr×NNr .

Hence, ȳm ∈ C
NNr×1 can now be simplified by substituting

(26) into (27) as follows before the channel equalization.

ȳm = Φ̄H
k,mFk

M−1∑

i=0

¯̄Gk,m,i

L−1∑

l=0

ρlZk,lb̄
↓Ntl
e,i

︸ ︷︷ ︸
ūR,m

+ Φ̄H
k,mFk

M−1∑

i=0

¯̃
Gk,m,i

L−1∑

l=0

ρlZk,lb̃
↓Ntl
e,i

︸ ︷︷ ︸
ūI,m

+Φ̄H
k,mFkP̄

H
k,mn (28)

In (28), the third term is the noise processed by the proto-

type filter, DFT and the phase shifter. The term ūI,m is the

interference caused by the imaginary part of the signal (̃sm).

Whereas, the first term ūR,m contains the actual desired sym-

bol (̄sm). In ūR,m, we can write
∑L−1

l=0 ρlZk,lb̄
↓Ntl
e,i = Hcirb̄i.

The matrix Hcir is an NNr×NNt block circulant matrix. In

general, an NNr×NNt block circulant matrix is fully defined

by its first NNr×Nt block matrices. In our case, Hcir is deter-

mined by [H0,H1, · · · ,HL−1,0(N−L)Nr×Nt
]T ∈ C

NNr×Nt

ūR,m = Φ̄H
k,mFk

[
M−1∑

i=0

¯̄Gk,m,iHcirb̄i

]

= Φ̄H
k,mFk

M−1∑

i=0

¯̄Gk,m,iF
H
kFkHcirF

H
k Fkb̄i (29)

where FH
k Fk = I. Then we can use the circular convolution

property as follows (pp.129-130) [38].

ūR,m= Φ̄H
k,mFk

M−1∑

i=0

¯̄Gk,m,iF
H
k FkHcirF

H
k

︸ ︷︷ ︸

C

Fkb̄i (30)

where C is the frequency domain channel coefficients

in block diagonal matrix form and is given as C =
blkdiag[C0,C1, · · · ,CN−1] ∈ C

NNr×NNt . The nth block

diagonal element in the frequency response of the MIMO

channel can be represented as Cn =
∑L−1

l=0 Hle
−j 2π

N
nl ∈

C
Nr×Nt . Fk(b̄i) denotes the DFT processing of b̄i and

according to (5) and (4), we have Fk(b̄i) = āi = Φ̄k,is̄i,

substituting it into (30) leads to

ūR,m = Φ̄H
k,mFk

M−1∑

i=0

¯̄Gk,m,iF
H
k CΦ̄k,is̄i

=

M−1∑

i=0

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,iCs̄i (31)

The order of C and Φ̄k,i are exchangeable since both are

diagonal, we can thus obtain the following expression

ūR,m =
M−1∑

i=0

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,iCs̄i (32)

Similarly using the same method we can derive the expression

for ūI,m as

ūI,m =

M−1∑

i=0

Φ̄H
k,mFk

¯̃
Gk,m,iF

H
k Φ̃k,iCs̃i (33)
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Substituting (32) and (33) into (28) yields

ȳm = Φ̄H
k,mFk

M−1∑

i=0

¯̄Gk,m,iF
H
k Φ̄k,iCs̄i + Φ̄H

k,mFk

M−1∑

i=0

¯̃
Gk,m,iF

H
k Φ̃k,iCs̃i+Φ̄H

k,mFkP̄
H
k,mn (34)

We can further reduce (34) as

ȳm = Φ̄H
k,mFk

¯̄Gk,m,mFH
k Φ̄k,mCs̄m

+

M−1∑

i=0,i 6=m

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,iCs̄i

+

M−1∑

i=0

Φ̄H
k,mFk

¯̃
Gk,m,iF

H
k Φ̃k,iCs̃i

+Φ̄H
k,mFkP̄

H
k,mn (35)

3) Channel Equalization: We represent one tap channel

equalizer as a block diagonal matrix E and is applied to the

real branch signal ȳm as

ūm = Eȳm (36)

Substituting (35) into (36) we get the equalized signal ūm as

ūm =E
(

Φ̄H
k,mFk

¯̄Gk,m,mFH
k Φ̄k,mCs̄m

+
M−1∑

i=0,i 6=m

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,iCs̄i

+
M−1∑

i=0

Φ̄H
k,mFk

¯̃
Gk,m,iF

H
k Φ̃k,iCs̃i

)

+EΦ̄H
k,mFkP̄

H
k,mn (37)

Eq (37) can be written as

ūm =EC
(

Φ̄H
k,mFk

¯̄Gk,m,mFH
k Φ̄k,ms̄m

+
M−1∑

i=0,i 6=m

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,is̄i

+

M−1∑

i=0

Φ̄H
k,mFk

¯̃
Gk,m,iF

H
k Φ̃k,is̃i

)

+EΦ̄H
k,mFkP̄

H
k,mn (38)

where E can be either ZF or MMSE based linear channel

equalizer [39]

E = CH(CCH + νσ2/δ2I)−1 (39)

where ν = 0 for ZF while ν = 1 is for MMSE case.

With a simple ZF equalization i.e. E = (C)−1, we can write

(38) as

ūm = Φ̄H
k,mFk

¯̄Gk,m,mFH
k Φ̄k,ms̄m

+

M−1∑

i=0,i 6=m

Φ̄H
k,mFk

¯̄Gk,m,iF
H
k Φ̄k,i

︸ ︷︷ ︸
¯̄Qk,m,i

s̄i

+

M−1∑

i=0

Φ̄H
k,mFk

¯̃
Gk,m,iF

H
k Φ̃k,i

︸ ︷︷ ︸
¯̃
Qk,m,i

s̃i

+EΦ̄H
k,mFkP̄

H
k,mn

︸ ︷︷ ︸
ūnoise,m

(40)

IV. FINITE FILTER LENGTH AND FILTER OUTPUT

TRUNCATION ANALYSIS

This section presents the impact of finite filter length and

FOT on the system performance. We will first consider the

case with infinite filter length with no FOT and then we

will extend our findings to derive the interferences caused by

truncating the infinite filter length.

A. Infinite Filter Length (K = ∞) with no FOT

In this case the autocorrelation and cross correlation matri-

ces used in (40) can now be written as ¯̄Gk = P̄H
k,origP̄k,orig

and
¯̃
Gk = P̄H

k,origP̃k,orig respectively. According to the

orthogonality of FBMC with infinite filter length [17], ¯̄Qk,m,i

and
¯̃
Qk,m,i defined in (40) have the following property:

¯̄Qk,m,i =

{
I+ jℑ{ ¯̄Qk,m,i} for i = m

jℑ{ ¯̄Qk,m,i} for i 6= m
¯̃
Qk,m,i = jℑ{ ¯̃Qk,m,i} for i = 0,· · ·,M−1 (41)

Using the property of infinite filter length given in (41), we

can write (40) as

ūm = s̄m + j
[M−1∑

i=0

ℑ{ ¯̄Qk,m,i}s̄i+
M−1∑

i=0

ℑ{ ¯̃Qk,m,i}s̃i
]

︸ ︷︷ ︸
ūintri,m

+ūnoise,m (42)

The ūintri,m term is the pure imaginary intrinsic interfer-

ence that is inherent in the FBMC system. This interference

can be avoided by taking the real part of (42). Hence, we can

write (42) as

ℜ{ūm} = s̄m + ℜ{ūnoise,m} (43)

Eq (43) shows that with infinite filter length and no truncation,

the actual transmitted symbol i.e. s̄m can be recovered without

any ISI or ICI. The term ℜ(ūnoise,m) is the real part of the

processed noise. If we take the real part of (41), the property

is then simplified as

ℜ{ ¯̄Qk,m,i}=

{
I for i = m
0 for i 6= m

ℜ{ ¯̃Qk,m,i}=0 for i = 0, · · · ,M−1 (44)

The simplified property satisfies the result obtain in (43).



8

1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

0

(a) Signal power in I branch

1 2 3 4 5 6 7 8

-70

-60

-50

-40

-30

-20

-10

0

(b) Interference power in I branch

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

(c) Output SIR in I branch

1 2 3 4 5 6 7 8

-0.5

-0.4

-0.3

-0.2

-0.1

0

(d) Signal power in Q branch

1 2 3 4 5 6 7 8

-70

-60

-50

-40

-30

-20

(e) Interference power in Q branch

1 2 3 4 5 6 7 8

20

30

40

50

60

70

(f) Output SIR in Q branch

Fig. 2: Signal and interference power with output SIR in real and imaginary branches (K=6)

B. Finite Filter Length (K 6=∞) with FOT

As it is impractical to use infinite filter length from imple-

mentation point of view, we now consider the practical case

where we consider a finite filter length (K 6=∞) with FOT.

In this case the autocorrelation and cross correlation matrices

given in (40) are now defined using the truncated matrices

define in (3) i.e. ¯̄Gk = P̄H
k P̄k and

¯̃
Gk = P̄H

k P̃k respectively.

In this case, (44) will now be modified as

ℜ{ ¯̄Qk,m,i} =

{
I+ ℜ{∆ ¯̄Qk,m,m} for i = m

ℜ{∆ ¯̄Qk,m,i} for i 6= m

ℜ{ ¯̃Qk,m,i}=ℜ{∆ ¯̃
Qk,m,i} for i = 0,· · ·,M−1 (45)

where ∆ ¯̄Qk,m,i = Φ̄H
k,mFk∆

¯̄Gk,m,iF
H
k Φ̄k,i and ∆ ¯̃

Qk,m,i =

Φ̄H
k,mFk∆

¯̃
Gk,m,iF

H
k Φ̃k,i in which ∆ ¯̄Gk,m,i and ∆ ¯̃

Gk,m,i

are the error matrices due to the finite filter length and

truncating effect. Hence, Eq (43) will now be modified as

ℜ{ūm}= s̄m +

M−1∑

i=0

ℜ{∆ ¯̄Qk,m,i}s̄i

+

M−1∑

i=0

ℜ{∆ ¯̃
Qk,m,i}s̃i+ℜ{ūnoise,m} (46)

The variance of elements in the error matrices not only

depends on the filter length K and the truncation number iF
and iR, but more importantly on the odd or even value of

K. The truncation causes the filter correlation matrices to be

unsaturated at both the edges i.e. the symbols at the start and at

the end of the block will experience truncation effect while the

truncation causes the filter correlation matrix to be saturated

in the middle part. Hence, the symbols in the middle of the

filtered MIMO-FBMC block are least effected. This can be

confirmed from [12], where we have demonstrated that with

finite filter length (K = 6), the filter output contains K−1
symbols and that these extra tails at the edges of the FBMC

block have small average energy compared to the middle part

of the block.

C. Filter Output Truncation (FOT) Analysis

To analyze the impact of these factors on the filter output

truncation, we consider the following cases. We first consider

the even value of filter length (K = 6), which will introduce

K − 1 tails i.e. 5 extra symbols at the output of the transmit

filter. Also we have assumed M = 8 i.e. symbols per block at

the input of the filter. Note that this value of M is considered

just as an example and does not affect the outcomes of the

analysis.

a) Use it all: No cut at all (iF = 0 , iR = 0), i.e., input 8

symbols and output 13 symbols.

b) One symbol (front and end): Cut 2 at the front and 1 at

the end (iF =2 , iR=1), i.e., input 8 symbols and output

10 symbols.

c) One symbol (front): Cut 2 at the front and 2 at the end

(iF = 2 , iR = 2), i.e., input 8 symbols and output 9

symbols.

d) One symbol (end): Cut 3 at the front and 1 at the end (iF =
3 , iR=1), i.e., input 8 symbols and output 9 symbols.

e) The same length: Cut the front 3 and last 2 symbols (iF =
3 , iR =2), to keep the number of symbols the same i.e.

input 8 symbols and output 8 symbols.

Fig. 2 shows the desired signal and interference powers for real

and imaginary branches in case of finite filter length (K=6)
with different FOT scenarios. The observations drawn from
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Fig. 2 regarding the aforementioned cases are discussed as

follows

• Use it all case i.e. no truncation can achieve very good

performance for both real or imaginary branches. As in

this case, the second and third terms in (46) will not

exist and therefore the desired symbols are free from

interference terms.

• One symbol (front and end) case can achieve similar

performance as in use it all case, only marginal difference

is at the edge symbols. This is because the one symbol

at the front has significant energy as compared to the

other tails [12]. Leaving this symbol at the front will

significantly reduce the interference level and the effect

of cutting other two symbols at the front and one at the

end has much less affect on the neighboring symbols as

can be seen from Fig. 2b.

• One symbol (front) case introduces interference at the

last symbols i.e. m = 7, 8 compared to the one symbol

(front and end) case. This loss is tolerable as the signal

power loss and the increase in the interference level

for m = 7 and m = 8 are insignificant as can be

seen from Fig. 2b. These losses are acceptable as we

are avoiding an extra symbol overhead compared to the

one symbol (front and end) case. This performance loss

at the last symbols is due to the truncation at the end

of the filter that introduces interference in the last two

symbols.

• However, One symbol (end) case does not work as the

signal power for m = 1 is reduced and the interference

level has increased significantly which are both unaccept-

able. It is because in this case we are truncating the front

part of the filter that discards all the symbols at the front

of the block and introduces significant interference in the

neighboring symbols. Hence, leaving one symbol at the

end is not a good strategy.

• In the same length case, the desired signal power and

interference power for the symbols at the edges (m = 1, 2
and 7, 8) are affected significantly. This is because the

extra symbols at the start and the end of the block are

truncated that affects their neighboring symbols. In this

case, the second and third terms in (46) will exist and as

a result, the detected symbols will be effected by these

interference terms.

The output signal to interference ratio (SIR) for real and

imaginary branches is illustrated in Fig. 2c and Fig. 2f

respectively, where we can see that with a finite filter length

(K = 6), the best SIR can be obtained with use it all case;

however, the overhead is quite high in this case. While the

same length case can completely remove the overhead but

significantly reduces the SIR of the symbols at the edges. A

good balance is to adopt the one symbol (front) case for even

K which offers an acceptable trade-off between the overhead

and the performance.

However, the observations are totally reversed when we

consider the odd number of filter length e.g. (K=5). In this

case the last symbol in the imaginary branch is significantly

affected by the FOT as can be seen from Fig. 3. The one

symbol (end) case is now more effective in case of odd filter

length as it provides better SIR compared to the other cases

as can be seen from Fig. 3c and Fig. 3f.

Since the target branch and symbol are totally different for

odd and even K, in the next section, we will focus on the

even K only for proposing the compensation algorithm. The

compensation algorithm for the odd K can be derived using

the same approach.

V. PROPOSED COMPENSATION ALGORITHM

Although adding one symbol (front) case can provide ac-

ceptable performance (SIR>20dB). However, this approach is

valid only when the block size M is large. For instance when

M = 20, the total overhead is only 5% and this percentage

further drops when M goes to larger value [12]. However,

considering different traffic models and also the latency of

the data, the solution that one symbol (front) case may cause

significant overhead e.g. with moderate M = 5, the total

overhead is 20%, which is very inefficient.

In order to overcome this inefficiency for moderate M ,

we propose a compensation approach which allows complete

removal of the overhead caused by the filtering operation.

Note that when K is even, if we consider the same length

case only the first symbol on the I branch has unacceptable

level of SIR whereas the corresponding symbol on the Q
branch has sufficient SIR level (20dB) as can be see from

Fig. 2c and Fig. 2f respectively. While in the odd K case, the

situation is opposite (only the last symbol on the Q branch has

unacceptable level of SIR) as can be seen from Fig. 3f. With

this observation, we can state that all of the other symbols

(both real and imaginary, except the first real symbol for even

K or last imaginary symbol for odd K) can be easily detected.

Considering the even K case with the assumption that the

channel is known and that we only need to compensate the

first symbol in the real branch to have sufficient SIR value to

detect all the symbols. According to (46), the first I branch

symbol can be written as

ℜ{ū0}= s̄0 +
M−1∑

i=0

ℜ{Φ̄H
k,0Fk∆

¯̄Gk,0,iF
H
k Φ̄k,i}s̄i

+

M−1∑

i=0

ℜ{Φ̄H
k,0Fk∆

¯̃
Gk,0,iF

H
k Φ̃k,i}s̃i

= s̄0 + ℜ{Φ̄H
k,0Fk∆

¯̄Gk,0,0F
H
k Φ̄k,0}s̄0

+

M−1∑

i=1

ℜ{Φ̄H
k,0Fk∆

¯̄Gk,0,iF
H
k Φ̄k,i}s̄i

+

M−1∑

i=0

ℜ{Φ̄H
k,0Fk∆

¯̃
Gk,0,iF

H
k Φ̃k,i}s̃i (47)

The first term in (47) is the desired signal, the second

term is the ICI and the third and fourth terms are the ISI

caused by the I and Q branches respectively. For simplicity,

we omit the noise term. In order to improve the SIR of the

first symbol in the I branch, we need to compensate the ICI

and the ISI terms at the receiver. For this, we need to find the

compensation matrices i.e. ∆ ¯̄Gk,0,i and ∆ ¯̃
Gk,0,i in (47). Note
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Fig. 3: Signal and interference power with output SIR in real and imaginary branches (K=5)

that the ∆ ¯̄Gk,0,i and ∆ ¯̃
Gk,0,i are caused by the FOT which

brings significant SIR reduction for some symbols. To derive

the matrices, we define the perfect autocorrelation matrices
¯̄Gk,orig and

¯̃
Gk,orig as follows

¯̄Gk,orig = P̄H
k,origP̄k,orig =

[
P̄H

k,iF
P̄H

k P̄H
k,iR

]





P̄k,iF

P̄k

P̄k,iR





= P̄H
k,iF

P̄k,iF + P̄H
k P̄k + P̄H

k,iR
P̄k,iR (48)

Similarly,

¯̃
Gk,orig = P̄H

k,iF
P̃k,iF +P̄H

k P̃k+P̄H
k,iR

P̃k,iR (49)

We can write the compensation matrices ∆ ¯̄Gk and ∆ ¯̃
Gk us-

ing the perfect autocorrelation matrices ( ¯̄Gk,orig and
¯̃
Gk,orig)

and the truncated autocorrelation matrices ( ¯̄Gk = P̄H
k P̄k and

¯̃
Gk = P̄H

k P̃k) as:

∆ ¯̄Gk =
¯̄Gk,orig−

¯̄Gk=P̄H
k,iF

P̄k,iF+P̄
H
k,iR

P̄k,iR (50)

∆ ¯̃
Gk =

¯̃
Gk,orig−

¯̃
Gk=P̄H

k,iF
P̃k,iF+P̄

H
k,iR

P̃k,iR (51)

Now for even K case, we propose the following compen-

sation algorithm to determine ∆ ¯̄Gk,0,i and ∆ ¯̃
Gk,0,i in (47)

for compensating ISI in the first real symbol. Using (50)

and (51), we can determine ∆ ¯̄Gk,0,i = ∆ ¯̄G0,i ⊗ INr
and

∆ ¯̃
Gk,0,i = ∆ ¯̃

G0,i ⊗ INr
for i = 0 · · ·M − 1 using (3) as

∆ ¯̄G0,0 = W̄H
0 W̄0 + W̄H

1 W̄1 + W̄H
2 W̄2

∆ ¯̄G0,1 = W̄H
1 W̄0 + W̄H

2 W̄1

∆ ¯̄G0,2 = W̄H
2 W̄0

∆ ¯̄G0,j = 0 for 3 ≤ j ≤ M − 1 (52)

and

∆ ¯̃
G0,0 = W̄H

0 W̃0 + W̄H
1 W̃1 + W̄H

2 W̃2

∆ ¯̃
G0,1 = W̄H

1 W̃0 + W̄H
2 W̃1

∆ ¯̃
G0,2 = W̄H

2 W̃0

∆ ¯̃
G0,j = 0 for 3 ≤ j ≤ M − 1 (53)

A. Compensating the Real Branch Signal:

The real branch signal is affected by ISI and ICI terms as

shown in (47). The proposed algorithm can compensate these

two interferences as follows
1) Compensating the ISI: The third and fourth terms in

(47) are the ISI terms caused by the I and Q branch symbols.

Using (52) and (53), we can compensate these ISI terms at

the receiver side as

ū0,comp =ℜ{ū0}−
M−1∑

i=1

ℜ{Φ̄
H

k,0Fk∆
¯̄Gk,0,iF

H
k Φ̄k,i}s̄i

−
M−1∑

i=0

ℜ{Φ̄
H

k,0Fk∆
¯̃
Gk,0,iF

H
k Φ̃k,i}s̃i

= s̄0 + ℜ{Φ̄
H

k,0Fk∆
¯̄Gk,0,0F

H
k Φ̄k,0}s̄0

= [I+ ℜ{Φ̄
H

k,0Fk∆
¯̄Gk,0,0F

H
k Φ̄k,0}]̄s0

=ℜ[I+ Φ̄
H

k,0Fk∆
¯̄Gk,0,0F

H
k Φ̄k,0 ]̄s0 (54)

2) Compensating the ICI: Apparently, the term

Φ̄
H

k,0Fk∆
¯̄Gk,0,0F

H
k Φ̄k,0 in (54) is also known. Hence,

we can compensate this term by using a ZF (or if we consider

the noise term in (47) we can use MMSE) equalization at the

receiver to estimate s̄0 with relatively higher SIR as

ˆ̄s0=(ℜ[I+Φ̄
H

k,0Fk∆
¯̄Gk,0,0F

H
k Φ̄k,0])

−1ū0,comp (55)
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Fig. 4: Signal and interference power with output SIR using compensation algorithm (K=6)

It can be seen from (55) that both ICI and ISI can be

compensated at the receiver side. The proposed compensation

algorithm can provide the same SIR for the first real symbol

as in the use it all case by compensating the effect of FOT as

can be seen from Fig. 4c. Further, we can derive a generalized

expression of (55) which can be used to further improve the

SIR of other symbols as well by compensating their ICI and

ISI terms. The generalized expression of (54) can be derived

as

ūm,comp=ℜ{̄um}−
M−1∑

i=0,i 6=m

ℜ{Φ̄
H

k,mFk∆
¯̄Gk,m,iF

H
k Φ̄k,i}s̄i

−
M−1∑

i=0

ℜ{Φ̄
H

k,mFk∆
¯̃
Gk,m,iF

H
k Φ̃k,i}s̃i

= s̄m+ℜ{Φ̄
H

k,mFk∆
¯̄Gk,m,mFH

k Φ̄k,m}s̄m

= [I+ℜ{Φ̄
H

k,mFk∆
¯̄Gk,m,mFH

k Φ̄k,m}]̄sm

=ℜ[I+Φ̄
H

k,mFk∆
¯̄Gk,m,mFH

k Φ̄k,m ]̄sm (56)

Similarly, (55) can be generalized as

ˆ̄sm=(ℜ[I+Φ̄
H

k,mFk∆
¯̄Gk,m,mF

H
k Φ̄k,m])−1ūm,comp (57)

In (56), it is worth mentioning that the term
∑M−1

i=0,i 6=m ℜ{Φ̄
H

k,mFk∆
¯̄Gk,m,iF

H
k Φ̄k,i}s̄i should be treated

carefully for i = 0, since only accurate ˆ̄s0 will bring

accurate compensation to other symbols, otherwise errors

will be introduced, which implies that ˆ̄s0 should be always

compensated first.

B. Compensating the Imaginary Branch Signal:

The equalized imaginary branch symbol, ũm can be written

as follows using the same approach as adopted for the real

branch.

ũm = Φ̃
H

k,mFk
˜̃
Gk,m,mFH

k Φ̃k,ms̃m

+

M−1∑

i=0,i 6=m

Φ̃
H

k,mFk
˜̃
Gk,m,iF

H
k Φ̃k,i

︸ ︷︷ ︸

˜̃
Qk,m,i

s̃i

+

M−1∑

i=0

Φ̃
H

k,mFk
˜̄Gk,m,iF

H
k Φ̄k,i

︸ ︷︷ ︸

˜̄Qk,m,i

s̄i

+EmΦ̃
H

k,mFkP̃
H
k,mn

︸ ︷︷ ︸

ũnoise,m

(58)

According to the orthogonality of FBMC with infinite filter

length [17],
˜̃
Qk,m,i and ˜̄Qk,m,i have the following property

˜̃
Qk,m,i =

{

jI+ ℜ{ ˜̃Qk,m,i} for i = m

ℜ{ ˜̃Qk,m,i} for i 6= m

˜̄Qk,m,i =ℜ{ ˜̄Qk,m,i} for i = 0, · · · ,M−1 (59)

Using the property of infinite filter length given in (59), we

can write (58) as

ũm = js̃m+
[M−1∑

i=0

ℜ{ ˜̃Qk,m,i}s̃i+
M−1∑

i=0

ℜ{ ˜̄Qk,m,i}s̄i
]

︸ ︷︷ ︸

ũintri,m

+ũnoise,m (60)

Taking the imaginary part of (60), we have

ℑ{ũm}= s̃m+ℑ{ũnoise,m} (61)

We can now compensate the Q branch as well using the

same approach used for the I branch; however, since all the
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symbols already have good initial SIR, it will be easier to

compensate them in this branch compared to the I branch.

The compensation approach for the Q branch is as follows

ˆ̃sm=(ℑ[I+Φ̃
H

k,mFk∆
˜̃
Gk,m,mFH

k Φ̃k,m])−1ũm,comp (62)

where,

ũm,comp =ℑ{ũm}−
M−1∑

i=0,i 6=m

ℑ{Φ̃
H

k,mFk∆
˜̃
Gk,m,iF

H
k Φ̃k,i}s̃i

−
M−1∑

i=0

ℑ{Φ̃
H

k,mFk∆
˜̄Gk,m,iF

H
k Φ̄k,i}s̄i (63)

C. Combining Real and Imaginary Branches:

With (57) and (62), we can write the compensated estima-

tion of sm as follows

ŝm = ˆ̄sm+jˆ̃sm (64)

VI. SIMULATION RESULTS

In this section, we present a set of simulation results to

demonstrate the effectiveness of the proposed compensation

algorithm in the the same length case. For simulations, the

selected parameters for the MIMO-FBMC system includes the

IOTA prototype filter with overlapping factor K = 6. The

number of transmit and receive antennas are Nt = Nr = 2.

The desired signal is modulated by QPSK with normalized

power and input signal to noise ratio (SNR) is controlled by

the noise power. The LTE channel model considered in our

simulation is the extended pedestrian A model (EPA) [40].

For the equalization, the MMSE based equalizer is selected as

it is more generic. As we have concluded in Section V that our

main concern is the first real branch symbol which has a very

low SIR value of around 2dB. The proposed compensation

algorithm given in (55) significantly improves the SIR of the

first real symbol i.e. the signal power increase from -5.1dB to

0dB while the interference level drops from -5dB to -48dB.

Hence, increasing the SIR of the first real symbol from 2dB to

48dB as can be seen from Fig. 4. Note that we do not need to

compensate the imaginary branch as it already has sufficient

SIR values for detecting all the symbols at the receiver as

discussed in Section V.

However, the term acceptable SIR value is strongly de-

pendent on the modulation order as higher modulation order

require high SIR values for achieving a specific required

performance. The proposed general form of the compensation

algorithm given in (57) and (62) is incorporated at the receiver

side of the MIMO-FBMC system. The algorithm significantly

improves the SIR of all the symbols in the real and imaginary

branches respectively as can be see from Fig. 4. Compensating

all the symbols can help in improving the probability of

detection at the receiver. The coded results (convolutional

code with code rate 1/2) for the BER performance of various

FOT schemes in MIMO-FBMC system with and without

compensation algorithm are presented in Fig. 5. It can be

observed that the system performance in case of use it all and

one symbol (front) has similar BER performance but the latter

required only one extra tail compared to the former, which

required K−1 extra tails. The same length case requires no

extra tail but has a relatively poor BER performance.
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0

12 13 14 15
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Fig. 5: BER performance of OFDM and FBMC system with

and without compensation

We have used conventional MIMO-OFDM as a baseline

scheme to show the advantage of the proposed algorithm over

such conventional multicarrier schemes. For a fair comparison

between MIMO-FBMC and MIMO-OFDM systems, the SNR

loss, due to the cyclic prefix (overhead) in OFDM, must

be considered. For this reason, we have calculated the noise

power for both systems as discussed in [12]. The comparison

shows the significance of the proposed algorithm especially

for higher modulation schemes. It can be seen from Fig. 5

that for low order modulation schemes like QPSK, MIMO-

FBMC system without compensation can still perform better

than conventional MIMO-OFDM but if we increase the mod-

ulation schemes to higher order like 16QAM or 64QAM, the

performance of MIMO-FBMC system without compensation

becomes poorer than MIMO-OFDM due to self-interference

caused by FOT. In such cases, use of the proposed compensa-

tion algorithm is very significant as it not only provides better

performance but also improves the spectral efficiency (SE) of

the system.
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Fig. 6: Spectral efficiency of MIMO-FBMC with respect to

block size (M )

The SE of the system has been simulated using Shannon
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Fig. 7: Spectral efficiency of MIMO-FBMC with respect to

SNR (Eb/No)

equation [37] which gives an upper bound of the capacity that

the system can achieve i.e. maximum error free transmission

rate. Note that the capacity is measured using only the simula-

tion and is not the exact representation of achievable capacity.

The objective is to provide an idea regarding the spectral

efficiency gain that can be achieved using the filter output

truncation and the compensation algorithm at the receiver. The

spectral efficiency expression with respect to the block size M
used in the simulation is given as follows

SE = min{NT , NR}×
M

M + α

{

1

M

M∑

i=1

log2(1+SINRm)

}

(65)

where α represents the overhead in each case i.e. K − 1 for

use it all, 1 for one symbol (front) and 0 for compensate all.

The SE in each case is given in Fig. 6. It can be observed

from Fig. 6a that the SE is independent of M for the

compensate all case whereas it is dependent for the use it

all and one symbol (front) cases as they have one and K − 1
tails respectively with each block. It can also be seen from

Fig. 6b that the SE gain obtained using the compensate all

case reduces with the increase in M for both use it all and

one symbol (front) cases. Hence, the compensation algorithm

is best suited for applications that has a frame structure based

on moderate M . The SE results for a range of SNR (Eb/No)

values are also shown in Fig. 7. With a fixed block size, the

SE of the system increases as input SNR (Eb/No) increases

as shown in Fig. 7a. It can be observed that SE performance

of the compensate all case is better than one symbol (front)

and use it all cases, as these FOT schemes require certain

overhead to achieve improved BER performance. However,

the proposed compensation algorithm provides similar BER

performance by compensating the effects of FOT in the same

length case without introducing any overhead. This enables

compensate all case to have a certain SE gain compared to

other FOT schemes as can be seen from Fig. 7b.

VII. CONCLUSION

The impact of finite filter length and different types of FOT

has been theoretically analyzed in a MIMO-FBMC system.

The analysis is based on a compact matrix model of a MIMO-

FBMC system, which was then used for investigating the

effects of FOT on the detection performance in terms of the

SIR and BER. The analysis showed that although FOT can

avoid overhead but it also destroys the orthogonality in the

FBMC system thus introducing interferences. However, due

to the isolation property between the (FBMC) symbols, only

real part of the first symbol or the imaginary part of the last

symbol are affected by the aforementioned interferences.

A general form of compensation algorithm based on the

observations made in the theoretical analysis has been de-

signed to compensate the symbols in a MIMO-FBMC block

to improve the SIR of each symbol. The advantage of this

algorithm is that it improves the spectral efficiency of the

system as it requires no overhead and at the same time can

still achieve similar performance compared to the case without

FOT. However, the spectral efficiency gain tends to reduce

with the increasing M as the overhead tends to decrease with

increase in frame size.

The proposed analytical framework developed in this pa-

per provide useful insights into the effect of finite filter

length and FOT on the system performance and the proposed

compensation algorithm can enable MIMO-FBMC system to

achieve higher spectral efficiency compared to its conventional

counterpart.
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