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Abstract— In this paper, we consider signals consisting of
a finite though unknown number of periodic time-interleaved
pulse trains. For such signals, we present a novel approach
for determining both the number of pulse trains present and
the frequency of each pulse train. Our approach requires only
the time of arrival data of each pulse. It is robust to noisy
time of arrival data and missing pulses and, above all, is very
computationally efficient. If N is the number of pulses being
processed, the computation required is of the order ofN log N .

Index Terms—Pulse train analysis.

I. INTRODUCTION

A PERIODIC pulse train consists of a sequence of peri-
odically spaced pulses. A single channel receiver will

often receive periodic pulse trains from a number of sources
simultaneously. The superposition of all the received pulse
trains is known as aninterleaved pulse train. The process
of determining the number of pulse trains present in this
signal and associating each received pulse with a source
is termedpulse train deinterleaving. This process relies on
the assumption that the different pulse train sources have
different characteristics such as period of pulse emission. One
application of pulse train deinterleaving is in radar detection
[5]. Potential applications include computer communications
and neural systems.

Typical approaches to pulse train deinterleaving are se-
quential search [1] and histogramming [1], [2]. A practical
disadvantage of these algorithms is the computational effort
they require. If is the number of pulses being processed,
computations are of the order of [4].

A recent novel approach to pulse train deinterleaving is
given in [3], where the problem is first formulated as a
stochastic discrete-time dynamic linear model. Like sequential
search and histogramming, this method is quite computation-
ally expensive.

Rather than trying to deinterleave a received interleaved
pulse train directly, we focus solely on determining the number
of pulse trains present and the frequency of each pulse train.
We term this information theinterleaved pulse train spectrum.
We present a novel (nonlinear) approach for estimating the
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spectrum of a signal consisting of a finite though an unknown
number of periodic time-interleaved pulse trains. Only the time
of arrival data of each pulse is assumed to carry information,
and only this data is used in our algorithm. No knowledge of
any other pulse train characteristics such as pulse energy is
required, nor is prior knowledge of the transmitter character-
istics required. A great advantage of our scheme is that if
is the number of pulses being processed, computations are of
the order Note that once the interleaved pulse train
spectrum is known, it is a relatively easy task to deinterleave
the received signal using standard methods such as those used
after histogramming [1].

This paper is structured as follows. A problem formulation
is first presented, followed by an overview of the proposed
scheme. The remainder of the paper then discusses aspects of
the approach in greater depth. First, an analysis of a special
class of nongeneric pulse train sequences that satisfy various
simplifying assumptions is undertaken. Using insight gained
from this nongeneric case, some simulation results for the
generic case are presented and discussed. These results include
considering how the length of the data set, pulse time of arrival
noise, missing pulses, and staggered pulse trains effect the
accuracy of the scheme. The paper ends with some concluding
remarks.

II. PROBLEM FORMULATION AND APPROACH

Consider periodic pulse train sources. Let and
denote, respectively, the period, frequency, and phase of

the th source. The received interleaved signal consists of
the superposition of the pulse trains produced by these
sources. Let denote the times of arrival of
consecutive pulses in this signal nominally setting
The problem is as follows:

Problem: Given , determine both the number of
pulse trains present and the frequency of each pulse train.

The first step in the proposed scheme is to calculate

for (2.1)

where The signal can be thought of as taking
the interval , containing the first pulse times of
arrival, normalizing its length to approximately , and then
wrapping this normalized interval around the unit circle. Note
that as mentioned before,

The next step is to take the -length discrete Fourier
transform (DFT) of (2.1). The magnitude of this transformed
signal contains the information necessary to determine the
interleaved pulse train spectrum. That is, it contains the
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information necessary to 1) determine how many pulse trains
are present and 2) make a good estimate of their frequencies.
The phase response seems to contain little information. Re-
dundant information within the magnitude signal can be used
to improve confidence of results.

By choosing appropriate data lengths, the proposed scheme
can employ the fast Fourier transform (FFT). Hence, the
computational cost of the scheme is of the order of

Last, note that the proposed scheme is nonlinear.

III. A N ONGENERIC SPECIAL CASE

The nonlinear nature of the proposed scheme makes its
mathematical analysis difficult. In this section, we consider
a class of nongeneric pulse trains that satisfy various sim-
plifying assumptions and make a mathematical analysis of the
scheme possible. As discussed in the next section, this analysis
provides valuable insight into the generic case.

Let denote the rational numbers. It is assumed that the
pulse trains considered in this section satisfy the following
properties.

P1) The period of each pulse train is rational, that is,

P2) The phase of each pulse train is zero, that is,

In real-world situations, some pulses will not be detected
due to pulses from different sources arriving at the receiver
at exactly or nearly exactly the same time. For the present
purposes of analysis, we make an idealization in the follwing
assumption.

Assumption 3.1:All emitted pulses are detected by the
receiver, and there are no missing pulses.

Simulations later in the paper will show that the algorithm is
robust to small percentages of missing pulses and, hence, that
Assumption 3.1 is not crucial to the operation of the algorithm.

Properties P1) and P2) and Assumption 3.1 imply that if
the received signal contains a sufficiently large number of
pulses, it will be periodic. It is assumed that a sufficiently
large number of pulses have been received such that this is
the case. The period of the received signal will be denoted
by

In addition to properties P1) and P2), we have the following
property.

P3) The received signal consists of exactly an integer
number of overall signal periods

Let denote the number of pulses from pulse train
appearing in one period of the received signal. Then

(3.1)

and the total number of pulses in one period of the received
signal is

Remark 3.2: It is assumed that the pulse time of arrival data
is noise free.

Let denote the integers. The prior assumptions imply that
and that

(3.2)

Theorem 3.3:Consider a signal consisting of interleaved
pulse trains satisfying properties P1), P2), and P3). Let
be defined as in (2.1), and let denote
its discrete Fourier transform. Then, defining

if

otherwise.

Furthermore, for equals , which is the
frequency of the th pulse train.

Proof: By definition

Replacing by and noting that P2) implies that

by (3.2)
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Consider the summation in square brackets in the line above.
Letting

if

if

Note that and, hence, that

if

if

In addition, note that

where and

Note that above is indeed always an integer as
Replacing with , the DFT of can now be seen to

be the expression given in the theorem statement. Furthermore,
by (3.2)

and for , (3.1) implies that

Theorem 3.3 shows that the -length DFT of is
nonzero at, at most, points. Furthermore, of these
possibly nonzero points correspond to the pulse train
frequencies. Additionally, if is a pulse train frequency, the
theorem predicts the existence of harmonics at

A. The Nongeneric Case: A Simulation Example

The proposed methodology was applied to a signal satis-
fying properties P1)–P3). The signal consisted of
interleaved pulse trains with respective frequencies
Hz, Hz, and Hz. The magnitude of the
signal produced by the DFT is shown in Fig. 1.

As predicted, the magnitude plot contains only a small
number of nonzero values uniformly spaced in frequency. How
the interleaved pulse train spectrum is identified from such a
magnitude plot will be discussed in the next section, which

Fig. 1. Nongeneric magnitude plot.

deals with the generic case. For the moment, notice that the
largest values produced by the proposed scheme do not

necessarily correspond to the pulse trains present. Despite
this, notice that, for this example at least, of the larger
magnitudes present do correspond to pulse train frequencies.

Although it is not apparent from Fig. 1, the DFT magnitude
at 0 Hz is very large and is approximately equal to This
term is an artifact of the processing method and is ignored.

IV. THE GENERIC CASE

In this section, a generic case simulation is presented and
discussed. The time-of-arrival data used in this simulation is
not corrupted by noise, and the data does not contain any
missing pulses. (The effects of noisy time of arrival data and
missing pulses are discussed in Section V.)

The simulated signal consists of ten interleaved pulse trains.
The frequencies of the pulse trains were chosen arbitrarily
and are listed in Table I. Each pulse train has a random
phase, and the number of pulses used in the simulation is

The magnitude plot produced by applying
our approach is shown in Fig. 2. Fig. 3 highlights the output
in the frequency range 1–6 kHz. Here, it can be seen that the
ten largest magnitudes in the spectrum correspond to the ten
pulse trains. (As in the nongeneric case, the spectrum contains
a large term at 0 Hz, which is ignored.)

If the original signal consists of interleaved pulse trains,
the number of pulses processedwill approximately be equal
to The number of pulse trains present is
determined by assuming that the largest magnitudes corre-
spond to pulse trains. Starting with is incremented
until is approximately equal to (The
frequencies are estimates of If no such

can be found, it means the largest magnitudes in the
spectrum do not correspond to the pulse trains present.

For our example, actual versus estimated pulse train fre-
quencies are presented in Table I.

Before proceeding, we note that the behavior of the algo-
rithm as described above is typical if two or more pulse trains
are present. On the other hand, in the case that only a single
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TABLE I
ACTUAL VERSUS ESTIMATED PULSE TRAIN FREQUENCIES

Fig. 2. Generic magnitude plot(N = 4096):

pulse train is present, the algorithm behaves slightly differently
in that it produces a magnitude plot containing only a large
magnitude at 0 Hz (which in normal processing is ignored).
In such a situation (an estimate of), the frequency of the pulse
train will be given by the highest frequency bin in the FFT.

A. Additional Processing

As Fig. 3 demonstrates, the proposed scheme can produce a
magnitude plot that contains magnitudes of a substantial size
that do not correspond to pulse trains. Instead of trying to
determine the interleaved pulse train spectrum from such a
magnitude plot, the magnitude signal can be further processed
in such a way that many of the magnitudes that do not
correspond to pulse trains can be removed. This processing
removes many of the artifacts present and leads to a more
reliable estimate of the interleaved pulse train spectrum. We
now discuss how this additional processing is done.

Fig. 3. Region of interest from Fig. 2.

As mentioned previously, at least for the nongeneric case,
if is a pulse train frequency, Theorem 3.3 predicts the
existence of harmonics at Simulations indicate
that such harmonics also appear in the generic case and that,
in fact, they make up the majority of spurious pulse train
magnitudes. Simulations also indicate that the largest value
in a magnitude plot always corresponds to a pulse train.1

Additional processing starts by assuming the largest magnitude
present corresponds to a pulse train. The estimated frequency
of this pulse train is taken to be the frequency corresponding
to this magnitude. Any magnitudes at are assumed
to be harmonics of this pulse train and are removed from the
magnitude plot. (In practice, for reasons of robustness, one
or two frequency bins directly either side of the DFT bin
corresponding to each harmonic are also removed.) The sum
of the magnitudes of these harmonics are then added to the
magnitude at frequency This process is then repeated on the
second largest magnitude present, and then on the next largest
magnitude, and so on, until approximately
equals (In practice, when deciding which is the next largest
magnitude, not only are the bins corresponding to previously
identified pulse trains ignored, but the two bins either side of
such bins are also ignored. This helps to ensure that if a pulse
train magnitude is spread over more than one bin, the pulse
train is not incorrectly identified as a multiple pulse train.) The
result of such additional processing for our example is shown
in Fig. 4.

It is important to note that the additional processing dis-
cussed in this subsection incurs negligible additional compu-
tational cost.

B. When All Else Fails

If the proposed scheme (with additional processing) fails
to properly identify the interleaved pulse train spectrum, for
example, if no can be found such that is

1A magnitude plot may contain two frequencies of equal largest magnitude;
see, for example, Fig. 1. In this case, at least one of these largest magnitudes
has always been observed to correspond to a pulse train. Equal largest
magnitudes have only been observed in nongeneric case simulations.
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Fig. 4. Magnitude plot after additional processing.

approximately equal to , the spectrum can be identified in
the following manner. As previously mentioned, simulations
indicate that the largest magnitude in a magnitude plot always
corresponds to a pulse train. (As usual, the large magnitude at 0
Hz is ignored.) Having identified the frequency corresponding
to the largest magnitude, standard methods [1] can be used
to deinterleave the corresponding pulse train. By deinterleave,
we mean that all pulses in the received interleaved signal that
are members of the identified pulse train can be removed.
This produces a new interleaved signal with one fewer present
pulse train than the original. The proposed scheme can then
be applied to this new signal, and another pulse train can be
identified and deinterleaved. This process can be repeated until
all pulse trains are identified.

The method described in this subsection involves consid-
erably more computational effort than the approach described
earlier. As a consequence, it should only be used as a last
resort. No results presented in this paper are based on such
processing.

V. FURTHER ANALYSIS

In this section, we continue to look at the generic case
and consider how the length of the data set, pulse time of
arrival noise, missing pulses, and staggered pulse trains effect
results. All pulse train data used in this section is based on the
interleaved pulse train signal used in Section IV.

A. Decreasing

In this subsection, we consider the effect decreasing, that
is, of using a smaller number of pulses.

The simulation presented in Section IV used
pulses (see Fig. 3). The output produced by using a

smaller number of pulses is shown in Fig. 5.
This figure is a plot of the results without additional

processing. As would be expected, using a smaller number
of pulses leads to a loss in resolution. Overall, the results are
still very good, although pulse trains 3 and 4, which are very

Fig. 5. Magnitude plot using a decreased number of pulses:N = 1024:

Fig. 6. Magnitude plot withN = 256:

close in frequency (2.0658 and 2.0944 kHz, respectively), have
not been distinguished and have been incorrectly identified as
a single pulse train.

The effect of further reducing is demonstrated in Fig. 6,
in which As can be seen, resolution has been
greatly reduced, and in practice, a larger value ofwould
be required if accurate estimates of the pulse train frequencies
were required. Notice, however, that despite the poor resolu-
tion, nine prominent spikes are present, representing nine of
the ten pulse trains present.

Overall, Figs. 3, 5, and 6 demonstrate that performance
degrades gracefully as is decreased.

B. Noisy Time of Arrival Data

In this subsection, we consider the effect of noisy time-of-
arrival data. Time-of-arrival noise is modeled as zero mean
Gaussian noise and, as in Section IV, we use

The output produced using our approach for a noise standard
deviation of 0.025 s is shown in Fig. 7. Fig. 8 shows the results
after additional processing. All ten pulse trains are correctly
identified, and the estimated pulse train frequencies produced
are given in Table II. Table II also lists actual pulse train
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Fig. 7. Magnitude plot for data with noisy times of arrival. Noise std. dev.
= 0.025 s.

Fig. 8. Magnitude plot given in Fig. 7 after additional processing.

frequencies for convenience of comparison. Observe that for
this level of noise, results are just as good as in the noise-free
case given in Section IV.

Fig. 9 shows the output produced for a noise standard
deviation of 0.05 s. In this case, nine of the ten pulse train
frequencies were correctly identified; however, four spurious
frequencies were also identified. The frequency estimates in
kilohertz were 1.2979, 1.4179, 1.5529, 1.7405, 2.0256, 2.0631,
2.0931, 2.7158, 2.8508, 3.0008, 3.3384, 4.1412, and 4.8238.

From the figures discussed above, it can be seen that
increased time-of-arrival noise leads to greater noise in the
pulse train magnitude plots. This increase in noise in turn
leads to a decrease in performance. Note that although it is
not shown here, when processing noisy data, results can be
improved by increasing

C. Missing Pulses

In this subsection, we consider the effect of missing pulses.
The signal processed was the same as the one used in
Section IV, except that each pulse was given a probability of

of not been being present. As before, Fig. 10

TABLE II
ACTUAL VERSUS ESTIMATED PULSE TRAIN FREQUENCIES:

TIME OF ARRIVAL NOISE std. dev.= 0.025

Fig. 9. Magnitude plot for data with noisy times of arrival. Noise std. dev.
= 0.05 s.

is a plot of the output produced after additional processing.
Although pulse trains 3 and 4 cannot visually be distinguished
from Fig. 10, our approach correctly identifies the ten pulse
trains present, and the estimates of their frequencies are given
in Table III.

D. Staggered Pulse Trains

In this subsection, we consider the effect of some emitters
having staggered pulse repetition intervals. The signal pro-
cessed was the same as the one used in Section IV, except
that single copies of pulse trains 5, 6, and 10 were made,
given a random offset that was added to the original signal.

The magnitude plot is shown in Fig. 11. As can be seen,
the plot looks much the same as Fig. 3. Although this is quite
encouraging and almost all simulations with staggered pulse
trains look much the same, on occasion, the magnitude plot
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Fig. 10. Magnitude plot of data with 1% of pulses missing after additional
processing.

TABLE III
ACTUAL VERSUS ESTIMATED PULSE TRAIN

FREQUENCIES FORDATA WITH 1% MISSING PULSES

produced has contained pulse trains with substantially reduced
magnitudes. Why this is occurring is not clear.

VI. A DDITIONAL COMMENTS AND CONCLUDING REMARKS

The most important property of the proposed scheme is
that it is computationally efficient. Computations are of the
order of Other typical deinterleaving methods, such
as sequential search [1] and histogramming [1], [2], require
order- computations [4].

The proposed methodology is also quite robust to noise. In
Section V, it was shown that the performance of the proposed
scheme degrades gracefully as pulse time-of-arrival noise is
introduced and increased and that it is robust to missing pulses.

Simulations also indicate that magnitudes corresponding to
lower frequency pulse trains tend to be larger than the magni-
tudes of pulse trains with comparatively higher frequencies. In

Fig. 11. Magnitude plot of data containing staggered pulse trains.

fact, if the ratio of largest to smallest pulse train frequencies
present in an interleaved signal is too large, the spectrum
magnitudes corresponding to the high-frequency pulse trains
become submerged in noise. How large this ratio can be is
dependent on , and its size increases asis increased. If the
proposed method is having trouble detecting high-frequency
pulse trains, one option to try to improve detection would
be to increase Note that increasing also increases the
accuracy of frequency estimation.

Commonly used algorithms such as sequential search also
suffer significant degradation of performance when the ratio
of pulse train frequencies becomes too large. Since these
existing methods identify high-frequency pulse trains most
effectively, it is believed the proposed scheme could be used
to compliment an existing algorithm for deinterleaving signals
with pulse train frequency ratios exceeding these levels.
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