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Abstract 

Salient aspects of the Alfdn wave spectrum in hot confined plasmas are presented. 
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1 Introduction 

The discoverer of the eponymous wave, Hannes Alfv6n was a pioneer in the physics of charged 

fluids. The Alfv6n wave,l in fact, is the very foundation on which the entire structure of 

magnetohydrodynamics (MHD) is erected. Beginning from a majestic original simplicity, 

it has acquired a rich and variegated character, and has ended up dictating most of the 

low-frequency dynamics of magnetized plasmas. This paper, a homage to Hannes Alfvdn, is 

devoted to a discussion of the manifold manifestations of this wave of Alfv6n. 

Let us start with a brief recapitulation of the primeval wave propagating in a cold, infinite, 

homogeneous plasma embedded in a strong magnetic field Bo. Within the framework of 

MHD, nontrivial wave motions occur if (the dispersion relation) 

where w is the frequency, kll = (k - Bo)/lBol and kl are respectively the wave numbers 

along and perpendicular to the ambient magnetic field BO,VA = IBol/(4?rp)'/' is the Alfv6n 

speed, and p is the plasma density. In a homogeneous plasma, both kll and kl are good 

'quantum numbers' and can be used to label the fluctuation, which in this case, can be 

either of E, the electric field, b, the perturbed magnetic field, or of the fluid displacement 

I with each F k l l , k l  v. The fluctuations, thus have the general form, F = Fk,, ,kl e -iwt+ik*x 

k 
evolving independently with a frequency w = w(kl1, kl) given by the dispersion relation (1). 

Naturally, the spectrum of the modes is continuous. For every w ,  the dispersion relation is 

satisfied for some kll and kl. 

The simplest system allows two uncoupled independent modes: 

(1) the shear mode, with the dispersion relation 



propagating along the ambient field and with its perturbed magnetic field b aligned perpen- 

dicular to Bo(b Bo = O), 

(2) and the compressible mode, 

2 - 2 2  2 2  2 2  
w - k,, UA + k l  UA k UA (3) 

for which b is along &. 

Notice that the frequency of the shear wave (2) depends only on kll; this degeneracy 

of the shear wave with respect to kl has profound consequences-it leads to a continuous 

~ p e c t r u m ~ - ~  for the shear wave even in a bounded plasma. The principle focus of this paper 

will be on the determination of the spectra of the waves (2) and (3) in a variety of situations 

of physical interest. 

Understanding of the Alfvknic motions is of utmost important in determining plasma 

stability as well as in proposing effective schemes pertaining to plasma heating and current 

drive. Vastness of the literature on the theory as well as applications of the AlfvGn wave 

render it quite impossible to write an all encompassing review. The aim of the present review, 

therefore, is quite modest-it will focus on the spectral aspects of the wave. In that too, we 

shall concentrate primarily on what will be labeled ‘Normally stable modes’; these are the 

modes which can become vehicles for plasma heating and current drive. The entire subject 

of stability of the AlfvGn wave will be covered only qualitatively in the next subsection. 

1.1 Stability 

The dispersion relations (2) and (3) indicate that one can view k l l ( k l ) u ~  as the effective 

spring constants7 of the plasma in response to a perturbation. Since a larger spring constant 

implies a greater ability of the plasma to maintain its state under external perturbations, 

the shear waves are more likely to go unstable as compared to the compressional waves [IC11 < 

(k i  + k:)’/’]. In most plasmas of interest, laboratory as well as astrophysical, k t  N k2 >> k;f ,  

tilting the instability balance further towards the shear wave. 

4 



It is sma l l  wonder then that most of the MHD stability literature is full of shear waves; 

kinks, sausages, pressure driven modes, etc. are all Alf‘vkn waves of one variety or another. 

Where do these instabilities originate from? These naturally originate from ‘nonthermal’ 

features-which in this context-are inhomogeneities of all kinds: in density, in temper- 

ature, in the ambient magnetic field, in currents in the plasma ... . The inhomogeneities 

complicate the plasma dynamics, and in the process, impart a rare richness to the Alfv6n 

wave Alfvkn waves in a curved and sheared magnetic field will display prop 

erties entirely unknown in the straight uniform field. 

When various gradients are present, one could write (very schematically) the dispersion 

relation as 

w2 = ( k i  vi) - ( A2) , (4) 

where A2 represents the effects of the plasma current Jz, the current gradient (shear) Ji, the 

magnetic field curvature K ,  the plasma pressure p ;  and the pressure gradient ap /ax .  The 

symbol ( ) stands for some appropriately weighted spatial average. Remembering that vi 

is generally large for a strongly magnetized plasma, the instability criterion (w2 < 0) 

can be satisfied only if ki  remains uniformly small  in the region where the weighting function 

(the wave function) is finite; kii N 0 is the region where the mode must be localized. Thus 

the modes localized around the lcll N 0 region (the flutelike modes) are the ones most likely 

to go unstable. Much of the MHD stability literature deals with modes of this nature. In 

recent years, additional driving mechanisms like a species of fast particles (to simulate hot 

fusion generated alpha particles in a reactor) are often included in stability theory. 

Barring a few exceptional cases (when strong external drives are present), the normal 

plasma cannot come up with a sufficient (A2) to overcome (k i  vi) if l c ~  is finite everywhere. 
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These normally stable modes are of great importance. Just as the unstable modes transfer 

energy from the plasma to the electromagnetic (e.m.) fields, the stable modes are a channel 

for transferring energy from the external fields to the plasma. Thus for applications like 

plasma heating, one must turn to the intrinsically stable modes. 

In Sec. 2, the simplest cylindridy symmetric model for a cold plasma is introduced, 

and the model is investigated to delineate the general nature of the shear Alfv6n spectrum. 

Section 3 is devoted to a similar discussion of the compressional mode. In Sec. 4, the 

equilibrium geometry is generalized to two dimensions leading to the emergence of gap modes; 

it is shown that nonsingular normalizable eigenfunctions are possible for these modes. In 

Sec. 5 ,  a few qualitative summary remarks are presented. 

2 Cylindrical Plasma 

In this section we shall study the Alfvkn waves (unless stated otherwise, the Alfvkn wave 

will denote that branch of the dispersion relation which reduces to w = l c p ~  in the infinite 

homogeneous limit) in a cylindrical confined plasma. Keeping in mind that many of our 

considerations are intended for large aspect ratio toroidal systems [fusion devices, coronal 

rings...], we shall view the cylinder as an approximation of a theorist’s thin torus. Thus we 

deal with an opened-up torus-which is really a cylinder of length 2rR, R being the major 

radius of the torus. In this paper only the toroidally (axially) symmetric equilibria will be 

considered; the direction { (z /R)  will always be ignorable. In much of this paper we will 

further assume that the plasma equilibrium is also poloidally (azimuthally) symmetrie-is 

independent of the angle 8. 

2.1 Basic Equations 

We deal with AlfvCn waves (with arbitrary IC, , )  propagating in an inhomogeneous current- 

carrying low 0 plasma. The basic equations will include electron parallel dynamics-an effect 
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of great importance in removing the MHD singularity. Complications arising from finite ion 

temperature will be ignored. We reproduce here the set of equations used in Refs. 9-11; the 

reader may consult the original work and the references therein for details concerning their 

derivation. 

One begins with the radial and perpendicular components of Amp6re's law [perpendic- 

ular here means the direction on the magnetic surface perpendicular to the field line. The 

orthogonal system consists of 811 = 6 = Bo/lBo(, f ,  and GA = b x FJ 
A 

and 

where E,, El, and ,911 are respectively the radial, perpendicular and parallel components of 

the wave electric field, the prime (') denotes differentiation with respect to r ,  and 

with cy1 = (1 - U ~ / W ~ ) - ~  and S = (a lw 2 2  /vA)(w/w&) representing finite W/W& effects, and 

A = [A(l+ b2)] (-2ki1b + kLb2) 
r (9) 

is due to the presence of the parallel current in the plasma. The parallel current produces a 

poloidal magnetic field Bp, and manifests itself through S N BJB0 = r/Rq << 1, where q is 

the safety factor. The parallel current also modifies the wavenumbers, which are defined by 

m l  

r ~~1 

(1 + 62)''2ki = - - 

where 1 and m are the toroidal and poloidal numbers respectively [E(x) = E(r) , - idH(z /R) ] .  
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Notice that in Eqs. (6) and (7), we have retained only the leading terms containing Ell. 

This is justified because the parallel electric field for Alfvh waves is much smaller than the 

perpendicular fields E l  and ET. We can readily eliminate ET between Eqs. (6) and (7) to 

obtain a rather complicated equation relating E1 and Ell. Considerable simplification is 

achieved by assuming that w/w& < 6 << 1, and k z  rn 2 2  / r  > k; < w 2 / v i ,  and retaining 

terms only to O(6). Neither of these assumptions is particularly restrictive. Within the 

context of the above mentioned approximations, we can derive a relatively simple equation 

[see Ref. 111 

where 

(S + A)’ (S + A)2 + 
k i  

’= 
k l  

, 

represents the combined effect of the equilibrium current and finite w/w&. 

We would like to point out here that if Ell is neglected, Eq. (12) becomes the standard 

MHD equation, with F = 0 as its singular point leading to the well-known continuum. 

This equation has been extensively studied. With Ell included, we need one more equation 

relating E l  and Ell to complete the system. For this purpose, we could use either the 

parallel component of Amp6re’s law, or the quasineutrality condition V . J = 0, where J is 

the perturbed current. In this paper, we use the latter condition, which is [see Refs. 9, 111 

where ps = cs/w& = (Te/m)1’2 /w& is the ion gyroradius with electron temperature T,. For 

ail cases of interest in this study, kip: << 1 implying that the parallel wave length of the 

mode is much larger than the effective gyroradius. 
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In Eq. (14), is the collisionless parallel electron response, 

where Z is the plasma dispersion function, and Ve = is the electron thermal 

speed. For most hot plasmas of interest, the collisionless assumption for Alfven waves is quite 

valid. For small 1 and m numbers, the typical wave frequency w - lo7 >> u -< lo5, where u 

is the collision frequency. However, it is quite straightforward to calculate parallel electron 

response using a particle conserving Krook collisional operator. The resulting expression for 

5 is 

which reduces to Eq. (15) for v = 0. Thus making use of Eq. (16) for C allows us to deal with 

a collisional plasma as well. Note that in deriving h. (16), we have neglected the effects 

of the parallel current, which will doppler shift w to w - k p d ,  where Vd is the electron drift 

speed. This is justified because w N L ~ ~ v A  >> Lllvd, because vd << VA. The effect can be 

retained without complicating the analysis. We would like to point out that in the strongly 

collisional limit (v >> w, lk!lve), Eqs. (14) and (16) simply reduce to one of the equations 

of resistive magnetohydrodynamics; the temperature dependence in pz exactly cancels the 

temperature dependence in the expanded 2-functions. 

To eliminate E, between Eqs. (6) and (14), we first rewrite Eq. (6) in the approximate 

form ( F  << k?), 

and then substitute Eq. (17) into Eq. (14) to yield 

where only the leading order terms have been retained on the right-hand side. Since Ell is 

small, it is sufficient to determine it to leading order. On the left side of Eq. (18), the terms 
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in the square brackets are sma l l  compared to the first term because d/dr N kl, C < 1, and 

kip: << 1. Therefore, Eq. (18) simplifies to 

and, when substituted into Eq. (12)) it 

1 d  d 

gives the required fourth order equation 

- r k : ) - - x  kll d ( - - r - r - k T ) E l  1 d  d 

dr r k i  dr kl C r2 dr dr 

(20) 

which describes Alfdn waves in an inhomogeneous, current-canying, cylindrical plasma. 

Due to the presence of the fourth order term F = 0 is no more a singular point of the 

differential equation. It must also be stated that Eq. (20) is relatively exact; the only 

approximations made are 1) kt > ki N w2/vi, and 2) kip: << 1. The latter automatically 

guarantees EII/EI  << 1 [see Eq. (19)] and the former condition w - k p ~ ( F  N 0) simply 

defines the domain of the shear Alfdn wave. However, the effects of compression (magnetic 

field compression) have not been neglected in deriving Eq. (20). In fact, in an inhomogeneous 

plasma, the shear and the compressional modes are coupled, and an adequate description 

of Alfv6n waves requires the presence of both the polarizations. If w - I C I I V A ,  then the 

compressional wave is evanescent with the WKB dispersion relation k: + kt = 0. Thus the 

Ah6n waves, even in this frequency range, are some linear combination of the two modes of 

the homogeneous plasma; the shear and the compressiond, and Eq. (20) correctly describes 

the situation. 

We end this section by remarking that Eq. (20) can also be used to study the tearing 

modes in a current carrying compressible plasma. 

2.2 Eigenmode Equation 

We are interested in investigating the nature of Alfdn waves in the frequency range given 

by F 21 0 or w N  kip^. It is clear that F = 0 is no more a singular point of the differ- 
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ential equation implying that the logarithmically singular solutions, which constitute the 

MHD continuum, are no more there. For general temperature, current, and density profiles, 

Eq. (20) should be solved numerically. Most of the important and interesting features of this 

system, however, can be illustrated by studying the system where the profile of kiv; has a 

minimum at a point T = TO # 0 in the plasma. Thus, the analysis excludes the cases for 

which kivi has a minimum at T = 0, the plasma center. However, we expect all the general 

results to be essentially valid even for this case. 

Since the modes of interest are characterized by F N 0, we carefully expand F around 

the point TO, the minimum of h e ; ,  i.e., 

because F is a rapidly varying function in the vicinity of TO. All other quantities in the 

differential €3q. (20) will be evaluated at T = TO. Within the context of the preceding 

discussion, it is straightforward to show that Eq. (20) can be cast in the form 

where the new variable y is displaced from T - T O ,  and is given by 

T - T O  FO a 
y=-+-- 

U 2A2 L, 

where a is the radius of the cylinder, Fo = F(T = T O ) ,  Lil = (n-’dn/dr)),,,,, the density 

gradient scale length at r = TO, A2 = -(a2/2)(F”),,,, and 

is the effective eigenvalue to be determined. In the rest of this section, all quantities, unless 

otherwise stated are to be evaluated at T = TO. For modes under consideration Fo/A2 << 1, 

making p N F0/A2, and y N (r - ro)/a. In Eq. (22), kl = (k&,, = m/ro is the poloidal 
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mode number, go = (kia2/A2)(g)y=ro, and 

is the measure of the non MHD effects; in this case the effect of electron parallel dynamics. 

Notice that will be generally complex. For 8 = 0, Eq. (22) reduces to the extensively 

studied MHD equation with w/wd effects, etc. In this case, it is clear that for p > 0 (Fo > 0) 

the equation is singular, and leads to the MHD continuum. For p < 0, however, there is 

no singularity, and the discrete spectrum of marginally stable global Alfv6n waves (GAE) 

emerges. With the inclusion of the non-MHD effects (a # 0), the picture changes, and a 

new discrete spectrum encompassing the continuum and the GAE results. From EQ. (24), 

it appears that -+ 0 for kll + 0 making Eq. (20) unsuitable for modes with kll N 0 (also a 

minimum of lc2vi). However, as kll -+ 0, C -+ k f .  Therefore a remains finite, and Q. (20) 

can deal with this subclass of modes (kil N 0). 

Equation (22) is best analyzed in the Fourier space. Defining 

we obtain 

d 

which becomes 

d d E  

dx da: 
- (1 + k2) - + [E(1 + z2) + go - a(1 + z')] E = 0 

where e = kiu2p, a = kia4a, and p = klaz. We can further transform Q. (26) using a new 

dependent variable 



to yield the Schroainger equation 

@* - + ( E  - V(z))* = 0, 
dx2 

where E = pkta2  is the eigenvalue, and 

1 v(s) = -- go + + a(l + 2), 
(1 + $2)2 

is the effective potential. 

2.3 General Features 

An examination of the effective potential V(z) [Eq. (30)] appearing in the mode Eq. (29) 

yields a wealth of information about the nature of the eigenmodes. To maintain continuity 

with the published literature, we again begin with the MHD limit a = 0. In Fig. 1, we have 

plotted V(z) as a function of x for several values of 90. It is straightforward to see: 

1) For go 5 0, V(z) is a monotonically decreasing function of z, resulting in an effective 

potential hill at 2 = 0. Thus no localized eigenmodes around x = 0 are possible for any E .  

Only the continuum modes exist. 

2) For go 2 2, V(z) has a minimum at z = 0 [V(O) = -90 + 11, and approaches zero 

as x-2 as z goes to infinity implying a potential well at x = 0. Since the potential V ( x )  

is negative everywhere, the equation E - V(z) = 0, has real solutions if and only if E < 0. 

Thus, the real turning points, and hence the bound states exist only for E < 0. This is the 

discrete spectrum of GAE. Details for this case can be seen in Ref. 10. Since there are no 

real turning points €or E 2 0, there are no bound states, and only a continuum prevails; E = 0 

defines the lower edge of this well-known shear AIMn continuum, 

3) For 0 < go < 2, V(z) has considerably more structure with a maximum at z = 0 and 

two minima at x = * [@/go)  - 1]'i2. Clearly for E 2 0, no bound states are possible. This 

proves that regardless of the value of go, E 2 0 always corresponds to the continuum modes. 
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In this range of go, it is a little hard to determine the criterion which allows the existence of 

discrete modes for E < 0. The question has been dealt with in detail in Refs. 10, 13, where it 

is shown that go > (1/4) is required for the discrete spectrum to be possible. The reason is, 

that although minima of the potential exist, they are not deep enough to contain a mode. 

Figure 2 contains plots of V(x) versus x for several values of go, and for a finite but small 

We have chosen Q to be real for simplicity. The general nature of the value of a = 

following discussion will hold for a realistic complex a. 

There are several features which distinguish Fig. 2 from Fig. 1 (a = 0). The most 

important is the behavior of V(x) as x -+ 00. While for ~7 = 0, V(x) -+ 0 as x -+ 00, for 

finite a, V(z) + x2. For large x, the potential is like that of a simple harmonic oscillator 

and implies bound states for all values of go, because the equation E - V(x) = 0 always has 

real solutions. Thus the erstwhile MHD continuum for E 2 0, has changed over to a discrete 

spectrum, to that of the Kinetic Alfdn Wave2' (KAW). Depending upon the d u e  of go, 

the lowest eigenmode may be characterized by an eigenvalue E < 0. Thus, the distinction 

between GAE and the continuum has disappeared. They are the parts of the same discrete 

spectrum; the lowest eigenvalue will be positive or negative depending upon the value of go, 

which is due to the presence of equilibrium currents and w/w& effects. 

From Fig. 2, it is also obvious that for positive go, the lowest mode will be localized in the 

potential well around z = 0, and will not sample the form of the potential for large x. Thus 

its character is only mildly affected by the presence of 0. Since 0 is due to the dissipative 

processes (for example, Landau damping for a collisionless case), the mode will have very 

slight damping. 

The case for 90 5 0 is altogether different. Since these modes are formed because of the 

turning points at large x (due to the term proportional to a), their mode structure as well 

as the eigenvalue strongly depends upon Q. As a result, these modes are considerably more 

damped. 
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We remind the reader that EQs. (28) and (29) are in the Fourier space x. The real 

spatial variable is y=(r - ro)/a . Since p = klaa: and y are conjugate Fourier variable, 

klaAxAy - 1, where Ax and Ay are respectively the widths in x and y. Therefore, the 

GAE modes, (now corresponding to the lowest modes for certain values of go) which are 

narrow in x, are relatively broad in y, possibly extending over most of the plasma. This 

justifies their name, Global Alfvh Eigenmodes. The exact width, however, is a function 

of the m number; Ar N ro/Iml, and can become quite small  if Iml >> 1. The discrete 

modes lying in the MHD continuum, however are comparatively broad in x (because of the 

smallness of a), and therefore narrow in y. Thus, in real space, these modes are strongly 

localized around 'I' N 'I'& = 0). This is to be expected, because for a = 0, these modes 

were logarithmically singular at F = 0 (y = 0), and the presence of a has simply spread the 

singularity in a finite region around y = 0, resulting in finite amplitude everywhere. 

2.4 Alfv6n Wave Spectrum-A Variational Calculation 

The mode equation (h. (29) can be readily solved by numerical integration to obtain exact 

eigenvalues and eigenfundions. In the present review, however, we present approximately 

analytic dispersion relations using a variety of techniques, in particular, the variational tech- 

nique, which is warranted by the self-adjoint character of l3q. (27) or (29). 

Although l3q. (29) was more useful in delineating the general features of the system, 

Eq. (27) is more suitable for a variational treatment. The functional [( ) J-2 d.], 

s = - ((1 + z2 ) (q2 )  + ([€(1+ x2) +go - a(1 + 2 ) 2 ]  E;) 

is variational in the sense that 6s = 0 reproduces the Euler equation (27). In addition, the 

extremal value of S = 0. 

Quation (31) can be used to obtain an eigenvalue by choosing a trial function with a 

variational parameter. The eigenvalue obtained will correspond to a radial mode number 
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equal to the number of nodes (zeros) of the trial function. The variational calculation can 

become quite involved for higher radial mode numbers. Therefore, we limit ourselves to the 

lowest eigenmode, and choose a trial function with no zeros for finite 2, 

E P -  - e-ma/2 ,Re a > 0. 

Substituting Eq. (32) into Eq. (31), and carrying out the integrals, we find 

1 3 0 1  soc E - a + g o - -  - - + ( € - 2 o ) - - - -  ( 3 ; 2a! 4 a 2 '  
(33) 

(34) 

To find E and a!, we must simultaneously solve the equations S = 0, and 

1 (E-226) 3 a +--  dS - - 0 = -- - 
da! 2 2a2 2 (23' 

An examination of Fig. 2 is helpful in making progress. Evidently, for 90 2 2, there is a 

potential well at x = 0, and the lowest mode is expected to be a GAE, essentially confined 

in this well with a negative eigenvalue E = -lei. Further, the size of the well is Ax - 1 

implying that CY N 1. In this case, Eq. (34) gives (a << 1) 

- 

a = (2a - E)'/2 = [2o + I€]]'/? (35) 

Substituting Eq. (35) into the equation S = 0, correct to order a, we obtain 

where 
1 1/2 

% = g o - - -  4 ( g o - ; )  (37) 

is the MHD result, and the terms proportional to a are small correction to the eigenvalue. 

To show that Q. (36) implies weak Landau-damping, let us evaluate a for the collisionless 

hot plasma case. The definition of a hot plasma,' in the present context, is that at T = TO, 

w < kIIWe which leads to (C)-' N 1 - Z T ' / ~ ( W / ~ I I U ~ ) ,  Etnd 

a = ( k l a )  4 - kip: (1 -it/;;%) , 
a2h2 ue 
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where we have used w < kllvA in the damping term. Substituting Ea. (38) into E&. (36), and 

making use of the definition of e, we obtain 

Notice that u corrections have led to a change in the real part of the frequency in addition 

to the damping. From Eq. (39), it is straightforward to show that 

Thus Eqs. (39) and (40) are the dispersion relation for the lowest radial eigenmode for the 

case go 2 2. These are the mildly damped GAE. 

The width of the trial function is equal to (2/a)'l2 = (2)1/21el-1'4 [Eqs. (32) and (35)]. 

Thus Ay = (kia)- '  N (kia)-l lcl  lj2 ( 2)-'12 is of order unity for low-rn numbers, implying 

that the mode is radially broad, and covers a large part of the plasma. 

In the range 1/4 < go < 2, the lowest eigenmode still should be a GAE, however the 

structure of the potential is complicated enough that Eq. (37)-(39) can only be qualitatively 

correct. The accuracy can be improved by using more involved trial functions, but the 

procedure turns out to be tedious and not very illuminating. For quantitatively correct 

results in this range, one must depend upon numerical  solution^.^ 

For values of go < 1/4, there were no bound states for 0 = 0 (continuum modes). In this 

range, it is the u dependent terms that provide the confining potential even for the lowest 

eigenmode. It was discussed in Sec. 2.2 that these modes are broad in z (narrow in real 

space), suggesting that we seek a solution of Eq. (33) and (34) for a << 1. Approximate 

solutions are 

3t7 

€ - 20' 
a=--- 

and 
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because Q << 1. Thus we already see that the eigenvalue turns out to be proportional all2 in 

contradistinction to the case go > 2, where the changes in the eigenvalue were proportional to 

a. Since Q is the measure of the damping, these kinetic modes (which were in the continuum) 

are much more damped as compared to the GAE. We can rewrite Eq. (42) in the form 

from which we deduce 

Imw 4 ' I2 3 A ps T112 VA 
---(1-3go) --- 
R R W  2 k  a 2 v, 

(44) 

where c is the speed of light in vacuum, and w, = (47rme2/me )112 is the electron plasma 

frequency. Thus we notice that the damping of the erstwhile continuum modes (KAW) is 

independent of electron temperature to leading order. It is nonzero as long as the effects of 

finite electron mass are retained. It is, of course, of utmost importance to realize that the 

discrete spectrum is also contingent upon finite electron inertia, otherwise the system relapses 

to the MHD shear Alfvkn continuum. Equation (44) clearly shows why the damping of the 

continuum modes is essentially independent of the model for describing electron parallel 

dynamics. The radial width of this mode can be computed using Eqs. (37) and (41)) and is 

2.5 Higher Radial Eigenmodes 

Although for most practical applications (for example, the Alfvh wave heating or current 

drive), the lowest radial eigenmode of Alfvkn waves (whether a GAE, or the continuum kind) 

is important, it is of some interest to calculate the higher radial eigenmodes. The reader is 

referred to RRf. 9 for a calculation for the GAE's (a = 0). We concentrate here on the case 
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when go S 1, and solve l3q. (29) for higher radial mode numbers. Since the turning points of 

the equation are determined by the term proportional to 6, we choose to solve the simplified 

simple harmonic oscillator equation 

$" + [E - CT - 0z2]$ = 0, (46) 

which has a spectrum 

en = c + (2n + l)o'/' N (2n + ~ ) a ' / ~ ,  (47) 

where n is the radial quantum number. The solution (47) is approximately correct if and 

only if the neglected terms are small compared to the terms that are kept. We estimate 

the value of the neglected terms at the turning points [which are the solution of (1 + zz) = 

En/0 = (2n + l ) / ~ ' / ~  to be go(l+ z:)-' + (1 + z2)-2 e g00'/~/(2n + l)]. Thus the ratio of 

the neglected terms to the retained terms is go/(% + 1)2 and becomes much smaller than 

unity for very large n numbers. Thus, the dispersion relation l3q. (47) is correct strictly in 

the large n limit. The eigenvalue turns out to be independent of go because for very high n, 

the structure of the potential near z = 0 is quite unimportant. Another interesting feature 

is that the eigenvalue scales as which makes high n modes relatively strongly damped. 

In addition, the damping increases with increasing n. 

The main analytic results of this solution are: 1) Eqs. (39) and (35) describing the mildly 

damped lowest radial eigenmode of the GAE variety, with its characteristic frequency below 

the boundary of the MHD shear Alfv6n continuum ( F  = 0). The damping is clearly a 

function of the model for parallel electron dynamics, 2)  Eqs. (43) and (44), which describe 

the comparatively strongly damped lowest eigenmode of the discrete spectrum of what was 

the Alfv6n continuum (F 2 0). The damping of the mode seems to be quite insensitive to 

the model for parallel electron dynamics, 3) Eq. (47), which is the dispersion relation for very 

high (n >> 1) radial mode numbers, and is independent of go. The damping rate increases 

with increasing n, and is essentially independent of the model of electron dynamics. 
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3 Compressional Waves 

Section 2 was devoted to the shear Alfv6n wavethe branch of the Alfvh spectrum which 

reduces to w = l c l i ~ ~  for a homogeneous infinite plasma. We found that the shear Alfdn 

spectrum, even for an axially and azimuthally symmetric equilibrium, was rich and varied. 

It is legitimate, then, to question why do we still persist in assigning the same generic name 

to such distinct entities like the Global Alfdn Eigenmodes (GAE), and the kinetic AlfvCn 

waves (the discretized MHD continuum). The answer has been given by the consideration 

of Sec. 2, where we find that the dispersion relation for all these distinct cases does not 

depart significantly from w = ( k p ~ ) ;  where (6) denotes the value of k p ~  at the central 

location around which the mode is localized. This happens despite the fact that inhomo- 

geneities couple the shear and the compressional wave. The coupling, in fact, does change 

the qualitative nature of the shear mode but still does leave the fundamental characteristics 

of the wave intact. 

- 

Because of this ruggedness of the dispersion relation, the shear Alfvh waves’ phase 

velocity vP (dong the magnetic field) is wedded to the Alfdn speed VA. This restriction 

might render the shear wave unsuitable for some applications. In order to efficiently drive 

a noninductive current in toroidally confined hot plasmas, for example, high phase speed 

[up > v,, the electron thermal speed] waves are needed. The shear Afi6n with vP = VA could 

not perform this function because in a typical hot plasma ve >> VA. In the Alfvh wave 

literature, the inequality > (<)uA defines a hot (cold) plasma; the transverse propagation 

of the wave is fundamentally different in the two  regime^.^ 

Thus for a high phase speed current drive, below the ion cyclotron frequency, one must 

turn elsewhere. The compressional Alfdn wave turns out to be the candidate of choice. This 

section is devoted entirely to a delineation of the properties of the compressional Alfdn wave 

in a hot confined toroidal plasma (say, that of a tokamak reactor). 



3.1 General Considerations 

The theory of compressional ~ a v e s ~ - ~ '  can become complicated due to the possibility of a 

strong coupling to the shear wave. In this paper we investigate compressional Alfvkn waves 

with small toroidal mode numbers and frequencies below the ion cyclotron frequency as 

vehicles for heating and current drive in thermonuclear plasmas. Noting that the frequency 

range may be chosen to remove the shear Alfv6n spatial resonance from the region between 

the plasma interior and the antenna,% we find analytical expressions for the spatial structure, 

frequency spectrum, and damping rates of eigenmodes corresponding to high-Q resonant 

absorption in a diffuse cylindrical plasma column. As mentioned earlier, the large parallel 

phase velocities of these modes make them attractive candidates for current drive. 

Before proceeding with our analysis, it is worthwhile pointing out that several authors 

have investigated the low phase speed compressional waves when the two waves are strongly 

coupled. In Refs. 24 and 25 in particular, the authors, investigating tokamak plasmas, 

have focused their attention on cases in which IC11 > kl, and the compressional and the shear 

mode are strongly coupled, i.e., the Alfv6n resonane layer is close to the compressional wave 

cutoff. This happens when the toroidal mode number 1 >> m/q, where m is the poloidal 

mode number, q = r&/RBP is the safety factor, & and Bp are the toroidal and the poloidd 

magnetic fields, and R is the major radius. In this limit, the compressional wave tends to be 

more strongly damped by absorption at the Alfv6n resonance layer than by direct Landau or 

transit time magnetic pumping in the interior, typically leading to unacceptable absorption 

in the plasma edge region, just inside the antenna. 

We show here, that in the opposite limit ICL >> IC11 (which implies m 2 I) it is possible 

to have localized eigenmodes of the compressional wave which are not affected by the shear 

Alfvh wave. We do this by noting that the plasma edge density n, is typically 2-5% 

of the central density and that the frequency may be chosen to exceed lcp~ at the edge 
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and throughout the column, and still maintain w << w&. We fist determine the dispersion 

relati i for the discrete spectrum within the framework of magnetohydrodynamic equations. 

Then, we estimate the Landau and transit time magnetic damping of these modes using a 

perturbation theory. This calculation is similar in spirit to the earlier work of Perkins, who 

assumed w % w&, however. The principal result is that these modes are weakly damped, and 

the damping comes principally from the high temperature regions nearest the plasma center. 

That is, the wave loses energy to particles with high parallel speed. These are precisely the 

conditions for the suitability of a wave for generating current in the plasma. 

Although the calculation is carried out for a tokamak plasma, treated as a cylinder of 

length 27rR, the analysis is quite general to describe most cylindrical plasma systems. 

3.2 Compressional Wave Spectrum in Magnetohydrodynamics 

For the modes we are considering it is adequate to use the ideal magnetohydrodynamic 

equations without the effects of equilibrium current, its gradients, or finite w/wci corrections. 

It may be noted that for large tokamaks (reactor size) with density no - lo'*, w/wci - 
(m/r)vA/w& < 1 even for m numbers as large as ten. Finite w/w& and equilibrium current 

effects can be treated perturbatively, but in this paper, we restrict ourselves to the leading 

order problem. 

We begin with the simpler and complete version of Eqs. (6)-(7) [w/wci = 0, A = 01 

where kll =" (-Zq + rn)/qR, k;l =" m/r,  and all other symbols have their standard meaning. 

For an analysis of the compressional wave, it is more convenient to introduce a new variable 
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which satisfies the differential equation 

d r d Y  F - k i  
+ r  

dr F dr 
Y = 0. 

F 
--- 

Equation (49) can be further changed to a Schrodinger-like equation 

in the new variable 

where a prime denotes differentiation with respect to r. 

Notice that F = 0 is the shear Alfv6n singularity. If this singularity falls in the region 

between the antenna and the plasma, then the structure of the compressional wave becomes 

c~mplicated.~*-~~ Typically, the antenna for the radio frequency current drive and heating 

experiments is placed in the shadow of the limiter, where the plasma density is 2-5% of the 

central density. Thus the Alfv6n velocity at the antenna vp4 = 5 - 7v0, where vo is the Alfvh 

speed at the plasma center. We show later that the spectrum for the compressional Alfv6n 

waves is w = [2(m + 1 + 2n)vo/ro], where ro is the minor radius of the tokamak, and n is 

the radial mode number. Thus as long as w > kip;, that is 2(m+ 1 + 2n) > 7rok11, the shear 

Ab6n resonance does not lie in the region of interest. For an aspect ratio R/ro = 3, the 

above condition is easily satisfied for m > k. 

Within the context of above discussion, we approximate F N w2/u i .  It is straightforward 

to see that the last term in the coefficient of ?,b in Eq. (4) is a small  cylindrical correction, and 

can be neglected compared to m2/r2 for moderate values of m. With these simplifications, 

the mode equation becomes 

where we have assumed a parabolic density profile n = ~ ( l  - r2/r i ) .  Equation (6) can 

be readily analyzed as a Whittaker equation, and has an exact solution whuse finiteness at 
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the origin, and an appropriate boundary condition at r = TO will determine the eigenvalue 

as well as the eigenfunction. Although extremely suitable for this particular density profile, 

this method does not have a general validity. Instead, we follow an alternative approach, 

which makes the analysis physically more perspicuous, and can deal with arbitrary density 

profile. 

The eigenmode equation is a Schriidinger-like equation 

$" + [E - V(r)]$ = 0 (54) 

with E: = w2/$ as the effective energy, and 

r2 m2 
V ( r )  = €Yj + 2 

To 7' 

as the effective potential, which has a minimum at 

Notice that the potential well is provided by a combination of the monotonically decreasing 

density and the fact that kl = m/r is a strongly varying function of T.  Exploitation of 

this strong radial dependence of kl is an integral part of this analysis, for the modes are 

consequently confined to annular regions away from r = 0, rather than filling the whole 

plasma volume as is frequently assumed. 

To obtain a spectrum for the eigenmodes localized in the potential well, we simply expand 

V(r )  around rdn, define 2 = T - r,h, and rewrite Eq. (53) in the form 

which is the equation of a simple harmonic oscillator. For the boundary conditions $ + 0 

as x + 00, Eq. (56) allows the spectrum of eigenfunctions 
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and the associated eigenvalues 

where n is the radial mode number, and H,, are the Hermite polynomials. Using a variational 

method, Perkins obtained a somewhat different result for the fundamental (n = 0) mode 

when w = w,+ 

Making use of Eqs. (55) and (59), we find that 

For a given m number, r m  shifts towards the plasma center as the radial mode number 

n increases. Thus a suitable choice of m and n allows us to center the mode wherever we 

desire. The turning points of the system are given by Eqs. (56) and (57) to be 

implying that for n > rn, the inner turning point tends to approach the plasma center, while 

the outer turning point approaches the plasma edge. In this limit, the results derived in 

this paper are expected to be only approximately correct. It turns out, however, that the 

exact Eq. (52), when solved as a Whittaker equation, yields essentially the eigenvalue given 

in Eq. (58). 

We have shown that in a magnetically confined cylindrical plasma, localized eigenmodes 

of the compressional Alfv6n wave exist in the potential well provided by the radial variation of 

plasma density (which changes the Alfv6n speed), and the perpendicular mode number kl= 

m/r. We have also determined the spectrum of eigenvalues. For current drive experiments, 

these modes must be connected to the antenna; this question will not be addressed in this 

review. Detailed numerical work, however, has demonstrated extremely efficient coupling. 

In addition, the theoretically derived mode structure closely resembles the numerical results. 
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One must also calculate the damping rates before a realistic estimate of the usefulness 

of these modes for practical applications can be made. The damping calculations are rather 

detailed and involved and the reader should consult the original s o u r ~ e s . ~ ~ - ~ ~  Schematically, 

the principal damping mechanisms (Landau damping and Transit Time Magnetic pumping) 

modify the mode Eq. (52) to 

-+ @?j [ 3 ( l - 2 ) ( l + b i ) - 1 - ~ ] $ = o  w2 T2 

dr2 T2 

where bj is imaginary. Letting (1 + bi)-l 

standard perturbation theory, we obtain the damping 

1 - bi, expanding around rdn, and applying a 

J -m 

Notice that bi = i*'/2(W/kllve) exp(-w2/kpf) is maximum and of order unity for w = k11ve. 

Because of the large phase velocity vp = w/kll of the waves under consideration, there is a 

comparatively larger contribution to damping from the inner regions of the plasma where 

v, is large, i.e., the temperature is high. More quantitatively, the maximum wave-particle 

resonance condition is ve = w/?q E 2vO(m + 1 + 2n)/(kllr~). For typical wave numbers of 

interest m = 2,Z = 1, n = 0, and an aspect ration R/TO = 3, the preceding condition becomes 

Ve/Vo = 18. For a reactor plasma at 10 KeV, density N 5 x BO - 50Kg, Ve/Vo N 10 

implying significant wave particle coupling near the plasma center. It can be seen from 

Q. (25) that even when w E klve, Im w/w N 0.20, N for typical reactor parameters. 

We must now distinguish between two possible applications of the compressional waves. 

For plasma heating, we need to maximize Pd, the power dissipated. This is attained by 

maximizing the wave-particle coupling, which happens if the mode numbers are so chosen 

that w = k p e  in the plasma interior. For current drive applications, however, one needs 

to optimize J/Pd ( J  is the current generated). This ratio becomes large if v, = w/kll > v,, 

and would, in general, require a different choice of mode numbers. The particular numbers 
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chosen will depend upon the plasma conditions. It should be mentioned that current drive 

becomes efficient dso for low phase velocity up < Ve.  But in this case, it is difficult to avoid 

the shear Alfv6n resonance in the plasma which often leads to unacceptable absorption in 

the plasma edge region. 

We end this section by making a comment on the relative magnitudes of the mode 

numbers Z,m and n. The primary consideration is to assure that w/lcll > UA everywhere in 

the plasma to avoid the shear Alfv6n resonance. Since w is determined by a combination of 

m and n numbers, this can be readily satisfied if m + 2n + 1 2 Z for typical discharges [see 

discuss Eq. (51)]. Thus low m numbers like m = 2 are adequate if Z = 0 or 1. Although, it 

is difficult to justify neglecting cylindrical corrections in Eq. (50) for such low m numbers, 

we find by extensive numerical solutions using the code of Ref. 9 that our analytical results 

are correct within a few percent. 

3.3 Summing Up Compressional Waves 

In addition to its inherent scientific value, the knowledge of the spectrum of compressional 

cavity modes, thus, guides us as to how to choose the defining labels in order to optimize 

their utility for a given practical application. The compressional eigenmode seems to be 

very mildly damped implying its high-Q nature. Thus large fields can be built up with an 

external antenna; the plasma simply acts like an amplifier. Since the dissipation process is 

effective only for high speed particles because of the relatively large parallel phase velocity 

up - w~/lcll, this mode is ideally suitable for radio frequency current drive, which becomes 

more and more efficient as up exceeds ve. Thus by a suitable choice of na and n we can 

adjust the value of vp/ve for a given plasma, and optimize the conditions for current drive. 

Because of the low k ~ ,  this mode should not have accessibility problems, because we have 

already shown that in the region near the plasma edge where temperature is relatively low, 

the Landau process is extremely weak, and of no importance. In this region, collisional 
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damping, perhaps will be more important. 

4 Two-Dimensional Waves-Gap Modes 

Till recently, much of the stable Alfv6n wave literature was limited to cylindrically symmetric 

equilibria. But a recent realization, that a new kind of Alfdn mode (which owes its origin 

to the two-dimensional character of the ambient magnetic mode) could be important in a 

thermonuclear-reactor plasma, has excited considerable interest in the two-dimensional (2D) 

Alfven waves. Although the impetus for studying 2D waves comes from fusion physics, 

these waves are likely to be present in all kinds of space and astrophysical plasmas; their 

investigation, therefore, is of general interest. 

Analysis presented in the preceding sections clearly indicates that theory of Alfv6n waves 

tends to get quite complicated even when the plasma inhomogeneity is limited to one di- 

rection. Along with this complexity, of course, comes the possibility of enriching the wave- 

spectrum, even, qualitatively changing the nature of the spectrum. 

It is natural to expect that addition of a new direction of inhomogeneity will further com- 

plicate as well as enrich the class of wave motions sustained by the plasma. To simulate many 

of these situations, we shall now allow the equilibrium magnetic field to have, in addition to 

a ‘radial’ dependence, a periodic variation in an azimuthal angle 6. The eigenvalue problem 

is fully two dimensional, and would generally require sophisticated numerid methods for a 

solution. In this review, however, we will present a model example which illustrates the new 

features pertaining to the second dimension of inhomogeneity, but avoids complications. 

The principal change brought about by the inhomogeneity in 6 is that 8, though a periodic 

variable, is no more ignorable. Thus the standard expansion of the fluctuating quantities, 

4 - 4m eime (still allowed by the periodicity in 6) does not lead to independent decoupled 

equations for the amplitudes &, i.e. m is not a good quantum number. Thus the two- 

dimension (2D) eigenmode must be constructed by an appropriate superposition of 4m’s. 

m 
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Under certain special conditions, this superposition can lead to the creation of square inte- 

grable normal r n o d e ~ , ~ - ~ ~  which have no counterpart in a plasma homogeneous in 8. These 

gap modes, generally referred to as Toroidal A l h h  Eigenmodes (TAE), are a subject of 

active investigation. 

To understand the origin of these new modes, we go back to our standard axisymmetric 

low aspect ratio torus, an excellent representative of the physical systems under consider- 

ation. To motivate the 2D theory, we must review the simple 1D theory. We remind the 

reader that the toroidal angle [ z/& (& is the major radius of the torus), the poloidal 

angle 8, and the radial variable r,  defhe an approximate orthogonal set of coordinates. The 

ambient magnetic field is still of the form, 

with both B, and Be independent of z (axisymmetry). Any perturbation then, can still be 

expanded as 

implying that the all important operator IC11 = b - V = (Bz/lBol)&-l [ie + 4-1 8/88], where 

4 = rB,/&B, is the standard MHD safety factor. If the equilibrium were further indepen- 

dent of 0, then the expansion +m = (#Jnme-ims would lead to independent modes (#Jnm with 

the local dispersion relation [equivalent to d(w, I C ,  n)] 

leading to the continuous spectrum because of the singularity G2(r) = w2. A few typical 

dispersion relations are plotted in Fig. 3. Now suppose that we introduce a 8 dependent 

perturbation to the equilibrium, then for a given n (still a good quantum number), various 

rn numbers will couple, i.e. the local dispersion relations for various rn modes will interact. 

Now if at some location r = ro, Gkl, and Gk2 were to coincide, then the coupling of these 
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(ml and m) modes will be very strong even for a very small perturbation. Notice that such 

a situation pertains if (n - ml/q = -(n - m2/q), i.e. if m2 +ml = 2nq( ro ) .  At T = TO, then, 

the two interacting dispersion curves G%l ( r )  and Gk2 ( T )  are split by the perturbation giving 

rise to a gap proportional to the strength of the perturbation [Fig. 41. Clearly an w2 lying 

in the gap cannot ever equal IcF;, the differential equation for the Alfv6n wave is no more 

singular, and a discrete 'gap' mode appears. This is a qualitatively new feature introduced 

by the two-dimensional character (coupling of m modes) of the plasma equilibrium. These 

gap modes are widely discussed in literature. 

The careful reader must have guessed by this time that these gaps that appear in the 

continuous spectrum of Alfv6n waves are very similar to the energy gaps in the spectrum 

of an electron moving in the periodic potential of a crystal lattice. In fact, in the model 

problem that we will solve in this section, the analogy will become totally transparent. 

We continue with our problem of Alfv6n waves in an &symmetric torus. Let us assume, 

for simplicity, that the 8 dependence of the equilibrium stems only from the weak dependence 

of the magnetic field B, - Bo(1 + E C O S ~ ) - ~  N BO(1 - ccos8) where E < 1. Because of the 

weakness of the 8 dependence, we still go ahead and expand 

I C 

where m is some central mode number around which the mode is localized in the m space, 

i.e. the spread measured by 1 << m, the basic mode number. The 2D problem is much better 

handled by using the scalar potential 4 instead of the electric fields. Using (67), the basic 

MHD equations can be manipulated, and after some straightforward but tedious algebra42-43 

the Alfvkn wave equation can be put in the schematic form (see (42) for details) 
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where the effective radial variable x = n (q - qo) measure the distance from r o  defined by 

q(r0) = m/n. In Eq. (75), fl = W / W A ,  is the mode frequency normalized to the Alfv6n 

frequency at ro (WA = (kllv~)r = T O ) ,  s = (&enq/denr),=,, is the magnetic shear, f(x) 

represents the radial variation of the Alfv6n frequency, and E measures the strength of the 19 

dependent corrections to the equilibrium. 

Equation (68) is clearly two dimensional: the independent coordinates are the continuous 

variable x, and the discrete variable e. As such, it is difficult to make further analytical 

progress, even with this model equation. Since the aim of this review is to introduce the 

reader to the broad generic classes of spectra that Alfvh waves can display, we will deal 

here with the simplest illustrative example. 

Let f(x) = fo be a constant. In this case Eq. (68) can be reduced to an effective one- 

dimensional equation; this enormous simplification emerges from the realization that %. (68) 

is invariant under the translation x + x + 1, .f? --+ e +  1. 

It should be emphasized that this translational invariance (also called the ballooning 

symmetry) of the leading order equation allows the possibility of developing a systematic 

procedure for constructing an asymptotic theory in the more general case when f ( z )  is not 

a constant.42 

Let us introduce a 2D Fourier transform42 

~ L ( z )  = f dX dk exp[ik(x - l)  - iX@(k, A) 

where k is the conjugate of z -e,  and X that of 4 X is periodic. Using %. (69), and defining 

$ = & l + s k )  2 2 1/2 , 

Eq. (68) becomes [Q2f(z) = f12fo = 1 + eg] 
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which is a one-dimensional equation parameterized by A, and with g as the effective eigen- 

value. But for the term s2/(1 + s2k2)2, representing a repulsive potential centered at k = 0, 

Eq. (71) is nothing but a Mathieu equation; precisely the type of equation obeyed by 

an electron in a periodic crystal lattice. Although neither term of the effective potential, 

s2/( 1 + s2k2)2 or cos(k + A) is capable of yielding square integrable localized eigenfunctions, 

their combination, in fact, does yield discrete modes in the gap.42*43 

In this simple case, the spectrum g turns out to be purely real as expected from (71). 

Thus, it is possible, to obtain a point spectrum in two dimensions, the one-dimensional 

singularity of each m mode becomes obviated by the coupling and interaction of many m 

modes. 

We have given a very short summary, and picked up a simple illustrative example, to 

convey the spectral essence of the two-dimensional Alfvkn waves. For further details, viz., the 

continuum or kinetic damping of these gap modes, the details of destabilizing mechanisms 

(like the fusion generated fast particles), the nonlinear saturation of these modes (primarily 

by the mode’s ability to weaken the drive), the reader is encouraged to survey the vast body 

of available literature. 30-43 

5 Summary 

The aim of this modest review was to give a glimpse of the richness of the Alfvkn wave 

physics. In confined, hot plasmas, Alfvkn waves take extremely interesting and varied forms 

with the leading order structure dictated by the magnetic field geometry. When the magne- 

tohydrodynamic description leads to singular modes, the electron kinetic effects regularize, 

and therefore, determine the structure of the mode. Although we have limited ourselves, 

here, to a theory of the spectral aspects of the waves, it must be emphasized that several 

experimental attempts, with very promising results:* have been made to map out the spec- 

trum of the Alfv6n waves. However, this vast and exciting field is still rather unexploited 
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and beckons enterprising experimentalists. Similarly, the theory of high amplitude waves 

(nonlinear GAE, KAW, or TAE), in spite of a few important ad~ances,4~-*~ defines a dif- 

ficult and challenging field for investigation. We must also note that additional structure 

of the ambient magnetic field (no symmetry, no ignorable dimension) introduces altogether 

new and unknown features47 to the physics of Alfvkn waves; it is a plum ready to be picked. 

The branch of physics born with Hannes Alfv6n has had a glorious past. With the breadth 

and depth of problems still waiting to be solved, the future has to be even brighter. 
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Figure Captions 

1. w(x) versus x for the MHD limit IS = 0. The curves have different values of go G g. 

Notice that w(x) 4 0 as x -, 00 for all the curves. 

2. w(x) versus x for the dissipative case, CT = The potential well at large x is 

responsible for the discrete spectrum of the Kinetic Alfv6n Wave (KAW). 

3. The local Alfv6n frequency G2 = k [ w i ( ~ )  as a function of T for several azimuthal 

(poloidal) mode numbers m for a given axial (toroidal) mode number n. The increase 

away from the center is normally due to the decreasing density. 

4. Gap formation due to the degeneracy, at some radial location, of the local Alfv6n 

frequencies Gkl and G& corresponding to mode numbers ml and m2. 
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