SPECTRUM OF THE HYDROXYL RADICALbyCOSMO CARLONE
B. Sc., University of Windsor, 1963
M. Sc., University of British Columbia, 1965
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Departmentof
PHYSICSWe accept this thesis as conforming to therequired standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Physics

The University of British Columbia Vancouver 8, Canada

Date March 25, 1969

ACKNOWLEDGMENT

I wish to thank Professor F. W. Dalby for suggesting the problem and for constant supervision.

This work was supported by the National Research Council of Canada.

The $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$and $C^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$systems of OH and $O D$ were photographed at high resolution. The apparent dissociation energy $D^{0}\left(A^{2} \Sigma^{+}\right)$is calculated to be (18847 ± 15) cm^{-1} for OH and (19263 ± 15) cm^{-1} for $O D$. An upper limit to $D^{\circ}\left(X^{2} \Pi_{3 / 2}\right)$ of OH is deduced to be (35420 ± 15) cm^{-1}. Evidence for a dispersion hump in the $B\left(^{2} \Sigma^{+}\right.$) state which is about $100 \mathrm{~cm}^{-1}$ larger than the hump in the $A\left(^{2} \Sigma^{+}\right.$), state is presented.

The broadening of the rotational lines in several bands of both systems has established a strong predissociation of the $A C^{2} \Sigma^{+}$) state near $V=5$ in $O H$. The lifetime of these predissociated levels is $\approx 10^{-11}$ seconds. A definite identification of the predissociating state has not been possible.

Newly discovered vibrational levels in the $C\left({ }^{2} \Sigma^{+}\right)$ state have led to the following constants, in cm^{-1}, of the OH radical in the $C^{2} \Sigma^{+}$state

$$
\begin{aligned}
T_{e} & =89500 & B_{e} & =4.247 \\
D^{0} & =29418 \pm 15 & \alpha_{e} & =0.078 \\
w_{e} & =1232.9 & \gamma(\nabla=0) & =1.09 \\
u_{e} x_{e} & =19.1 & \gamma(\nabla=1) & =0.88
\end{aligned}
$$

Rotational constants and spin splitting constants in the $A\left(^{2} \Sigma^{+}\right)$and $B\left(^{2} \Sigma^{+}\right)$states, more accurate than previously available are presented.

TABLE OF CONTENTS
PAGE
LIST OF TABLES ∇
LIST OF FIGURES Vi
LIST OF PLATES vii
CHAPTER I - INTRODUCTION. 1
II - BASIC THEORY OF DIATOMIC MOLECULES. 7
(a) General theory 7
(b) Application of the theory. 13
III - EXPERIVENTAL 20
IV - RAN DATA. 25
V - SPIN SPLITTING 48
VI - ROTATIONAL CONSTANTS. 56
VII - DISPERSION HUMPS AND DISSOCIATION ENERGY. 61
(a) $\Delta G\left(V+\frac{1}{2}\right)$ of $A^{2} \Sigma^{+}$ 61
(b) Dissociation Energy of $\mathrm{A}^{2} \Sigma^{+}$state. 61
(c) Energy levels 68
(d) Dissociation Energy of $\mathrm{B}^{2} \Sigma^{+}$state 72
(e) Discussion. 76
VIII - VIBRATIONAL CONSTANTS OF C, B STATES. 78
IX - PREDISSOCIATIONS IN A $\mathrm{A}^{2}{ }^{+}$STATE. 83
(a) Gaydon predissociation. 83
(b) Strong Predissociation. 85
(c) Reconciliation with theory. 91

PAGE

$X-\operatorname{THE} \quad C^{2} \Sigma+\rightarrow B^{2} \Sigma^{+}$SYSTEM 96
XI - WHAT NOW OH? 98
BIBLIOGRAPHY 102
APPENDIX I - Isotopic constant 105
II - Computer program 106
III - Zero point Energy 110
IV - Therral and Pressure Broadening. 111
V - Predissociation by Rotation 113in $A^{2} \Sigma^{+}$state of OD
VI - Electronic Isotope Shifts 114

LIST OF TABLES

PAGE

1 - Wavenumbers of the $B \rightarrow A$ system 26
2 - Wavenumbers of the $C \rightarrow A$ system 33
3 - Combination relations for the B state of OH 34
4 - Combination relations for the B state of $O D$ 35
5 - Combination relations for the A state of OH 37
6 - Combination relations for the $v=4$ level of the A state of OH 38
7- Combination relations for the A state of $O D$ 39
8 - Combination relations for the C state 41
9 - Band origins 42
10 - Spin splitting constants. 54
11 - Rotational constants. 59
$12-\Delta G\left(V+\frac{1}{2}\right)$ of A state of OH 63
13- $\Delta G\left(V+\frac{1}{2}\right)$ of A state of $O D$ 64
14 - Energy of the vibrational levels. 69
15 - Wavenumbers of the (0,0) transition of the $C \rightarrow B$ system of OH 97

LIST OF FIGURES

FIGURB
PAGE
1-Structure of a ${ }^{2} \Sigma^{+} \rightarrow^{2} \Sigma^{+}$transition 14
2 - Correlation of Ω with M_{j} of separated atoms. . . . 17
3 - Correlation of Ω with M_{j} of united atoms 18
4- ${ }^{2} \pi$ state of 0 H 19
5 - Apparatus 24
$6-\triangle P(N)$ vs. N in C state of $O H$....... 53 $7-\gamma$ vs V in A state............. 55
$8-\frac{\Delta_{2} F}{N+\frac{1}{2}}$ vs $\left(N+\frac{1}{2}\right)^{2}$ in $\nabla=10$ of A state of $O D \cdot 58$
9 - Rotational constants $\nabla \mathbf{v}$. ∇ in A state 60
$10-\dot{L}(8.5)$ curve in A state of OH 62
$11-\Delta G\left(v+\frac{1}{2}\right)$ vs ∇ in A state 65
12 - Atomic data and dissociation energy 71
13 - Limiting curve of dissociation in the B state 75
14 - Observed bound states of the hydroxyl radical . . . 82
15 - Gaydon predissociation 84
16 - Predissociations in the A state 87
17 - Full width at half maximum in the (0,10) band
of OD

18 - Variation of the full width at half maximum
due to rotation

19 - Variation of the full width at half maximum

LIST OF PLATES

PLATE

PAGE

$$
\begin{aligned}
& \text { I - Three systems of the hydroxyl radical } 44 \\
& \text { II - The } B \rightarrow A \text { system } \\
& 45 \\
& \text { III - The }(0,7) \text { and }(0,8) \text { transitions of the } B \rightarrow A
\end{aligned}
$$

CHAPTER I - INTRODUCTION

The hydroxyl radical (OH) is one of the more interesting molecules in nature. It is readily formed in combustion reactions where its spectrum is often used to determine the temperature of a flame (Dieke and Crosswhite, 1948). The OH emission has been detected in the upper atmosphere and is primarily responsible for the airglow (Meinel, 1950). Recently, the radio frequency transitions within the two lowest rotational states of the radical have been observed In astronomical sources (Barrett, 1968). Detection of the OH emission has usually been accompanied by exciting surprises. For example, it is almost certain that masing action is responsible for the radio signals of OH from outer space and the mechanism for the masing action is not get understood. Detailed knowledge of the energy levels of the radical, which is the subject of this thesis, should help to solve the problems encountered with the OH emission.

This thesis contains a study of some of the electronic states of OH . All of these states have been studied previously but new vibrational levels and new transitions have been observed. The energy level diagram of OH can now be constructed very accurately up to $100,000 \mathrm{~cm}^{-1}$
from the ground state. The assignment of the electronic and vibrational quantum numbers is unambiguously decided by the new transitions observed.

The enission spectrum of the radical was photographed at high resolution. The assuracy of the wavelengths measured is $10^{-3} \AA$, which is 10 times and in some cases 100 times better than the raw data previously available. The accuracy of the molecular constants in the states studied, such as internuclear separation and vibrational frequency, has been increased by a factor of 10.

One of the most useful constants of the molecule is the dissociation energy of the ground state. From a study of the $B^{2} \Sigma^{+} \longrightarrow A^{2} \Sigma^{+}$system, Barrow (1956) calculated the dissociation energy of the $A^{2} \Sigma^{+}$state, the first excited state. He then determined the dissociation energy of the ground state to be $(35450 \pm 100) \mathrm{cm}^{-1}$. The $\mathrm{B}^{2} \Sigma^{+} \rightarrow$ $A^{2} \Sigma^{+}$system of deutroxyl radical (OD) has been extended to include transitions to vibrational levels near the dissociation limit of the $A^{2} \Sigma^{+}$state. The estimate of the error of the dissociation energy of the $A^{2} \Sigma^{+}$state has been reduced by a factor of seven or better. The same error is transferred in calculating the dissociation energy of the ground state.

The increase in accuracy of the dissociation energies of the excited states has made possible the detection of dipole-dipole and higher order multipole interaction between the neutral hydrogen and oxygen atoms in the excited states. The net effect of this interaction was found to be repulsive and occurs at an internuclear separation much larger than that at which valence forces are predominant.

The high dispersion at which the transitions were photographed revealed that some of the spectral lines are broad. This effect was first observed in one of the $O D$ transitions, the $(0,9)$ of the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$system, by Bruce Nodwell in the summer of 1964, then an undergraduate research student for Professor Dalby. He, however, did not see the same effect in $0 H$, in fact, he failed to observe the same transition in OH . The author subsequently constructed a source of OH which consistantly emitted the desired transitions with high intensity. The line broadening was seen in both the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$and $C^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$systems of $O H$ and $O D$. It became evident quite early that a predissociation occurs in the $A^{2} \Sigma^{+}$ state at high ∇ 's. The results were reported at the Conference of the Canadian Association of Physicists, held
at Calgary, Alberta, in June, 1968. Later on in the same year, a paper was discovered in the literature (Czarny and Felenboik, 1968) which reported line broadening in the same $(0,9)$ band of $O D$ and in the $(0,6),(0,7)$ and $(0,8)$ bands of OH . Our investigation is, however, much more comprehensive. In OD, the predissociation was detected from $v=7$ through to $v=13$ and in $O H$ from $v=5$ to $v=7$. The sharp appearance of the transitions involving $v=6$ in $O D$ and $v=4$ in $O H$ is crucial in deciding where the predissociation is first noticeable. The dependence of the predissociation on the rotational quantum number was investigated in each vibrational level. Although much data has been collected on the predissociation, the theoretical explanation of the facts needs development.

Predissociations are interesting because the inverse process, pre-association, may be a very important step in the formation of molecules. When two atoms come together in a collision, they form a "quasi-molecule" at that separation for which valence forces are large. The quasimolecule performs one vibration only for it has enough energy to break the bond. If energy is lost in that short time during which the vibration lasts (typically 10^{-13} seconds) a stable molecule is formed. The quasi-. molecule can radiate to a lower closely lying vibrational
level. This transition lies in the far infra-red and is a slow process, $\approx 10^{-3}$ seconds. The quasi-molecule can also reach an excited state by pre-association and then radiate to the ground state. This transition lies in the optional region and is much faster, $\approx 10^{-8}$ seconds. Thus the probability of molecule formation is about 10^{-5} per collision by pre-association, but 10^{-10} by radiation to a lower vibrational level. For OH , the interest in preassociation is even greater because of the masing action observed in the OH radio frequency signal from outer space.

The $C^{2} \Sigma^{+}$state is very deeply bound and high in excitation energy. The properties of this state have been determined from a study of the $C^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$ system and $C^{2} \Sigma^{+} \rightarrow B^{2} \Sigma^{+}$systemiv The former system has only been recently observed (Michel, 1957) and the latter is reported for the first time. The $C^{2} \Sigma^{+}$state is not completely understood yet. The $C^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$ system of OH was extended to include transitions from a vibrational level lower in energy than the one previously thought to be $\mathrm{v}=0$ (Michel, 1957). The same system is reported for the first time in $0 D$. The correct vibrational
numbering of the levels in the $C^{2} \Sigma^{+}$state was deduced from the isotopic relations. The consequential new vibrational and rotational constants of the $C^{2} \Sigma^{+}$state have been determined. A discussion of the electronic structure of the $C^{2} \Sigma^{+}$state is also presented.

CHAPTER II - Basic Theory of Diatomic Molecules

In this chapter, the general theory of diatomic molecules is outlined in part (a) and the application of the theory to the determination of the molecular constants of the hydroxyl radical is given in part (b).
(a) General theory -

Molecular theory is based on the Born-Oppenheimer (1928) approximation according to which the total wave function of a molecular system is the product of electronic, vibrational and rotational terms. The approximation is good because the mass of the electron is much smaller than that of the nucleus.

In linear molecules, the classification of the electronic terms is besed on the value of the component \wedge of the electronic angular momentum along the internuclear axis (h is Planck's constant divided by 2π). This is possible because there are no torques on the electron in the direction of the internuclear axis. The projection of the electronic angular momentum along the internuclear axis is conserved classically and Λ is therefore a good quantum number. For $\Lambda=0,1,2, \ldots$ the electronic states are called $\Sigma, \Pi, \Delta, \cdots$. Although Λ is a good quantum number only in the non-rotating molecule, it is often found to be a good quantum number even in rotating molecules, to a good approximation.

The multiplicity of the electronic state is designated with an upper script on the left liand side and the projection of the total angular momentum on the internuclear axis is designated with a lower script on the right hand side, for example ${ }^{2} \Pi_{1 / 2}{ }^{2} \Pi_{1 / 2}$.

The electronic wave function has a symmetry with respect to reflection at any plane passing through the two nuclei. For $\wedge \neq C$, the projection of the electronic angular momentum on the nuclear axis is $\pm \Lambda \hbar$. The degeneracy of these states is two-fold. For such degenerate states, a reflection of the electronic wave function at a plane passing through the nuclei can result in the same wave function or in the other wave function of opposite sign. States with $\Lambda \neq 0$ have therefore both symmetries but it is never expressed explicitly because the energy of both states is the same. For $\Lambda=0$, the situation is different. A Σ^{+}state reflects into itself at any plane passing through the nuclei, \sum^{-}goes into its negative, where the super script denotes the symmetry with respect to reflection at a plane passing through the nuclei.

In the Born-Oppenheimer approximation, the eigenvalues of the electronic part of the wave function depend on the internuclear separation. Thus, when the electronic terms are eliminated from the schroedinger equation for the molecule, there remains a term dependent on the internuclear separation, which together with internuclear Coulomb energy
can be interpreted as the potential energy of the nuclei in the field of the electrons. If this effective potential is called $U(r)$, the Schrodinger equation for the nuclear terms reads
(II-1) $\left\{-\frac{\pi^{2}}{2 \mu} \nabla^{2}+U(r)\right\} \psi=E \psi$
where μ is the reduced mass of the nuclei and ∇^{2} is the Laplacean operator, with respect to the coordinates relative to the center of mass of the nuclei. Typical $U(r)$ curves are illustrated in Figures 4, 14, 16. In the neighbourhood of the equilibrium internuclear distance $\tau_{e}, U(r)$ can be expanded in a Taylor series,

$$
U(r)=U\left(r_{e}+\xi\right)=U_{e}+\frac{1}{2} \mu \omega_{e}^{2} \xi^{2}-a \xi^{3}+b \xi^{4} \cdots
$$

Expressing ∇^{2} in spherical coordinates (r, θ, ψ) and putting $\psi=\frac{X(r)}{r} Y(0, \varphi) ;(I I-1)$ becomes $(I I-2)\left\{\begin{array}{l}-\frac{\pi^{2}}{2 \mu} \frac{a^{2} x}{d s^{2}} y+\left(U_{e}+\frac{1}{2} u w_{e}^{2} s^{2}-a s^{3}+b s^{4}-\cdots\right) x y \\ +\frac{p^{2}}{2 \mu r_{e}^{2}}\left(1-\frac{2^{5}}{r_{e}}+\frac{3 s^{2}}{r_{e}^{2}}-\cdots\right) x y=E x y\end{array}\right.$ where P^{2} is the square of the angular momentum operator. Equation (II-2) describes the motion of a vib-rotor. The relative sizes of the terms in the expansions suggest solving

$$
-\frac{A^{2}}{2 \mu} X^{\prime \prime}+\left(U_{e}+\frac{1}{2} \mu \omega_{e}^{2} \xi^{2}\right) X=E_{v} X
$$

Which is the equation of the harmonic oscillator, and $\frac{p^{2}}{2 \mu \lambda_{e}^{2}} Y=E_{n} Y$, which is the equation of a rigid rotor, and then treating the rest of the terms by perturbation theory. The energy values in cm^{-1}, are (Herzberg, 1950)

$$
\begin{aligned}
\frac{E(v, j)}{\mu c} & =u_{e}\left(v+\frac{1}{2}\right)-u_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+w_{e} y_{e}\left(v+\frac{1}{2}\right)^{3} \cdots \\
+ & B_{e} j(j+1)-\alpha_{e}\left(v+\frac{1}{2}\right) j(j+1)-D_{e} J^{2}(j+1)^{2}+\cdots
\end{aligned}
$$

Where $v=0,1,2, \ldots .$. is the vibrational quantum number. $J=0,1,2, \ldots .$. is the rotational quantum number. and the constants are related to the shape of $U(r)$.

The energy values are usually grouped differently,
(II-3)

$$
\frac{E}{f_{2} c}=\omega_{2}\left(v+\frac{1}{2}\right)-\omega_{2} x_{e}\left(v+\frac{1}{2}\right)^{2}+w_{e} y_{e}\left(v+\frac{1}{2}\right)^{3}-\cdots
$$

$$
+B J(J+i)-D J^{2}(j+1)^{2}+H J^{3}(J+i)^{3} \cdots
$$

$$
=G(v)+F(j),
$$

where it is understood that B, D, H are functions of ∇ Dunham (1932) has solved (II-2) for any $U(r)$ that $c a n$ be expanded in a Taylor series. For a fifteen term expansion of $U(r)$ and with the Wentzel-Kramers-Brillouin perturbation method, Dunham found a term in the expression for the energy
which is independent of v and J and is

$$
Y_{o c}=\frac{B_{e}}{4}+\frac{\alpha_{e} \omega_{e}}{12 B_{e}}+\frac{\alpha_{e}^{2} \omega_{e}^{2}}{144 \beta_{e}^{3}}-\frac{\omega_{e} x_{e}}{4}
$$

The selection rules for radiation are obtained in nonrelativistic theory from the non-vanishing of the matrix element of the electric dipole moment, that is,
(II-4) $\quad m_{i 2}=\left\langle\Lambda_{1} v_{1} J_{1}\right| m\left|\Lambda_{2} v_{2} J_{2}\right\rangle \neq 0$
Where m is the dipole moment. Since m is the component of a vector, the parity of the participating states must be opposite. From the properties of angular momentum we must have $\Delta J=0, \pm i \quad$ (Landau and Lifshitz, 1965). Within the Born-Oppenheimer approximation, $\left\langle\Lambda_{1}\right| \sum x_{i}+\sum y_{i}+\sum z_{i}\left|\Lambda_{2}\right\rangle \neq 0_{i f}$ $\triangle A=C, \pm 1$. ($x_{i}, y_{i} z_{i}$ are the coordinates of the eth electron). If Z is the direction of the internuclear axis, $\left\langle\Sigma^{P}\right| x\left|\Sigma^{P^{\prime}}\right\rangle$
$\neq 0$ only for $p=p^{\prime}$ by a reflection through the $x z$ plane. Similarly $\left\langle\Sigma^{P}\right| y\left|\Sigma P^{\prime}\right\rangle \quad$ and $\left\langle\Sigma^{P}\right| z\left|\Sigma^{p^{\prime}}\right\rangle \neq 0$ for $p=p^{\prime}$ only $(p= \pm)$.

The theory of radiationless transitions is not as well understood. We have not been able to explain the data on predissociations presented in Chapter IX by the present
theory. Since no photon is exchanged, the participating states must have the same parity and $\triangle J=0$. It is assumed that transitions from the discreet levels of a bound state to those of an unbound state are brought about by terms in the Hamiltonian with the same symmetry character as L. \underline{S} or J.I (Landau and Lifshitz, 1965). The selection rules can be derived from
(II-5a)

$$
\left\langle\wedge_{1} v_{1} j_{1}\right| \leq-\underline{S}\left|\wedge_{2} j_{2}\right\rangle \neq 0
$$

$$
(I I-5 b) \quad\left\langle\Lambda_{1} v_{1} J_{1} \mid \underline{j}_{1} \underline{L} \Lambda_{2} J_{2}\right\rangle \neq 0
$$

where 1 refers to the bound state and 2 to the unbound state. Kovacs (1958) has discussed the matrix elements (II-5a). His results are given in Chapter IX. It is interesting to note that Herzberg (1950) states that for \sum states, only states of similar symmetry can interact, but Landau and Lifshitz (1965) state the opposite. Herzberg (1950) also.states that the radiationless transition is a strong effect when the Iifetime of the discreet level of $\left|\Lambda_{1}\right\rangle$ is of the order of 10^{-11} seconds or shorter. According to Herzberg (1950) a strong effect occurs when $\Delta S=0$ and $\Delta \Lambda=0, \pm 1 ;$ for Σ states, the parity of the states must be the same. The Iffetime of the predissociated levels of OH is shown in Chapter IX to be about 10^{-11} seconds, but the other conditions cannot possibly apply. Moreover, it is not obvious how these statements arise from condition (II-5).
(b) Application of the theory to the determination of the molecular constants of OH .

The ground state of the hydroxyl radical is $X^{2} \Pi$ (the Latin letter X serves to identify the lowest energy ${ }^{2} \Pi$ state). Three bound excited states are known, $A^{2} \Sigma^{+}$, $B^{2} \Sigma^{+}, C^{2} \Sigma^{+}$. (A, B, C label excited states in order of energy). All measurements in this thesis come from a study of the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$and $C^{2} \Sigma^{+} \longrightarrow A^{2} \Sigma^{+}$systems.

From the selection rules, the possible transitions of $a^{2} \Sigma^{+} \rightarrow{ }^{2} \Sigma^{+}$system are as illustrated in Figure 1. N is the rotational quantum number, J is the total angular momentum. The parity of the levels is deduced from the facts that the spin function is independent of inversion, that the symmetry of the electronic wave function is given by P in $\sum P$, that the vibrational wave function has no parity associated with it, and that the parity of the rotational wave function is given by the Spherical Harmonics. In Figure 1 , the R branch for which $\Delta J=+1$ and the P branch for which $\Delta J=-1$ are much stronger than the Q branch for which $\triangle J=0$. The line strengths are (Herzberg, 1950)
$(I I-6 a) \quad S_{j}^{R}=\frac{\left(J^{i \prime}+1\right)^{2}-\frac{1}{4}}{J^{\prime \prime}+1}$
N J 26

$$
3=\frac{}{7 / 2} \begin{aligned}
& 5 / 2
\end{aligned}
$$

$$
2 \sum^{+} 2^{+}
$$

Figure 1. Structure of a ${ }^{2} \Sigma^{+} \rightarrow{ }^{2} \Sigma^{+}$transition.

$$
\begin{equation*}
S_{j}^{Q}=\frac{2 J^{\prime \prime}+1}{4 J^{\prime \prime}\left(J^{\prime \prime}+1\right)} \tag{II-5b}
\end{equation*}
$$

$$
\begin{equation*}
S_{j}^{P}=\frac{j^{\prime \prime 2}-1 / 4}{j^{\prime \prime}} \tag{II-5c}
\end{equation*}
$$

where the double prime refers to the lower state. The directly observable quantities are the transtions $R_{1}, R_{2}, Q_{1}, Q_{2}, P_{1}, P_{2}$. Writing these transitions as the difference between energy levels, the molecular constans can be deduced. The results are quoted in Chapters V, VI, VII and VIII where the constants are evaluated.

The energy spacing between the levels with the same ∇ but with rotational quantum numbers $N+1$ and $N-1$ is the combination relation $\Delta_{2} F(N)$.

It is easily shown that

$$
\begin{gathered}
\frac{\Delta_{2}^{\prime} F(N)}{N+\frac{1}{2}}=\frac{R(N)-P(N)}{N+\frac{1}{2}}=\left(4 B^{\prime}-6 D^{\prime}+\frac{27}{7} H^{\prime}\right)+ \\
\quad\left(-8 D^{\prime}+34 H^{\prime}\right)\left(N+\frac{1}{2}\right)^{2}+12 H^{\prime}\left(N+\frac{1}{2}\right)^{7}+\cdots
\end{gathered}
$$

where the single prime indicates upper electronic state constants. Similarly
$\frac{\Delta_{2}^{\prime \prime} F(N)}{N+\frac{1}{2}}=\frac{R(N-1)-P(N+1)}{N+\frac{1}{2}}=$ (same but with")
gives lower electronic state constants. The numerical values of the combination relations provide a starting point for
lebelling the quantum numbers associated with the transition. In this thesis, the dissociation energy D° of the ground state $X^{2} \Pi$ is measured. D° is the difference between the energy of the lowest rotational level in in $X^{2} \prod_{3 / 2}$ and the energy of the $X^{2} \prod_{3 / 2}$ state for $r \rightarrow \infty$. The $X^{2} \Pi_{3 / 2}$ state is assumed to result by dissociation in $O\left({ }^{3} P_{\alpha}\right)+H\left({ }^{3} S\right)$. The correlation of molecular terms with the separated atoms and with the united atom is illustrated in Figures 2 and 3. In the Figures, Ω is the projection of the total angular momentum along the internuclear axis. In Figure 2, M, is the sum of the magnetic numbers for the oxygen and hydrogen atoms simultaneously in a weak magnetic field. In Figure 3, M_{J} is the magnetic number of the fluor ine atom in a weak magnetic field. The fine structure separation in Figures 2 and 3 are taken from Moore (1952). The OH potential wells as a function of internuclear distance are illustrated in Figure 4. The energy values in Figure 4 are taken from Dieke and Crosswhite (1948). Referring to Figure 4, the shape of the potential function at large internuclear distances is not well known. It is shown in Chapter VII that there is a hump in the potential functions of the $B^{2} \Sigma^{+}$states which is about $100 \mathrm{~cm}^{-1}$ larger than that in the $A^{2} \Sigma^{+}$state. The origin of these forces is unknown but thought to be due to dispersive forces (London, 1937).

Figure 2. Schematic correlation of the molecular states of $O H$, including fine structure, with those of the separated atoms.

Figure 3: Schematic correlation of the molecular states of OA, including fine structure ∞ with those of the united atom.

Energy

Figure $\%$. Correlation of molecular terms with atomic terms, including fine structure. The energy values are not to scale.

Chapter III - Experimental
The $B^{2} \Sigma^{+} \longrightarrow A^{2} \Sigma^{+}$and the $C^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$systems of the hydroxyl radical are much weaker than the well known $A^{2} \Sigma+\rightarrow X^{2} \Pi$ system. See Plate I. It was found that a discharge through water vapour, as this vapour fiowed rapidly through a hollow cathode produced the desired systems of OH quite strongly. The vacuum system was designed to achieve a fast pumping speed of the water vapour. The source of water was kept at $50^{\circ} \mathrm{C}$, the vapour was then allowed to enter the vacuum system through a needle valve, and after traversing the discharge area, the vapour was collected by a liquid nitrogen trap of large area. The water vapour travelled a totel distance of about 40 cm . All the flow tubes were 2.5 cm in diameter except for the aluminum hollow cathode which was 0.6 cm in diameter and 2.5 cm in length. A diffusion pump was used to bring about the fast pumping speed of all the gases formed in the discharge. A schematic diagram of the apparatus is shown in Fig. 5.

The power supply used delivered a maximum current of 200 milliamperes and is the amount of current utilized.

It was found that when the aluminum hollow cathode was clean, a bright red glow appeared in the hollow cathode area and the $O H$ spectrum, as seen by a manual spectrograph, was very strong. As the discharge was maintained,
the glow became weaker and the discharge displaced itself away from the hollow cathode. Within a few hours, the glow in the hollow cathode and the OH spectrum were very much less intense. At the same time, the aluminum became covered with a rough black coating, presumably aluminum oxide. When this coating was removed with the help of a lathe and proper size drill and the hollow cathode put back in the vacuum system, a strong spectrum of OH was obtained again. The weakening of the spectrum due to the appearance of the coating on the hollow cathode limited the length of an exposure, Which lasted from two to five hours.

The Dreliminary investigations of the spectrum were done on a Hilger medium quartz spectrograph, from which Plate I was made. Eventually, a Jarrell-Ash 3-4 meter Ebert spectrograph was used to photograph the regions from 2500-2800 A in fourth order at a dispersion of 0.4 \AA / mm, and from 3700-6500 \AA in second order at a dispersion of $i \AA \mathrm{~A} / \mathrm{mm}$. In the visible, the size of the plates covered only 500 A for a given angle of the grating. Thus, the final measurements in this thesis come from 15 different exposures.

In photographing the far ultra-violet in fourth order, a chlorine lens was used to absorb the unwanted radiation at 3400 A, which would have otherwise appeared in 3rd order.

The wavelength standards on the plates originated in an iron-neon hollow cathode. Typically over 100 well distributed standard lines were identified on each plate. The wavelength of these standards was taken from H.M. Crosswhite's (1967) tabulat ion.

For wavelengths above 4800 A , Kodak 103 a D plates were used and below $4800 \AA$, Kodak 103 a 0 plates were used.

The plates were read with the aid of a Grant comparator, with visual display (Tomkins and Fred, 1951) and digitalized output. As has already been mentioned, some of the lines appeared broad. The breadth of the lines was determined by measuring the observed full width at half maximum on the visual display of the line profile. "Since density response calibration of the plates were not made, the measured half widths of the lines only approximately correspond to the true half-widths. Nevertheless, definite conclusions on the line breadths could be made, particularly those illustrated in Fig. 16, 17, 18.

The UBC IBM 7044 computer was used to fit dispersion curves to the standard wavelengths and then to interpolate from these curves the wavelength of the spectral lines originating in the OH discharge tube. The program used also converts the air wavelengths to wavenumbers, with the aid of Edien's formula for the change in the index of refraction of (dry) air at $15^{\circ} \mathrm{C}$ and 760 mm Hg (Coleman et al, 1960).

$$
\left(\text { III - 1) } n=1+6432.8 \times 10^{-8}+\frac{2949810}{146 \times 10^{8}-y^{2}}\right.
$$

$$
+\frac{25540}{41 \times 10^{8}-y^{2}}
$$

when J is the vacuum wavenumber in cm^{-1}.
Appendix II gives the subroutine that fits the equation (III - 2) $\quad y=B(1)+B(2) x+\ldots+B(N+1) x^{N}$. to several experimental points $\left(x_{i}, y_{i}\right), i=1$, NDATA. The $B(N)$ of equation (III - 2) are not to be confused with the rotational B constants. The subroutine was used in several circumstances, for example in finding the relationship between $\Delta G\left(v+\frac{1}{2}\right)$ and V in Fig. 10, and also in evaluating the spin splitting constants γ, whose plots are given in Fig. 6.

Fipure 5. Schematic aiagram of the apparatus.

Chapter IV - Raw Data

The wavenumbers of the spectral lines identified as transitions in the energy levels of OH and OD are given in tables 1 and 2. Proof of the identification of the transitions is given by the combination relations which are given in tables $3,4,5,6,7$, and 8 . Table 6 gives proof that the v numbering in the $A^{2} \Sigma^{+}$state of $O H$ is correct, that is, the $V=4$ in the $A^{2} \Sigma^{+}$state is the only one observed in both the $A \rightarrow X$ system and in the $B \rightarrow A$ system. The combination relations for this level as obtained from both systems agree with each other, as they should.

The three systems of OH and OD are shown on Plate I . The major part of the $B \rightarrow A$ system is shown on Plate II. The $(0,7)$ and $(0,8)$ transitions of the $B \rightarrow A$ system of $O H$ are shown on Plate III. The $(0,9)$ and $(0,12)$ transitions in OH and OD respectively of the $\mathrm{C} \rightarrow \mathrm{A}$ system are shown on Plate IV.

The band origins of the bands photographed are given in table 9. No , the band origin of $a^{2} \Sigma \rightarrow{ }^{2} \Sigma$ transition is the energy difference between $J=\frac{1}{2}$ and $J=\frac{1}{2}$.

$(0,8)$

$(0,7)$

0	19512.3			
1	19512.3			
2	19502.5			
3	19482.8			
4	19453.3			
5	19414.5	19413.9	19303.9	19303.1
6	19366.2		19236.2	19235.5
7	19309.2	19308.5	19160.1	19158.9
8	19243.1		19075.2	

Table 1. Wavenumbers in cm^{-1} of OH bands of the $\mathrm{B}^{2} \Sigma^{+}{ }^{+} A^{2} \Sigma^{+}$system.

N	R_{2}		R_{1}		P_{2}		P_{1}
				$(1,6)$			
					-		
0		21795.2			.		
1		21788.1		-		21763.2	
2		21766.9			.	21726.1	.
3		21730.6	'			21674.1	
4		21679.9			-	21607.6	
5		21612.6				21527.1	
6		.		.		21432.1	
				$(0,5)$	- \cdot		
0		23048.5					
1		23047.2				23016.6	
2							
3		22993.5				22922.9	
4		22944.4				- 22853.6	
5		22880.6				22769.6	
6		22801.3	- -			22671.8	
						22559.7	
				$(1,5)$			
0		23710.6					,
1		23701.9				23676.8	
2	-	23676.8				23635.4	
3		23633.8				23577.2	
4		23573.7	"				-
5		23495.4				23409.3	
6				-		23301.3	

$(1,4)$

1	25862.40			25838.02
2	25			
3	25784.36	25783.92	25727.77	25727.24
4	25716.78	25715.91	25644.65	25643.88
5			25542.86	25541.94

Table 1. Wavenumbers in cm^{-1} of OH bands of the $\mathrm{B}^{2} \Sigma^{+} \longrightarrow A^{2} \Sigma^{+}$system.

$(0,11)$

1				18250.3	
2				18238.1	
3				18221.8	
4				18202.0	
5				18179.0	
6				18152.8	
7				18123.2	
8	18183.4	18182.9		18091.0	
9	18159.0	18158.4	18056.3		18055.7
10	18132.2	18131.5	1801.9.2		17018.3
11	18103.1	18102.3	17979.8		17978.9
12	18072.2	18071.3			17938.0
13	18039.9	18038.8	17896.5		17895.5
14	18006.6	18005.4	17853.4		17852.3
15	17972. 8	17971.6	17810.1		17809.0
16			17767.7		17766.0

Table 1. Wavenumbers in cm^{-1} of $O D$ bands of the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$system

$(0,10)$

0	19190.53			
1	19190.83		19174.34	
2	19186.56		19158.89	
3	19177.11		19138.69	
4	19162.78		19113.57	
5	19143.89	19143.61	19083.91	19083.54
6	19120.23	19119.79	19049.37	19048.92
7	19091.95	19091.31	19010.33	19009.77
8	19058.99	19058.37	18966.85	18966.21
9	19021.73	19021.05	18919.09	18918.38
10	18980.29	18979.53	18867.26	18866.47
11	18934.83	18934.07	18811.55	18810.68
12	18885.58	18884.67	18752.19	18751.31
13	18832.78	18831.82	18689.43	18688.41
14	18776.69	18775.53	18623.63	18622.48
15	18717.65	18716.43	18554.95	18553.80
16	18655.96	18654.70	18483.96	18482.60
17.	18592.00	18590.62	18410.90	18409.61
18	18526:45	18525.07	18336.44	18335.08
19	18459.63	. 18458.20		18261. 35
20				18185. 81
21			18109.58	18107.71

Table \mathcal{L}. Wavenumbers in cm^{-1} of $O D$ bands of the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$system.

Table 4 . Wavenumbers in Cn^{-1} of $O D$ bands of the $B^{2} \Sigma^{+} \longrightarrow A^{2} \Sigma^{+}$system.

16	R_{2}	R_{1}		P_{2}	P_{1}
	.		(1.6)		
1	25118.41			25103.70	
2	25104.84		-	25080.48	
3	25082.08			25048.04	
4	25050.25	25050.04		25006.64	25006.32
5	25009.23	36008.80		24956.02	24955.58
6	24958.93	24958.36		24896.26	24895.74
7	24899.35	24898.76		24827.58	24826.84
8	24830.78	24829.98		24749.84	24749.08
9	24752.92	24752.21		24663.10	24.662 .26
10	24665.88	24665.28			

Table 7 . Wavenumbers in cm^{-1} of $O D$ bands of the $B^{2} \Sigma^{+} \rightarrow A^{2} \Sigma^{+}$system.

$\dot{\text { H }}$	R_{1}	R_{2}	P_{1}	P_{2}
	OH		10,91	
0	37254.59			
1	37259.87	37257.90	37233.78	
2	37262.36	37259.14	37219.39	37218.13
3	37262.36	37257.90	37202.20	37200.08
4	37259.87	37254.59	37183.08	37179.98
5	37256.22	37250.09	37162.67	37158.74
6	37252.72	37245.67	37142.49	37137.65
7			37124.30	37118.57
8			37111.03	37104.38
	OH (1,9)			
0	38448.89		38428.38	
1	38454.08	38451.82		
2	38456.09	38453.30	38413.67	38412.78
3	38455.03	38451.82	38396.17	38394.56
4	38451.82	38447.61	38376.47	38374.14
5	38447.61	38442.62	38355.51	38352.38
6	38442.62	38437.24	38534.52	38330.80
7			38315.47	38310.98
	OHi			
0	39286.60			
1	. 39286.60	39284.95	39261.03	
2	39278.79	39276.00	39236.14	39235.47
3	39262.71	39259.23	39203.80	39202.15
4	39238.83	39234.73	39163.58	39161.12
5	39208.03	39202.94		39112.84
6			39062.15	39058.02

OD $\quad 10,121$

0	37378.7			
1	37381.6	37380.4	37367.1	
2	37380.4	37378.7	37357.2	
3	37376.5	37374.2	37444.9	37343.6
4	37369.9	37367.1	37329.2	37327.4
5	37360.9	37357.2	37310.9	37308.8
6			37290.4	37287.8
7			37268.3	37264.8
	OD		$(0,11)$	
1	38079.5		38065.4	
2	38074.8	38073.1	38052.2	
3	38065.4	38063.4	38034.3	
4	38052.2	38049.3	38011.5	38009.6
5	38034.3	38030.5	38984.5	37982.2
6			37953.5	37950.7

Table 2. Wavenumbers of the $C^{2}{ }^{2}{ }^{\top} \rightarrow A^{2} \Sigma^{+}$system.

OH $\quad \mathrm{V}=1 \quad \mathrm{~B}^{2} \Sigma^{+}$

If	1.9	1,4	1,9	1,4	1,6	1,5
	$\Delta_{2}^{\prime} F_{1}$	$\Delta_{2}^{\prime} F_{1}$	$\triangle_{2}^{\prime} F_{2}$	$\Delta_{2}^{\prime} F_{2}$	$\Delta{ }_{2}{ }^{\text {F }}$	$\Delta_{2}^{\prime} F$
1	24.49	24.38	24.73	24.38	24:9	25.1
2	40.74	40.79	40.73	40.79	40.8	41.4
3	56.59	56.69	56.56	56.59	56.5	56.7
4	72.01	72.13	71.94	72.03	72.3	
5	86.74		86.71		85.6	86.8
6	100.55		100.50			
7	113.00		113.06			
8	121.43		121.57	-.		

$$
\mathrm{OH} \quad \mathrm{~V}=0 \quad \mathrm{~B}^{2} \Sigma^{\top}
$$

N	0.8	0,8	0,7	0,6	0,5
	$\Delta_{2} F_{1}$	$\Delta_{2} F_{2}$	$\Delta_{2}^{\prime} F$	$\Delta_{2} F$	$\Delta_{2}^{\prime} F$
1	30.58	30.58	30.4	30.6	30.7
2	50.77	50.70	51.0	51.0	
3	70.90	70.84	70.9	71.0	70.6
4	90.82	90.80	90.9	90.8	90.7
5	110.73	110.62	110.7	110.0	111.0
6	130.16	130.16	130.0	130.1	129.5
7	149.38	149.33	149.4	149.4	
8	168.32	168.40	168.8		

Table 3. Combination relations in cm^{-1} for the $\mathrm{B}^{2} \Sigma^{+}$state of OH .

$$
O D \quad \nabla=2 \quad B^{2} \Sigma+
$$

N	$\begin{gathered} 2,7 \\ \Delta_{2}^{\prime} F \end{gathered}$	$\begin{gathered} 2,13 \\ \Delta_{2}^{2} F \end{gathered}$
1	11.6	11.7
2	19.2	19.7
3	26.3	26.2
4	32.7	
5	40.3	
6	46.3	
7	52.8	

N	- OD		$=1$	$B^{2} \Sigma^{+}$		1,6
	1.12	1,11	1,6	1,12	1,11:	
	$\Delta_{2}{ }^{\prime} F_{2}$	$\Delta_{2} F_{2}$	$\Delta_{2}^{\prime} F_{2}$	A $\sum_{1} F_{1}$	$\Delta_{2} F_{1}$	$A_{2}{ }^{\prime} F_{1}$
1	14.8		14.71	14.8.	15.9	14.71
2	24.3	24.8	24.36	24.3	24.8	24.36
3	34.1	34.0	34.04	34.1	34.0	34.04
4	43.8	44.0	43.61	43.8	44.0	43.72
5	53.4	53.4	53.21	53.4	53.4	53.05
6	63.0	62.2	62.67	63.0	62.2	62.61
7	72.1	71.5	71.78	71.7	72.0	71.92
8	80.9	80.8	80.94	80.0	81.3	80.91
9	89.8	89.7	89.82	90.0	90.0	89.95
10		98.6			98.5	
11		106.8			107.0	
12		114.8			114.9	
13		122.3			122.4	
14		129.9			129.7	.
15		135.5			135.3	

H	1,9	1,8	1.7
	$\triangle 2 F$	$\triangle \overbrace{}^{\circ}$	Aif
1	14.7	14.5	
2	24.5	24.6	
3	34.0	34.1	34.0
4	43.7	43.4	42.6
5	53.2	53.0	53.1
6	62.6	62.6	62.2
7	71.0	71.9	72.2
8		80.6	80.9
9.	89.7	89.4	90.3
10			
11			106.4

Table 4 Combination relations in cm^{-1} for the
$B^{2} Z^{\top}$ state of OD.

$$
\text { OD } \quad \nabla .=0 \quad B^{2} \Sigma^{+}
$$

H	0,11	0,10	0,9	0,8
	$\Delta_{2}^{\prime} F_{2}$	Δr_{2}	$S_{2}^{\prime} F_{2}$	$\Delta_{2}^{\prime} \dot{F}_{2}$
1	16.9	16.31	16.5	16.3
2	27.3	27.67	27.4	
3	38.2	38.43	38.3	38.6
4	49.2	49.21	49.3	49.0
5	60.0	59.98	60.1	60.2
6	70.8	70.87	70.7	71.3
7	81.5	81.62	81.5	81.8
8	92.4	92.14	92.2	
9	102.7	102.64	102.6	101.9
10	113.0	113.03	113.0	113.1
11	123.3	123.28	123.0	123.2
12		133.40	133.0	132.9
13	143.4	143.36	143.6	143.4
14	153.2	153.06	153.3	153.4
15	162.7	162.74	162.5	162.6
16		172.04	172.4	
17		181.11	181.7	181.2
18		190.01	190.0	189.9

N	$\begin{aligned} & 0,11 \\ & \Delta_{2}^{\prime} F_{1} \end{aligned}$	$0,10$	$\begin{aligned} & 0,9 \\ & \Delta_{2} F_{1} \end{aligned}$	$\begin{gathered} 0,8 \\ \Delta F_{2} F_{1} \end{gathered}$
1	16.9	16.31	16.5	16.3
2	27.3	27.07	27.4	
3	38.2	38.13	38.4	38.6
4	49.2	49.21	49.3	49.0
5	60.0	60.07	60.1	60.2
6	70.8	70.86	71.0	71.3
7	81.5	81.55	82.0	81.8
8	91.9	92.16	92.1	
9	102.7	102.67	102.8	101.9
10	113.0	113.06	113.2	113.1
11	123.4	123.36	123.3	123.2
12	133.3	133.36		132.9
13	143.4	143.40	143.4	143.4
14	153.1	153.10	153.0	152.8
15	J.62.6	162.65	163.0	
16		172.01	1.72.1	
17		181.01	181.8	181.1
18.		190.00	190.3	190.0
19			199.0	198.5
Table 4. Combination relations for the $B^{2} \Sigma^{+}$ state of OD.				

$$
\mathrm{OH} \quad \mathrm{~V}=9 \quad \mathrm{~A}^{2} \Sigma^{+}
$$

$\nabla=7$	$v=6$	$v=5$
$B \rightarrow A$	$B \rightarrow A$	$B \longrightarrow A$
$\Delta_{2}^{\prime \prime} F$	$\Delta_{2}^{\prime \prime}{ }^{\prime}$	$\Delta_{2}^{\prime \prime}$

N	0.7	0.6	1.6	0.5	1.5
1	60.8	68.5	69.1		75.2
2	100.4	114.0	114.1	124.3	124.2
3	140.1	159.1	159.3		
4	178.8	203.3	203.5	223.9	224.6
5	217.4	247.9	247.8	272.6	272.4
6	254.7	291.1		321.0	
7	291.0	334.3			

Table 5. Combination relations for the A state of 0 H .

	$\triangle_{2}^{\prime \prime} F_{1}$	$A_{L}^{\prime \prime} F_{2}$		$\Delta{ }_{z}$						
N	1,4	1,4	4.1	4,2	4.3	4,4	4.1	4.2	4,3	4,4
1	80.94	80.94	80.7	81.5	81.4	80.5	80.9	81.1	80.3	81.3
2	135.16	134.62	133.7	134.1	134.1	132.8	133.2	133.6	134.7	132.9
3	189.00	188.23	188.4	188.1	187.9	187.1	188.4	188.2	186.7	188.4
4	241.98	241.50	241.8	242.0	242.3	241.9	242.0	241.5	242.9	242.0

Table 6. Combination relations for the $v=4$ level of the $A^{i} \Sigma t$ state of $O H$, as obtained from the $A^{2} \Sigma^{+} \rightarrow B^{2} \Sigma^{+}$System and the $A^{2} \Sigma^{+} \rightarrow X^{2} \pi$ System (Tanaka and Koana, 293a).

```
                                    ,
```


	OD	$\mathrm{v}=10$	OD		$\mathrm{v}=9$	
	$\Delta_{2}^{\prime \prime} \bar{F}_{2}$	$A_{2} F_{1}$	$\Delta_{2}^{\prime \prime} F_{2}$	$\triangle{ }_{2}^{\prime} F_{1}$	$\Delta:^{\prime} F_{2}$	$\Delta_{2}^{\prime \prime} \mathrm{F}_{1}$
N	0,10	0,10	0,9	0,9	1,9	1,9
1	31.44		34.6		34.2	
2	52.19		57.7		57.6	
3	72.99		80.6		80.6	
4	93.20	93.57	103.3		103.3	
5	113.41	113.86	125.8	126.2	125.8	126.2
6	133.56	133.85	148.2	148.7	147.8	148.3
7	153.39	153.58	170.3	170.8		
8	172.86	172.93	192.3	193.1		192.4
9	191.73	191.90	213.9	214.1		
10	210.18	210.37	234.8	235.2		
11	228.10	228.22	255.8	256.3		
12	245.40	245.63	276.1	276.2		
13	261.95	262.19	295.2			
14	277.83	278.02	314.7	315.1		
15	292.73	292.99	333.3	333.1		
16	306.76	306.82	350.9	351.3		
17	319.52	319.62	368.0	368.2		
18		329.27		384.4		
19-		339.26	398.4	399.0	-	
20.	350.05	350.49 .		413.3		
	OD $\quad \mathbf{V}=$		8	OD $\mathbf{v}=7$		
	$\Delta_{2}^{\prime} F_{2}$	$\Delta_{2}^{\prime} F_{1}$	$\Delta_{i}^{\prime \prime} F$	$\triangle{ }_{2}^{\prime \prime} F$	$\Delta_{2}^{\prime \prime} F$	
N	0,8	0,8	1,8	1,7	2,7	
1	62.7		36.5		39.8	
2	62.7		62.4		66.7	
3	86.8		87.3	91.2	93.0	
4	111.1		112.0	119.3	119.5	
5	136.7		136.3	144.4	143.9	
. 6	$\sim .161 .0$		160.9	172.5	172.1	
7	185.4		185.0	197.1	197.5	
8	208.1		208.8	223.3	223.4	
9			232.6			
10.	255.3					
11	278.4					
12	301.5					
13						
14	343.9 3 4.4					
15						
16	385.9					
17	405.6	405.8				
18		424.8				
19		443.6				
20		460.6				
Tab	Q 7. Coa	minatio	relati	ons for	the $A^{2} \Sigma$	
sta	e of $0 D$,	obtaine	from t	he B \rightarrow	system.	

OH $\quad \mathrm{V}=0 \quad \mathrm{C}^{2} \Sigma^{+}$

	$\Delta_{2}^{\prime} F_{1}$	$\Delta_{2}^{\prime} F_{2}$
$\mathbb{1}$	0,9	0,9
1	26.10	24.12
2	42.97	41.01
3	60.16	57.82
4	76.80	74.61
5	93.55	91.26
6	110.23	108.02

OH $\quad v=1 \quad c^{2} \Sigma+$

$\Delta_{2}^{i} F_{1} \quad \Delta_{2}^{i} F_{2} \quad \Delta_{2}^{i} F_{2} \quad \Delta_{2}^{i} F_{2}$
N $\quad 0,11 \quad 0,12 \quad 0,11 \quad 0,12$

1.	14.0	14.5	14.0	13.5
2	22.7	23.2	20.9	21.5
3	31.3	31.6	29.1	30.5
4	40.6	40.7	39.7	39.7
5	49.8	49.9	48.3	48.5

Table 8 . Combination relations for the $c^{2} \Sigma^{+}$ state, both for $O H$ and $O D$, as obtained from the $C \rightarrow$ A system.
$\mathrm{OH} \quad \mathrm{B} \rightarrow \mathrm{A}$

$O D \quad B \rightarrow A$

$\mathrm{OH} \quad \mathrm{C} \rightarrow \mathrm{A}$
$O D \quad C \rightarrow A$

Table 9. Band origins of the bands photographed. The maximum intensity is taken arbitrarily at 10 ; the relative intensity isestimated by visual inspection of the plates.

GAPILONS HOR PLATES

Plate I. The three systems of the hydroxyl radical (pase 4) .

Plate II. whe $B \rightarrow i$ system of the hydroxyl radical (page 451.

Hlate LIL The $(0,8)$ and $(0,7)$ transitions of the $B \rightarrow A$ system in $O H$. The aiffuse character of the $(0,7)$ band shows a predissociation of the $A^{2} \Sigma^{t}$ state. In the $(0,8)$ bend the varelengths of $\mathrm{E}(1)$ and $\mathrm{P}(5)$ are 5480 and 5528 A resnectively; in the $(0,7)$ band the wavelengthe of $R(1)$ and $P(5)$ are 5124 and 5179 A respectively The two strong sharp lines between $P(4)$ and $R(7)$ in the $(0,7)$ band are marsnesium lines. (page 46)

Plate IV. Some bands of the $\mathrm{G} \rightarrow \mathrm{A}$ system at high resolution.. In the $(0,12)$ band of $0 D$, the wavelength of $P(l)$ is $2675 \AA$ and of $P(7)$ is 2683 A. (page 47

$\mathrm{OH}(0.8) \mathrm{BAND}$

Chapter $V-$ Spin splittirg in the $C^{2} \Sigma^{+}, B^{2} \Sigma^{+}$, $A^{2} \Sigma^{+}$states.

The spin splitting constant X is calculated in this chapter for the C, B and A states. Contrary to the deduction by Czarny and Felenbok (1968) that X changes sign in the A state, evidence is presented that it is positive throughout. The relative size of γ in each state is discussed.

The line strengths of the branches of a ${ }^{2} \Sigma \rightarrow^{2} \Sigma$ have been given (II - 6). According to these formulas the P_{1} and R_{1} spin components have a greater intensity than the P_{2} and R_{2} components, the difference being more noticeable at low $J^{\prime \prime}$. This criterion was used to pick the R_{1} and P_{1} components from the R_{2} and P_{2} components in the $(0,9)$ band of the $C \rightarrow A$ system of $O H$, where the intensity of the P_{1} components is consistantly greater than that of the P_{2} components. See Plate IV *. However in the (1,9) band of the $C \rightarrow A$ system of $O H$, the P_{1} component is more intense than the P_{2} component excent in $P(2)$ and P (3). In the $B \rightarrow A$ system, the same conflicting evidence is found. In the (0,8) transition, discussed also by Czarny and Felenbok (1968), the R branch indicated that the shorter wavelength spin component has greater intensity. However,

[^0]P (2) and P (5) have the opposite pattern. Moreover, P (6) and $R(4)$ have the longer wavelength spin component visibly perturbed, as they are much weaker than theoretically predicted. Equations (II - 8) represent poorly the intensity pattern observed both in the $C \rightarrow A$ and $B \rightarrow A$ systems. Fortunately another way was found which determined the sign of γ.

In the $(0,8)$ band of the $B \rightarrow A$ system of $O H$, the weak ${ }^{P} Q_{1 \lambda}(1)$ transition was found at the frequency predicted by the calculated value of γ for $v=8$, but at higher frequency than $P(1)$. This implies that in $v=8$ of $A^{2} \Sigma^{+} J=\frac{1}{2}$ is lower in energy than $J=3 / 2$ in the $N=1$ level (Fig. 4) and hence γ is positive. Czarny and Felenbok also observed the same ${ }^{P} Q_{12}(1)$ transition at higher frequency then $\mathrm{P}(\mathrm{I})$.

The $(0,6)$ and $(0,7)$ transitions in the $B \rightarrow A$ system of OH appeared broad and the spin components at low N's could not be resolved. However, at $N=5,6,7$ the spin components were resolved and the splitting is comparable to

* The assignment of the spin component in $(0,9)$ band of the $C \rightarrow A$ systems turns out to be the same as that already indicated.
that in $(0,8)$, implying that the magnitude of γ has not changed very much. The magnitude of γ in $v=4$ is also large, as measured from the sharp $(1,4)$ transition. Michel (1957) quotes γ in $v=6$ to be -0.02 , but he does not give the resolved spin components of the transtrons from which the value of γ was calculated. our results indicate that γ in $v=6$ is $\approx 0.18 \mathrm{~cm}^{-1}$. Unfortunately, no splitting in the $(0,5)$ nor $(1,5)$ transtions, both of which are broad, was observed. If there is a change in the sign of γ, which is unlikely, it would have to take place between $v=4$ and $v=6$. From the observation of the ${ }^{P} P_{12}(1)$ transition in $v=8, \gamma$ is positive in $v=8$ and is probably positive throughout the A state as shown in Fig. 7. In order to make the combinatron relations for the A state from the $C \rightarrow A$ and $B \rightarrow A$ systems agree with each other, the longer frequency components of the $C \rightarrow A$ transitions had to be associated with the F_{I} levels. γ has the same sign in the C state as it does in the A state.
$(V-I) \quad P_{1}(N)-P_{2}(N)=\left(\gamma^{\prime}-\gamma^{\prime \prime}\right) \quad N-\frac{1}{2}\left(\gamma^{\prime}+\gamma^{\prime \prime}\right)$
is plotted in Fig. 6 for the $(0,9),(1,9)$ and $(1,8)$ bands of the $C \rightarrow A$ system of $O H$. By similar plots, the γ 's
of most vibrational levels were obtained. The data from $O D$ in the $C \rightarrow A$ system is less accurate because the lines are broad.

The spin splitting constant can also be calculated from the combination relations, that is, (Herzberg, 1950) $(V-2) \quad \Delta_{2} F_{1}(N)-\Delta_{2} F_{2}(N)=2 \gamma$

Equation ($V-2$) gives very accurate values of γ in the C state because it is large in that state, and reasonably accurate values of γ in the A state.

All the measured spin splitting constants are given in table 10.

The variation of the spin-splitting constant is shown in Fig. 7. The minimum at high v's is real as is obvious from the different slopes of equation ($V-1$) for the (1,8) and $(1,9)$ bands of Fig. 6. According to Van Vleck (1929) the major contribution to the spin splitting in a ${ }^{2} \Sigma$ state arises from the non-vanishing magnetic moment of the electronic angular momentum due to rotational distortion. This splitting is proportional to $B / h \nu$ where B is the rotational constant and \mathcal{L} is the energy separation to the nearest ${ }^{2} \pi$ state. The experimental data at low v's bears out Van Vleck's theory, since

$$
\begin{aligned}
&\left.\frac{\gamma(v=0, O D)}{\gamma(v}=0, O H\right)=\frac{0.6}{1.09}=0.55 \\
&\left.\frac{\gamma(v=0, O D)}{\gamma(v}=0, O H\right) \frac{0.13}{0.23}=0.57 \\
& \frac{B(O D)}{B(O H)}=\rho^{2}=0.53
\end{aligned}
$$

Perhaps a more quantitative application of Van Vleck's theory can explain, not only the minimum observed in Fig. 7, but also the relative sizes of the γ in the A, B, and C, states. For example, in the A state, the B values decrease linearly up to $v=5$ by 30% (Fig. 9); in the same range, γ decreases by 25%. In the C state, the B value decreases linearly in going from $v=0$ to $v=3$ by only 6%; in the same range, γ decreases non-linearly by 45%.

Figure 6. Spin splitting in the F : branch of the $\mathrm{C} \rightarrow \mathrm{A}$ sustem of OH .

$$
A \rightarrow X
$$

3	0.19%
2	0.20%
1	0.21
0	0.22

B $\quad 1<0.03$

State	\checkmark	OD
C	0	0.6
A		$B \rightarrow A$
	12	0.11
	11	0.10
	10	0.08
	9	0.09
	8.	---
	7	---
	6	0.71
		$A \rightarrow X$
	1	$0.14{ }^{2}$
		-0.08
	-	

$\begin{array}{ll}1 & <0.05 \\ & 0\end{array}$

Table 10. Spin splittings constants, in cm^{-3}.
a. Michel's value is 0.67 .
b. Michel's value is 0.87 .
c. We lines of the $(0,6)$ and $(0,7)$ bends are broad and the spin components could not be resolved at low H. a $M=5,6,7$ the splittings observed vere comparable to those in the 10,31 band, indicating that γ in $\nabla \because 6$ and 7 is comparable in magnitude to that in $\mathrm{F}:=8$. see Fig. 2.
d. Whese are calculated from the data of pieke and Crosswhite (1948)
e. Calenlatel from the data of Uura and Ninomiya (1943)
f. Calculated from the data of 1shag (193?)

Chapter VI - Rotational Constants in the

$$
A^{2} \Sigma^{+}, B^{2} \Sigma^{+}, C^{2} \Sigma^{+} \text {states. }
$$

The rotational constants are found from the relationship (Herzberg, 1950)

$$
\begin{aligned}
(V I-1) & \frac{\Delta_{2} F_{1}-\gamma}{N+\frac{1}{2}}=\frac{\Delta_{2} F_{2}+\gamma}{N+\frac{1}{2}}= \\
= & \left(4 B-6 D+\frac{27}{4} H\right)+(-8 D+34 H)\left(N+\frac{1}{2}\right)^{2}+12 H\left(N+\frac{1}{2}\right)^{4}
\end{aligned}
$$

if γ is positive. Usually γ and H are so small that they are not included in the equation. The left hand side of equation (VI - 1), without the γ, is plotted against $\left(N+\frac{1}{2}\right)^{2}$ in Fig. 8 for the $v=10$ level of $A^{2} \Sigma^{+}$of $O D$. It was found that even at low $\left(N+\frac{1}{2}\right)^{2}$ values the correction due to the X could not be noticed in the Figure. For the C state where γ is very large, it was found that the correction is demantatory in order to make any sense of the curves obtained. Fig. 8 shows the necessity of a three term expansion of the rotational energy in $v=10$ of $A^{2} \Sigma^{+}$ of $O D$ since the last six points deviate considerably from the straight line.
$(V I-2) \quad F(N)=B N(N+1)-D \cdot N^{2}(N+1)^{2}+H N^{3}(N+1)^{3}$

The rotational constants of the A, B, and C states are given in table 11 and are plotted in Fig. 9.

Assuming that for the C state,
(vI - 3) $\quad B_{v}=B_{e}-\alpha_{e}\left(v+\frac{1}{z}\right)$
then $B_{e}=4.247 \mathrm{~cm}^{-1}$ and $\alpha_{e}=0.078 \mathrm{~cm}^{-1}$. Testing the isotopic relations in the C state,

$$
\frac{B_{c}(O D)}{B_{0}(O H)}=\frac{2.25}{4.213}=0.534 ; \rho^{2}=0.529
$$

The agreement is excellent. The B_{e} value of $0 H$ gives $\Omega_{e}=2.048 \stackrel{\circ}{\mathrm{~A}}$.

OH					OD				H
State	∇	B	D	H	Stste		B	D	
c	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{a}{4.146} \\ & 4.213 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$		C	0	2.25		
$\begin{aligned} & \mathrm{B}_{e}=4.247 \mathrm{~cm}^{-1} ; x_{2}=0.078 \mathrm{~cm} \\ & r_{2}= 2.048 \mathrm{~A} \\ & \frac{\mathrm{~B}_{0}(O D)}{\mathrm{B}_{0}(\mathrm{OH})}=\frac{2.25}{4.213}=0.534 ;{ }^{2}=0.529 \end{aligned}$									
B		$\begin{aligned} & 4.319 \\ & 5.086 \end{aligned}$	$\begin{aligned} & 2.91 \\ & 0.929 \end{aligned}$	15	B	2 1 0	$\begin{aligned} & 1.947 \\ & 2.445 \\ & 2.745 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 0.448 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.12 \end{aligned}$
A		5.888	8.63	30		13	2.44		
	8	8.342	4.94			12	3.682	4.27	12．2
	7	10.09	3.41			11	4.566	1：33	0.74
	6	11.44.	2.65			10	5.239	1.04	0.30
		12.53	2.26			9	5.781	0.818	0.22
	4	$13.51{ }^{\circ}$	2.00		A	8	6.276	0.778	
		14.222	$2.00^{1 /}$			7	6.658	0.613	
	2	15.287	2.06			6	7.046	0.644	
	1	16.129	2.03			3	8.068	0.55	
	0	16.916	2.04			2	8.393	0.55	
						1	8.714	0.54	
						0	9.037	0.55	

Table In．Rotational constants，in cm^{-1} ；the D values are multiplied by 10^{+3} snd the $⿴ ⿱ 冂 一 ⿱ 一 一 厶 儿$ values by -10^{+i} ．
a．Michel＇s value is 3．96．
b．Michel＇s value is 4.12 ．
c．From a stuay of the $A^{2} \Sigma^{+} \cdots x^{2} \pi$ system，this value is 13.194.
d．The rotational constants in the $A^{2} \leq^{+}$state for $\nabla=0,1,2,3$ ，in $O H$ and $O D$ ，are taken from Barrow （1956）

Figure 9. Rotational constants in the $A^{2} \Sigma^{+}$state. Whe D values are multiplied by 10^{-3} and $\overline{\text { i }}$ by -10^{-6}.

Chapter VII - Dispersion Humps in the $A^{2} \Sigma^{+}$and $B^{2} \Sigma^{+}$States and the Dissociation Energy of OH
(a) Vibrational Quanta of $A^{2} \Sigma^{+}$

The vibrational quanta were calculated by taking combination differences between corresponding lines of two bands having the same upper state, that is, (Herzberg, 1950):

$$
\text { (VII - 1): } \begin{aligned}
& \quad R_{v^{\prime} v_{1}^{\prime \prime}}(N)-R_{v^{\prime} v_{2}^{\prime \prime}}(N)=P_{v^{\prime} v_{1}^{\prime \prime}}(N)-P_{v^{\prime} v_{2}^{\prime \prime}}(N) \\
= & G^{\prime \prime}\left(v_{2}^{\prime \prime}\right)-G^{\prime \prime}\left(v_{1}^{\prime \prime}\right)-\left(B_{v_{i}^{\prime \prime}}-B_{v_{2}^{\prime \prime \prime}}\right) i v(N+1)+\cdots
\end{aligned}
$$

Greater accuracy was obtained by adding to the combination differences ($\left.\bar{B}_{V_{1}^{\prime \prime}}-\bar{B}_{V_{2} \prime \prime}\right) N(N+1)$, where \bar{B} indicates the B value as obtained from the combination relations, and plotting the resulting value against $N(N+1)$. A typical plot is shown in Fig. 10, where $\Delta G(8,5)$ is obtained from the $C \rightarrow A$ system. The vibrational quanta are given in tables 12 and 13, together with their experimental values.
(b) Dissociation Energy of $A\left({ }^{2} \Sigma^{+}\right)$.

In Fig. 1l, the experimental values $\Delta G\left(v+\frac{1}{2}\right)$ for the $A\left(^{2} \Sigma^{+}\right.$) state of $O H$ and $O D$ are plotted against v. $\Delta G\left(v+\frac{1}{2}\right)=G(v+1)-G(v)$.

Figure 10. A plot of equation (VII-l) for the (1,9) and $(1,8)$ bands of the $C \rightarrow A$ system, thus giving $\Delta G(8.5)$ of the $A^{2} \Sigma^{+}$state.

Iableli2. $D^{0}\left(A^{2} Z^{+}\right)$for $O H$.
a. Taken from Barrow (1956)
b. Calcalated $\triangle G$.

\bigcirc	c	d	e
0	3084.08	3083.71	3086.28
1	-189.316	-188.311	-196.559
2	-4.07045	-1.79355	3.06261
3	0.941340	1.14894	-2.09695
4	-0.176504	-0.202176	0.451410
5		$0.6011 \leq 100$	-0.0619602
6			0.00233708

v	$\Delta G\left(\nabla \div \frac{1}{2}\right)$	$\Delta G($ experimental $)-\Delta G($ calculated $)$
	experimental	M
		$\therefore 4^{c} 5^{d} 6^{e}$
0	$2214.6{ }^{\circ}$	$\begin{array}{rrrr} & 0.1 & 0.1 & 0.0\end{array}$
1	2111.5^{a}	$\begin{array}{lll}-0.3 & -0.3 & 0.0\end{array}$
2	2007.5 ${ }^{\text {a }}$	0.200 .20 .0
3		$1900.91901 .01901 .6^{\text {b }}$
4		$1791.91792 .01792 .6^{\text {b }}$
5		$1678.61678 .71678 .9{ }^{\text {b }}$
6	1588.3 ± 0.5	-0.1 -0.1 0.0
7	1427.9 ± 0.5	$0.2 \quad 0.2 \quad 0.3$
8	1281.5 ± 0.3	$-0.7 \quad 0.3-0.7$
9	1117.4 50.3	0.7 0.8 0.6
10	924.8 ± 0.2.	-0.1-0.1 -0.2
11	699.8 ± 0.3	-0.2 -0.2 0.0
12	433.9 ± 0.5	$0.1 \quad 0.1 \quad 0.0$
13	133.9 0.5	217.7117 .3 120.4 ${ }^{\text {b }}$
		13.832 13.83113 .845 v-intercept
		$192601926019264 \mathrm{D}^{\circ}\left(\mathrm{cm}^{-1}\right)$

Table 13. $D^{0}\left(A^{2} \Sigma^{+}\right)$for $O D$.
a. Faken from Barrow (1.956)
b. Calculated $\triangle G$.

Figure 11. $\Delta G\left(v+\frac{1}{2}\right)$ vs for the $A^{2} \Sigma^{\top}$ state of $O H$ and $O D$. The area under each curve from $v=$ 0 to the v-intercept is $D^{0}\left(A^{2} \Sigma_{0}^{+}\right)$.

The area under a curve from $v=0$ to the v - intercept is the d issociation energy D^{0} of that state.* The area was obtained by fitting polynomials
(VII-2)

$$
\Delta C\left(v+\frac{1}{2}\right)=\sum_{i=0}^{M} C_{i} v^{i}
$$

and performing the integration. The results of the integration are given in tables 3 and 4 for $M=4,5,6 .{ }^{+}$

When the $\Delta G\left(v+\frac{1}{2}\right)$ were increased by adding to each their experimental values, D^{0} was increased by no more than $3 \mathrm{ca}^{-1}$ in each integration. Similarly, with the $\Delta G\left(v+\frac{1}{2}\right)$ each decreased by the experimental error, D° decreased by no less than $3 \mathrm{~cm}^{-1}$ in each integration. The major error in establishing $D^{0}\left(A^{2} \Sigma^{+}\right)$arises from the extrapolation of the curves of Fig. Il, beyond the last observed experimental point. The polynomial fitting and the integration were done by computer, and double precision was used to remove roundoff errors. All the $D^{\circ}\left(A^{2} \Sigma^{+}\right)$values in tables 3 and 4 converge to a value with a spread of $\pm 7 \mathrm{~cm}^{-1}$ in 0 OH and

[^1]$\pm 3 \mathrm{~cm}^{-1}$ in $O D$. Moreover, the values of the dissociation energy $D^{\circ}\left(X^{2} \Pi_{3 / 2}\right.$) for $O H$ as obtained from the $O H$ data and $O D$ data are in excellent agreement (following section). Assuming that the potential curve of the $A^{2} \Sigma^{+}$state behaves "normally" beyond the last observed vibrational level, the accuracy of the extrapolation of the $O H$ curve is $10 \mathrm{~cm}^{-1}$ or better, and of the $O D$ curve it is $5 \mathrm{~cm}^{-1}$ or better. We judge a conservative error on $D^{\circ}\left(A^{2} \Sigma^{+}\right)$of $O H$ to be ± 15 cm^{-1}.
(c) Energy levels in OH and OD

To facilitate discussion, the energy of the vibrational levels in OH and OD are given in table 14. The $J=1 \frac{1}{2}$ level of $v=0$ of $X\left(\Pi_{3 / 2}\right)$ of $O H$ is taken as 0.0 (all units in cm^{-1}). The P_{1} (1) transition of the $A \rightarrow X$ system of OH is 32440.6 (Dieke and Crosswhite, 1948). The dissociation limit of $A^{2} \Sigma^{+}$of OH is then 51287.6 ± 15, from table 14. Taking the dissociation limit of $A^{2} \Sigma^{+}$of $O H$ and $O D$ to be coincident, from table14, the $v=0$ level of $A^{2} \Sigma^{+}$of $O D$ is 32024.6 . The $P_{1}(1)$ transition of the $A \rightarrow X$ system of $O D$ is 32528.5 (Ishaq, 1937) and the $J=1 \frac{1}{2}$ level of $v=0$ of $\mathrm{X}^{2} \Pi_{3 / 2}$ of $O D$ is - 503.9.

The difference in energy of the $\mathrm{V}=0$ levels of OH and $O D$ in the $X\left({ }^{2} \Pi_{3 / 2}\right)$ state comes from the different vibrational frequencies of the two molecules and from the zero point correction (Dunham, 1932). The total difference is calculated to be 498.1 (Appendix III). This is in excellent agreement with the experimental value (503.9 ± 15). The minima of the potential curves of OH and OD are not expected to coincide because of electronic isotope shifts. Bunker (1968) calculates these shifts to be of the order of $5 \sim 10 \mathrm{~cm}^{-1}$. *

[^2]

Table 14. Energy values (cm^{-1}) of the vibrational levels. The dissociation limit:of the a state is calculated from the ΔG^{\prime} 's of that state. The dissociation limi of the X, B, C, states is deduced from atomic data.

The energy separations $O\left({ }^{\prime} D\right)-O\left({ }^{3} P_{z}\right)$ and $O\left({ }^{\prime} S\right)$ O ('D) are well known (Moore, 1952). (Fig. 12) The calculated dissociation limit of $\mathrm{O}(\mathrm{s})+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)$, ie. OH $\left(\mathrm{B}^{2} \Sigma^{+}\right)$, is 69212.3 ± 15 and that of $0\left({ }^{3} \mathrm{P}_{2}\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)$ is $35 \mathrm{~A} 19.9 \pm 15$. The dissociation limit D° of the hydroxyl radical is the difference between $J=1.5$ in $v=0$ of $\mathrm{X}^{2} \Pi_{3 / 2}$ and the dissociation limit $0\left({ }^{3} P_{2}\right)+H\left({ }^{2} S\right)$ which is (35419.9 ± 15) cm^{-1}. ${ }^{+}$

+ A slightly better value could be obtained if the electronic of $O D$ could then be used exclusively.

Higure 12. Atomic data used to calculate $j^{0}\left(X^{2} \Pi\right)$. the vjbrational levels observed in OH are also shown.
(d) Dissociation Energy of $B^{2} \Sigma^{+}$State

For the B state, the experimental vibrational quanta are, for $0 \mathrm{H}, \Delta G(0.5)=659.7 \mathrm{~cm}^{-1}$ and for $0 D, \Delta G(0.5)=$ $546.9 \mathrm{~cm}^{-1}$ and $\Delta G(1.5)=357.9 \mathrm{~cm}^{-1}$. For a three term expantion of the vibrational energy, that is

$$
G(v)=w_{e}\left(v+\frac{1}{2}\right)-u_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+w_{e} y_{e}\left(v+\frac{1}{x}\right)^{3}
$$

then

$$
c(v+1)-G(v)=w_{e}-w_{e} x_{e}(2 v+2)+w_{e} y e\left(3 v^{2}+6 v+13 / 4\right)
$$

Using the isotopic relations, one must solve

$$
\begin{aligned}
& 659.7=w_{e}-2 w_{e} x_{e}+3.25 w_{e} y_{e} \\
& 546.9=\rho w_{e}-2 \rho^{2} w_{e} x_{e}+3.25 \rho^{3} w_{e} y_{e} \\
& 357.9=\rho w_{2}-4 \rho^{2} w_{e} x_{e}+12.25 \rho^{3} w_{e} y_{e}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
w_{2} & =976.5 \mathrm{~cm}^{-1} \\
w_{e} x_{e} & =109.3 \mathrm{~cm}^{-1} \\
w_{e} y_{e} & =-20.99 \mathrm{~cm}^{-1}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \Delta G^{O D}(2.5)=119.7 \mathrm{~cm}^{-1} \\
& \Delta G^{O H}(i .5)=252.2 \mathrm{~cm}^{-1}
\end{aligned}
$$

To find the v intercept of the $\Delta G(v)$ curve, one needs to solve

$$
\frac{d G}{d v}=0=w_{e}-2 w_{e} x_{e}\left(v_{0}+\frac{1}{2}\right)+3 w_{e} y_{e}\left(v_{0}+\frac{1}{2}\right)^{3}
$$

which gives

$$
v_{0}=2.512
$$

The dissociation energy D^{e} of the $B^{2} \Sigma^{+}$state is then $D_{e}=w_{e}\left(v_{c}+\frac{1}{2}\right)-w_{e} x_{e}\left(v_{c}+\frac{1}{2}\right)^{2}+w_{e} y_{e}\left(v_{c}+\frac{1}{2}\right)^{3}=1355 \mathrm{~cm}^{-1}$

It is difficult to assess the error, since the $B^{2} \Sigma+$ state is very shallow and the isotope relations were invoked.

Predissociation by rotation ${ }^{*}$ has been reported by Felenbok (1963) for the $B^{2} \Sigma^{+}$state of $0 H$, who determined the dissociation energy of the B state to be $1315 \mathrm{~cm}^{-1}$. Felenbok gives convincing evidence that $N=15$ is the last rotational level of the $v=0$ state. He did not see the same sudden drop in intensity for the $v=1$ level and assumed that $N=8$ is the last rotational level in $V=1$ as he saw no more levels. We have seen $N=9$ in $v=1$ and assuming that this is the last rotational level, the limiting curve of dissociation gives an apparent $D^{e}\left(B^{2} \Sigma^{+}\right)=1360 \mathrm{~cm}^{-1}$. This value agrees extremely well with that obtained by the $\Delta G(v)$ method.

The limiting curve of dissociation has been redrawn in Fig. 13 with the energy measured from the $v=0$ of the $X\left({ }^{2} \prod_{3 / 2}\right)$ state of $0 H$. This procedure has the advantage

[^3] $\frac{p^{2}}{2 z^{2}}=\frac{p^{2}}{2 \mu z_{e}^{2}}\left(1+\frac{\xi}{R_{e}}+\cdots\right)$ in equation (II-2). Herzberg (1950) discusses predissociation by rotation and the limiting curve of dissociation in great detail.
that the error in establishing the $\mathbf{v}=0$ level relative to the minimum of the $B^{2} \Sigma^{+}$state is absent. From Felenbok's data F (15) in $v=0$ is $1165.2 \mathrm{~cm}^{-1}$ and from our data, F (9) in $v=1$ is $347 \mathrm{~cm}^{-1}$. F (16) in $V=0$ is calculated to be $1312.7 \mathrm{~cm}^{-1}$ and $F(10)$ in $v=1$ is calculated to be $417 \mathrm{~cm}^{-1}$.

The dissociation limit of the $B^{2} \Sigma^{+}$state is found from Fig. 13 to be $69323 \mathrm{~cm}^{-1}$. A lower limit, from Fig. 13 is $69265 \mathrm{~cm}^{-1}$. Far comparison, from table 14, the dissociation limit of the $B^{2} \Sigma^{+}$state is calculated to be (69212 $\pm 15) \mathrm{cm}^{-1}$, from the $\Delta G \mathrm{vs} \mathrm{v}$ curves of Fig. 11.

Figure 13. The limiting curve of dissociation for the $B^{2} \Sigma^{+}$state of $O H$. The energy is measured from $v=0$ of $X^{2} \pi_{3 / 2}$.

(e) Discussion

The dissociation energies $\mathrm{D}^{\circ}\left(A^{2} \Sigma^{+}\right)$of $O H$ and $O D$ as calculated from the areas under the curves of Fig. 11 predict the dissociation energy $D^{\circ}\left(X^{2} \Pi_{3 / 2}\right)$ of OH to be $(35420 \pm 15) \mathrm{cm}^{-1}$.

The dissociation limit of the $\mathrm{B}^{2} \Sigma^{+}$state is similarly deduced to be $(69212 \pm 15) \mathrm{cm}^{-1}$ above $v=0$ in $X\left({ }^{2} \Pi_{3 / 2}\right)$ of OH . Direct calculation of the dissociation limit of $B\left({ }^{2} \Sigma^{+}\right)$is $69323 \mathrm{~cm}^{-1}$ and our estimates of error do not reduce this value to the deduced value. That this discrepancy is not due to errors can further be seen from table 14, where $V=2$ in the $B^{2} \Sigma^{+}$state of $O D$ is extremely close to the deduced dissociation limit of the $B\left(^{2} \Sigma^{+}\right)$state and we have seen $N=9$ in this $v=2$ level, which lies $159 \mathrm{~cm}^{-1}$ above $\mathrm{N}=0$. Either the extrapolation of the curves of Fig. 11 does not follow the dashed portions, or dispersion humps are, causing the discrepancy. Since $v=13$ in $A\left(\Sigma^{2}\right)$ state of $O D$ is only $114 \mathrm{~cm}^{-1}$ from the expected dissociation limit of $\mathrm{A}\left({ }^{2} \Sigma^{+}\right)$ and $v=9$ in $O H$ is $272 \mathrm{~cm}^{-1}$ from the same limit, and D° ($A^{2} \Sigma^{+}$) of $O H$ and $O D$ both predict $D^{\circ}\left(X^{2} \Pi_{3 / 2}\right)$ of $O H$ to such a good agreement, we cannot believe the first
alternative. It is quite possible that the dispersion hump in the $B\left({ }^{2} \Sigma^{+}\right)$state is about $100 \mathrm{~cm}^{-1}$ larger than that in the $A\left({ }^{2} \Sigma^{+}\right)$state. *

We have no way of knowing how large the hump in the $A\left({ }^{2} \Sigma^{+}\right)$state is. Assuming that the dissociation energy of the A state is given correctly by the area under the ΔC curves of Fig. 11, an upper bound to the dissociation energy of the ground state of OH is $(35420 \pm 15) \mathrm{cm}^{-1}$. The true dissociation energy is less by an amount equal to the height of the dispersion hump of the $A\left(\Sigma^{2}\right)$ state.

The slope of the limiting curve of dissociation predicts the maximum value of the hump in the $B^{2} \Sigma^{+}$of OH state at an internuclear distance of 3.8 A.

* Kolos and Wolniewicz (1965) have calculated a dispersion hump of height $105 \mathrm{~cm}^{-1}$ at $\Omega=4.75 \AA$ in the ${ }^{\prime} \Pi_{g}$ state of H_{2}.

Chapter VIII - Vibrational constants of $C\left({ }^{2} \Sigma^{+}\right)$ and $B\left({ }^{2} \Sigma^{+}\right)$

In the investigation of the C state, a vibrational level was found below the one labelled $v=0$ by Michel (1957). In this section, proof is given through the isotopic relations that the v numbering in the C state as given here, is correct and that Michel actually observed that $(1,8),(1,7),(1,6),(3,7)$ and $(3,6)$ transitions of the $\mathrm{C} \rightarrow \mathrm{A}$ system of OH .
(a) Vibrational Constants of the C state.

The measured $\Delta C(0.5)$ of $O H$ is $1194.7 \mathrm{~cm}^{-1}$. Michel measured $\Delta G(1.5)+\angle G(2.5)=2275 \mathrm{~cm}^{-1}$. With these values, $\omega_{2}=1232.9 \mathrm{~cm}^{-1}$ and $u_{e} x_{2}=19.1 \mathrm{~cm}^{-1}$. Using the isotopic relations it is straight forward to calculate $G(0)$ both for $O H$ and $O D$ and the Dunham zero point corrections, (Appendix III). Since the $v=0$ energy are known, table 14, it is found that the energy of the minimum of the potential is $(87650 \pm 15) \mathrm{cm}^{-1}$ for OH and (87668 ± 15) cm^{-1} for $O D$. The agreement is quite good. *

[^4]The next ${ }^{2} \Sigma^{+}$state allowed by the Wigner-Witmer rules beyond the $B^{2} \Sigma^{+}$state is $O\left(^{3} P\right)+H\left({ }^{7} P\right)$, arising from the configuration $0\left(1 s^{2} 2 s^{2} 2 p^{4}\right)+H(2 p)$. The dissociation limit of this state lies $82259 \mathrm{~cm}^{-1}$ above the dissociation limit of the ground state of OH (Moore, 1952). Since terms of like species cannot cross and taking the state dissociation energy of the ground Λ given in Chapter VII, $D^{\circ}\left(C^{2} \Sigma^{+}\right)=(29418 \pm 15) \mathrm{cm}^{-1}$.
T_{e} for the $\mathrm{C}^{2} \Sigma^{+}$state of OH is obtained by adding to $87650 \mathrm{~cm}^{-1}, G(0)$ and Yoo of the ground state. $T_{e}=$ (89500) cm^{-1}.

The electronic energy level of OH including the C state is given in Fig. 14. The identification of the C state with atomic states has always been debated (Barrow, 1956), Michel (1957). There is now no doubt about the Te value of the C state. Some ${ }^{2} \Sigma^{+}$states allowed by the Wigner-Witmer rules beyond. $\mathrm{B}^{2} \Sigma^{+}$are $O\left({ }^{3} \mathrm{P}\right)+\mathrm{H}\left({ }^{2} \mathrm{P}\right)$ arising from the $O\left(1 s^{2} 2 s^{2} 2 p^{4}\right)+H(2 p), O(D)+H\left(^{2} S\right.$) arising from $O\left(1 s^{2} 2 s^{2} 2 p^{4}\right)+H(2 s), O(D)+H\left({ }^{2} P\right)$ from $O\left(1 s^{2} 2 s^{2} 2 p^{4}\right)$ $+H(2 p), O\left({ }^{\prime} s\right)+H\left({ }^{2} s\right)$ from $O\left(1 s^{2} 2 s^{2} 2 p^{4}\right)+H(2 s)$, and possibly $\mathrm{O}^{-}+\mathrm{H}^{+}$or $\mathrm{O}^{+}+\mathrm{H}^{-}$. The energy of these states above $\mathrm{v}=0$ of $\mathrm{X}\left({ }^{2} \Pi_{3 / 2}\right)$ of OH is $117678 \pm 15,133546 \pm 15$,
$133546 \pm 15, \quad 133227 \pm 15, \quad 133267 \pm 40$ and 138984 ± 160 cm^{-1} respectively. The election affinity of oxygen is (1.465 ± 0.005) ev (Branscomb et al. 1958) and that of Hydrogen is (0.77 ± 0.02) ev (Weisner and Armstrong, 1964). Michel correlated the C state with $\mathrm{O}^{-}+\mathrm{H}^{+}$. This may be so, but because of the non-crossing rule, the dissociation limit of the C state is $O\left({ }^{3} \cdot P\right)+H\left({ }^{x} P\right)$.

It is interesting to note that $\Delta G\left(v+\frac{1}{2}\right)$ vs v curve for the C state has positive curvature, rather than the usual negative curvature of Fig. 11. The dissociation limit of the C state by linear extrapolation is

$$
D^{e}=\frac{\omega_{2}^{2}}{4 \omega_{e} x_{e}}=19900 \mathrm{~cm}^{-1}
$$

but D° has already been given as $(29418 \pm 15) \mathrm{cm}^{-1}$.
(b) Vibrational Constants of the B state.

The B state is very shallow, in fact only two levels have been seen in OH and 3 in OD . With the help of the isotopic relations and using all the observed vibrational quanta of the B state, it has been found in Chapter VII (d), that

$$
\begin{aligned}
w_{e} & =946.5 \\
u_{e} x_{e} & =109.3 \mathrm{~cm}^{-1} \\
w_{e} y_{e} & =-20.99 \mathrm{~cm}^{-1}
\end{aligned}
$$

Although these constants reproduce the observed $\Delta G\left(v+\frac{1}{2}\right)$ exactly, they predict, for example, $\Delta G(1.5)$ for $O H$ to be $272.2 \mathrm{~cm}^{-1}$. The energy of the $v=2$ level of OH would be $69318 \mathrm{~cm}^{-1}$, which very likely does not exist (table 14). In view of this awkward situation, the meaning of the vibrational constants of the C state is not very clear.

Figure 14. Observed bound states of the hydroxyl radical.

Chapter IX - A Strong Predissociation in the $A^{2} \Sigma^{+}$ State of OH

(a) Gaydon Predissociation

A weak predissociation in the $A^{2} \Sigma^{+}$state of OH was first detected by Gaydon and Wolfhard (1951). These investigators found that in the $A \rightarrow X$ system, the intensity of the transitions originating in the $V=1$ level of $A^{2} \Sigma^{+}$ become abnormally weak beginning at $J^{\prime}=22 \frac{1}{2}$. They found the same weakening of intensity for all the levels in $v=2$. Charton and Gaydon (1958) have later found that the $v=3$ levels is also affected by the weak predissociation. Naegeli and Palmer (1967) have found that all the levels beyond $J=29 \frac{1}{2}$ in the $v=0$ level are affected by the predissociation too. Naegeli and Palmer (1968) have also studied the predissociation in OD. This predissociation at low v's, henceforth referred to as "weak predissociation" or "Gaydon predissociation" is characterizedr by the fact that the levels with $J=N+\frac{1}{2}$ are affected more than those with $J=N-\frac{1}{2}$. To explain this fact Gaydon proposed the theory that a slightly attractive ${ }^{2} \Sigma^{-}$ state is responsible for the predissociation. This theory is shown in \cdots Figure 15. Because of the strict

Figure 15. Gaydon Predissociation
selection rules $\Delta J=0$ and the parity must be same, the only way that the F_{1} level can be predissociated more than the F_{2} level is that the ${ }^{2} \Sigma$ - is repulsive.

The lifetime of the $V=0$ level of $A^{2} \Sigma^{+}$of $O H$ is 0.99×10^{-6} seconds (Bennett and Dalby, 1964). Since the Gaydon predissociation in the $A^{2} \Sigma^{+}$state was detected through small intensity changes, the lifetime of the $\nabla=1,2,3$ levels cannot be too much different from 10^{-6} seconds. The Gaydon predissociation is thus weak.

In summary, the characteristics of the Gaydon aredissociation are the following:
(I) it sets in near $v=2$ in OH
(2) one of the spin components is effected more than the other
(3) it is weak
(b) Strong Predissociation

Regarding the predissociation at high v's reported in this work, it was detected through broadening of the rotational transitions. The "average" full width at half maximum is $0.6 \mathrm{~cm}^{-1}$. From the Heisenberg relation

$$
\Delta E \cdot \Delta t \approx h
$$

the average lifetime of the predissociated levels is \approx 10^{-11} seconds. The predissociation at high v's is thus strong.

Plate III shows the $(0,8)$ and $(0,7)$ transitions of the $B \rightarrow A$ system of $O H$. Since these transitions begin in the same upper state, the predissociation occurs in the lower state. The line broadening cannot be due to thermal broadening, Stark broadening, nor collissional broadening because some of the OH lines appear sharp and others do not.

The molecular H_{2} lines identified also appeared sharp. The broadening due to these effects is calculated in Appendix V.

It was found that the variation in half-width is very different from band to band. In the $(0,8)$ and $(0,11)$ bands of $O D$, the transitions begin broad, but become very sharp at high. N. The very opposite is true in the $(0,9)$ band. In $(0,10)$, the transitions are broad at first, then sharp, and then broad again. These results are summarized in Fig. 17 and 18. In each of these Figures, the black dots refers to an unresolved P transitions, the circles to R transitions. The large dots refer to spin unresolved components, the small dots to spin-resolved components. The dotted lines were obtained by subtracting the calculated spin splitting from the unresolved transitions.

In contrast to the Gaydon predissociation, both spin components are equally affected, with ${ }^{\text {cill }}$ our experimental error.

The maximum half-width of the rotaional levels within a vibrational state is plotted in Fig. 19. The strong predissociation becomes detectable between $v=6$ and 7 in OD, which is about $13,500 \mathrm{~cm}^{-1}$ above the minimum of the $\mathrm{A}^{2} \Sigma^{+}$ state. Fig. 19 should be taken for its qualitative features

Figure 17. Variation of the full width at half maximum of the rotational levols of $v=10$ of $A^{2} \Sigma^{t}$ in OD. The linear extrapolation at low N values was obtained by subtracting the caloulated spin doubling from the unresolved P ana R transitions.
half width

Figure 19. The maximum full width at half maximum of the rotational levels within a band. Lhe predissociation sets in at about $18 b 00 \mathrm{~cm}^{-1}$ ebove the miminum of the $A^{2} \Sigma^{+}$state. Czarny and Felenbok (1968) have observed that $\mathrm{v}=8$ in OH is also predissociated.

half width $\left(\mathrm{cm}^{-1}\right)$

only. Since the data for $O D$ bands comes for 20 transitions in each band and that of OH from 7 transitions only, and since the half breadth is strongly dependent on N, the two curves would probably look more alike if more transitions had been seen in OH .

The observed facts regarding the strong predissociation can be summarized as follows:
(1) it is strong
(2) it becomes detectable between $v=6$ and 7 in $O D$
(3) the predissociation shows definite dependence on the rotation
(4) within the accuracy of the experimental error, both spin components are equally broad.
(c) Reconciliation with theory

Present theory pertaining to predissociations can be summarized as follows
(1) According to the Wigner-Witmer rules when $0\left({ }^{3} \mathrm{P}\right)$ and $H\left({ }^{2} s\right)$ combine, the resulting states are $X^{2} \Pi,{ }^{4} \Pi$, $4 \Sigma, 2 \Sigma=$
(2) On the basis of selection rules for predissociation, interaction between $A^{2} \Sigma^{+}$and either of $4 \pi,{ }^{2} \Sigma^{-} 4 \Sigma^{-}$ leads to weak effect.
(3) Kovacs (1958) has calculated matrix elements for perturbations. Between ${ }^{2} \Sigma^{+}$states and ${ }^{2} \Sigma^{-},{ }^{4} \Sigma_{y}{ }^{4} \pi$ his calculations show no J dependence.
(4) The extent of predissociation depends on the overlap between the wave functions of the repulsive state and the bound state. The overlap is very sensitive to the vibrational state and to the effect of rotation. In apolying the se results, none of the ${ }^{4} \Pi,^{4} \Sigma^{-2} \Sigma^{-}$ can account for the strong predissociation observed at high vis.

Interaction between ${ }^{2} \Sigma^{+}$and ${ }^{2} \Pi$ leads to strong effects. If the ${ }^{2} \Pi$ comes from $O\left({ }^{1} D\right)+H\left({ }^{2} S\right)$, perhaps it is bound as shown in Fig. 16. Predissociation then occurs in two steps, first to the ${ }^{2} \Pi$ and then to the ${ }^{2} \Sigma^{-}$. It is also possible that the $x^{2} \Pi$ ground state comes sufficiently close to the A state near $v=5$ at high v's that predissociation takes place through the $x^{2} \Pi$ ground state. Fig. 17 and 18 show that the predissociation depends on the quanturn number N. If a ${ }^{2} \Pi$ is the predissociating state, a linear dependence on J is expected. Such an effect is not observed. Moreover it is not known what features of Fig. 18 are caused by the effect of
rotation on the amount of overlap.
Gaydon's theory that the ${ }^{2} \Sigma^{-}$is responsible for the predissociation at low v's is appealing. Conceivably his theory holds when the ${ }^{2} \Sigma^{-}$is repulsive and cuts the $A^{2} \Sigma^{+}$curve near $v=2$ at $R>r_{e}$. The same ${ }^{2} \Sigma^{-}$could then cut $A^{2} \Sigma^{+}$again near $v=5$ at $i<H_{e}$ causing the strong predissociation.

Recently Michels and Harris (1968) have calculated potential curves for $0 H$. They find that ${ }^{4} \Sigma^{-2} \Sigma^{-}$and 4π are all repulsive with ${ }^{4} \Sigma^{-}$cutting $A^{2} \Sigma^{+}$near $v=2,{ }^{2} \Sigma-$ near $v=3$ and ${ }^{4} \pi$ near $v=4$.

In summary, we have not been able to decide which state is responsible for the strong predissociation at high v's in the $A^{2} \Sigma^{+}$state, nor if both predissociations observed In the A state are cuased by the same state.

Michel (1957) observed a sudden decrease in intensity In the $(1,8)$ band of the $C^{2} \Sigma \xrightarrow{+} A^{2} \Sigma+$ system beginning at $N=9$ and suggested that a predissociation of the A state occurs near $v=8$. We agree with his findings for the $C \rightarrow A$ system and found the same effect in the $B \rightarrow A$ system. However, the same sudden intensity decrease remained in the $C \rightarrow A$ system when the bands were photographed on a much faster instrument than the high resolution. spectrograph, but many higher rotational levels appeared in the $B \rightarrow A$ system. Thus the intensity drop is due to the C state rather than the A state. Moreover the intensity distribution depends very much on the way OH is formed from water. Michel (1957) also formed OH from water. We thus recommend caution in the interpretation of these intensity anomalities. Referring to the $(0,8)$ band of $O H$ shown in Plate IIf, $R_{1}(4)$ or the longer wavelength component of $R(4)$ is weaker
than it should be, by comparison to the components of $R(3), R(5)$ and $R(6) ; R_{1}(5)$ appears fuzzy. $P_{1}(6)$ also also shows the abnormal intensity but the two components of $P(4)$ and $P(5)$ are quite normal. We are unable to explain these small perturbations, except that they are due to the upper, or B state.

Chapter $X-$ The $C^{2} \Sigma^{+} \rightarrow B^{2} \Sigma^{+}$System
The $C^{2} \Sigma^{+} \longrightarrow B^{2} \Sigma^{+}$System has never been observed previously, but its transitions can be predicted exactly from table 14. In fact the $(0,0)$ transition of the $C \rightarrow B$ was found and the frequencies are given on table 15. It is easy to verify from combination relations that the assignment is correct. The $(0,0)$ band of OH , although about 10 times weaker than the $(0,6)$ band of the $B \rightarrow A$ system, appears in a clean region and was quickly identified from its structure. The heads of other bands predicted by table 14 have been observed. Even the (1,1) band of the $O D$ system has been found at its predicted frequency. There is thus no doubt about the v numbering in the C state and about the position of the C state in the energy level diagram.

0	19865.75	
1	19871.20	19870.89
2	19876.51	19875.50
3	19879.70	19876.51
4	19881.96	19878.94

5

N	$\Delta_{2}^{\prime} F_{1}$	$\Delta \Delta_{i}^{\prime} F_{2}$
1	25.96	25.63
2	42.12	41.17
3	59.45	58.03
4	76.49	74.71

$P_{1} \quad P_{2}$
19845.24
19834. $39^{* *}$
19820.2519818 .48
19805.47 19804.23 ${ }^{+}$
19789.4319786 .31

$$
\begin{array}{cc}
\Delta_{2}^{\prime \prime} F_{1} & \Delta_{2}^{\prime \prime} F_{2} \\
31.36 \\
50.95 & 52.41 \\
71.04 & 71.33 \\
90.27 & 90.20
\end{array}
$$

*A hydrogen line occurs at the predicted value of the other P (2) component. The line quotod is probably $\mathrm{p}_{\mathrm{i}}(2)$.
This line blends with an iron standard line.

Table 15. The $(0,0)$ band of the $C^{2} \Sigma^{+} \rightarrow B^{2} \Sigma^{+}$system of OH .

Chapter XI - What now OH?

This chapter discusses problems which have arisen from the research on the $O H$ molecule and which are not resolved.

The exact size of the dispersion hum in the A state should be measured. This can be done by detecting predissociation by rotation in the $A^{2} \Sigma+$ state of OD. With just slightly more extensive data than that presented here, it is very possible to see this effect. The details are given in Appendix V. The same result can be obtained theoretically since the interactions are very well known and existing computer calculation of atomic wave functions are reasonably good.

The details of the predissociations described in Chapter IX also have to be explained by theory.

The excitation of the OH molecule is peculiar. The intensity of the transitions in the $B \rightarrow A$ system falls to very small, values beyond $N=8$ (Fig.III). . The calculated temperature of the OH molecules in the B state is well below room temperature. Excitation of $N>8$ have been observed in the $B \rightarrow A$ system on a faster instrument than the 3.4 meter spectrograph. Czarny and Felenbok (1968) have found the same intensity distribution. In the
$(0,6)$ band of the $B \rightarrow A$ system, they found that the rotational temperature is $130^{\circ} \mathrm{K}$ at low N and $350^{\circ} \mathrm{K}$ at high N. The temperature in the (0,0) transition of the $A \rightarrow X$ system has been measured by Carrington and Broida (1958) who obtained $T=669^{\circ} \mathrm{K}$ at low N and $\mathrm{T}=2760^{\circ} \mathrm{K}$ at high N and by Meinel (1967) who found $T=610^{\circ} \mathrm{K}$ at low N and $20800^{\circ} \mathrm{K}$ at high N. The intensity distribution in the $C \rightarrow A$ system (plate IV) seems to be qualitatively the same. In each of these cases the OH was produced from $\mathrm{H}_{2} \mathrm{O}$ and the peculiar intensity distribution may be a result of the mode of formation of OH . Although no quantitative results for $O D$ exist, from plate IV, the $C \rightarrow A$ system of $O D$ has qualitatively the same peculiar intensity pattern. In the $B \rightarrow A$ system of $O D$, the intensity drop is not noticeable until $N=20$.

Many closely spaced lines without any obvious structure have been observed" between $\cdots 3900 \AA^{\circ}$ and $4100 \AA$. The spec-" trum is different for the $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ sources. It is conceivable that these are transitions from the higher vibrational levels of the C state to the B state. The emitter of these lines is at present unknown.

The apparatus described in Chapter III with $\mathrm{H}_{2} \mathrm{O}$ as source should yield a rich spectrum of OH in the vacuum ultra-violet. By looking at Fig. 14 one cannot help but feel that there are other deeply bound states of of higher in energy than the C state. In any case, the $C \rightarrow A$ system will certainly appear (the tail end of it is reported here) and the $C \rightarrow X$ system will probably be observed too (Felenbok and Czarny, 1964).

One of the reasons for undertaking this project was to observe $\mathrm{H}_{2} \mathrm{O}^{+}$. Its spectrum is predicted to occur in the near infra-red. We have investigated up to $6500 \AA$ and have not seen it. It is very strange that the hollow cathode, which supposedly brings out spectrum of ions, failed to bring out the OH^{+}spectrum. We have observed the doubly ionized oxygen lines at $3754.697 \AA$ A, $3757.239 \AA$, and 3759. $871 \AA$, whose excitation energy is 36.5 eV . Other 0 III lines were also seen. We don't understand why the se $=\cdots$ highly excited lines from 0 III were observed, but OH^{+}lines, whose excitation energy $\approx 15 \mathrm{ev}$. were not observed. Perhaps a different source should be used to detect $\mathrm{H}_{2} \mathrm{O}^{+}$.

In the $B \rightarrow A$ and $C \rightarrow A$ systems, the lifetime of the löwer levels has been stiown to be $\approx 10^{-11}$ seconds, which is much shorter than that of the upper state. Population inversion, one of the conditions for lasing action, occurs naturally in these systems. It would be interesting to build a chemical OH laser.

BIBLIOGRAPHY

Barrett, A. H. 1967. Science. 157, 881.
Barrow, R. F. 1956. Ark. fur Fysik, 11, 281.
Bennett, R. G. and Dally, F. W. 1964. J. Chem. Phys. 40, 1914.
Born, M. and Oppenheimer, R. 1927. Ann. d. Physik, 84,457
Branscomb, L. M. et al. 1958. Phys. Rev. 111, 504
Bunker, R. R. 1968. Jour. Mol. Spec. 28, 422.
Carrington, T. and Broida, H. P. 1958. Jour. Mol. Spec. 2, 273.

Wharton, M. and Gaydon, A. G. 1958. Proc. Roy. Soc. (London) A $245,84$.

Coleman, C. D. et al. 1960 "Table of Wavenumbers" Vol. I. U.S. Dept. of Commerce. National Bureau of Standards.

Crosswhite, H. M. $1967 \mathrm{FF}_{\mathrm{e}}-\mathrm{N}_{\mathrm{e}}$ Hollow Cathode Standards". Unpublished.

Czerny, J. and Felenbok, P. 1968. Ann. Astrophys. 31, 141.

Dieke, G. H. and Crosswhite, H. M. 1949. "The ultra-violet bands of OH - Fundamental Data", Bumblebee series, report \#37, Nov. 1948.

Dunham, J. L. 1932. Phys. Rev. 41, 721.
Felenbok, P. 1963. Ann. Astrophys. 5, 393.
Felenbok, P. and Czerny, J. 1964. Ann. Astrophys.
Gaydon; A. G. and Wolfhard, H. G. 1951. Proc. Roy. Soc. A 208, 63.

Herzberg, G. 1950. "Spectra of Diatomic Molecules", Van Nostrand Co., Inc.

Ishaq, M. 1937. Proc. Roy. Soc. A 159, 110.
Kolos, W. and Wolniewicz, L. 1965. Jour. Chem. Phys. 43, 2429

Kovacs, I. 1958. Can. J. Phys. 36, 309.
Landau, L. D. and Lifshitz, E. M. 1965. "Quantum Mechanics -non-relativistic Theory", Pergamon Press.

London, F. 1937. Trans. Far. Soc. 33, 8.
Meinel, A. B. 1950. Astrophys. J. 111, 555.
Meinel, H. 1967. Z. Naturforsch, 22a, 977.
Michel; A. 1957. Z. Naturforsch. 12a, 887°
Michel, H. H. and Harris, F. E. 1968. Int. J. Quant. Chem. Vol. II s, 21.

Moore, C. E. 1952. "Atomic Energy Levels" Vol. I, Circular 467, U. S. Dept. of Commerce, National Bureau of Standards.

Naegeli, D. W. and Palmer, H. B. 1967. J. Mol. Spec. 23, 44.

Our, H. and Ninomiya, M. 1943. Proc. Phys. Math. Soc. Japan, 25, 355.

Palmer, H. B. and Naegeli, D. W. 1968. J. Mol. Spec. 28,
Stone, J. M. 1963. "Radiation and Optics", McGraw Hill Book Co., Inc., 260.

Tanka, T. and Koana, Z. 1934. Proc. Phys. Math. Soc. Japan, 16, 365.

Tomkins, F. S. and Fred, M. 1951. J. Opt. Soc. Amer. 41, 641.

Van Vleck, J. H. 1929. Phys. Rev. 33, 467.
Weisner, J. D. and Armstrong, B. H. 1964. Proc.
Phys. Soc. (London) 83 , 31.
Wigner, E. and Witmer, E. E. 1928. Z. Phys. 5l, 859.

Appendix I - The isotopic constant

The isotopic constant ρ is defined by

$$
\rho=\sqrt{\frac{\mu}{\mu^{i}}}
$$

where μ is the reduced mass of $O H$ and μ^{i} is that of OD. From Herzberg (1950),

$$
\begin{aligned}
& \mu=0.943376 \\
& \mu=1.789403
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \rho=0.728008 \\
& \rho^{2}=0.529996 \\
& \rho^{3}=0.385841
\end{aligned}
$$

Appendix II - A program for least-squares polynomial approximation.

Suppose that through the set of points (x_{i}, y_{i}),
$i=0,1, \ldots n$, one wants to fit the polynomial

$$
y_{i}=b_{0}+b_{1} x_{i}+b_{2} x_{i}^{2}+\cdots b_{m} x_{i}^{m}
$$

under the condition of least square error E.

$$
\begin{aligned}
& E=\sum_{i=0}^{n}\left(b_{0}+b_{1} x_{i}+\cdots+b_{m} x_{i}^{m}-y_{i}\right)^{2} \\
& 0=\frac{\partial E}{\partial b_{p k}}=2 \sum_{i=0}^{n}\left(b_{0}+b_{1} x_{i}+\cdots+b_{m} x_{i}^{m}-y_{i}\right) x_{i}^{k}, k_{1}=0,1, \cdots, m \\
& \text { Let } v_{k}=\sum_{i=0}^{n} x_{i}^{k} ; \quad(v-y)_{k}=\sum_{i=0}^{n} y_{i} x_{i} k^{2} \\
& \therefore \quad v_{0} b_{c}+v_{1} b_{1}+\cdots+v_{m} b_{m}=(v y)_{0} \\
& v_{1} b_{0}+v_{2} b_{i}+\cdots+v_{m+1} b_{m}=(v y)_{i} \\
& \quad 1 \\
& \quad 1 \\
& v_{m} b_{0}+v_{m+1} b_{1}+\cdots+v_{2 m} b_{m}=(v y)_{-m}
\end{aligned}
$$

The b's can now be solved by Cramer's rule. In the program the b are replaced by $B(k+I)$, the number of parameters are N and the number of data points are N DATA. The actual program used, and given in the following pages, was taken from the Library of Programs, UBC Computing Centre.

The parameters that best represent the $\Delta \mathcal{G}\left(v+\frac{1}{2}\right)$ quantities in the B state (Chapter VII) were calculated by hand and by computer. The results were the same.

The variables X and Y appear in the main program. Their DIMENSION in the main program is NDATA. The usual "CALL POLYFT ($\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{NDATA}$)" in the main program will introduce compilation and execution of the subroutine.

$\begin{aligned} & 75 \\ & 76 \end{aligned}$	\＃	$B(N P 1)=A(N P 1, N P 2) / A(N P 1, N P 1)$ $\text { DO } 301[=2, N P 1$
77	\ddagger	$\mathrm{J}=\mathrm{NP} 2$－I
100	キ	$J P \mathrm{l}=\mathrm{J}+1$
101	キ	$B(J)=A(J, N P 2)$
102	キ	DO $302 \mathrm{~K}=\mathrm{JPL}, \mathrm{NPI}$
103	\＃ 302	$B(J)=B(J)-B(K) * A(J, K)$
105	\＃ 301	$B(J)=B(J) / A(J, J)$
107	\＃	DO 398 ［ $=1$ ，NP1
110	\＃ 398	$E=E+B(I) * V Y(I)$
112	\＃	$E=V Y(N P 2)-E$
113	キ	ESUM $=0$ ．
114	\＃	DO $333 \mathrm{~K}=1$ ，NDATA
115	\ddagger	$T S=B(1)$
116	キ	DC $95 \mathrm{NM}=2, \mathrm{NPL}$
117	キ	$M L=M M-1$
120	キ 95	TS $=T S+B(N M) * X(K) * *(M L)$
122	\＃	$E P(K)=(Y(K)-T S) *(Y(K)-T S)$
123	$\neq c^{333}$	ESUM $=$ ESUM + EP（K）
	$\begin{aligned} & \neq C \\ & \neq C \end{aligned}$	ENO CALCULATION CF PCLYNGMIAL COEFFICIENTS
125	キ	$N P 1=N+1$
126	キ	PRINT 310，$(K, B(K), K=1, N P 1)$
133	\＃ 310	FORMAT（7X，2HB（［1，2H）＝F 2 ． 5 ）
134	\ddagger	$\mathrm{XN}=\mathrm{NDATA}$
135	キ	$E=$ SQRT（ESUM／XN）
136	\＃	PRINT 340，E
137	340	FORMAT（1H0，1CX，24HLEAST SQUARES ERROR＝，F12．5）
140	キ	RETURN
141	\＃	END

Appendix III - Zero point Energy.

Knowledge of ω_{a} and $\omega_{e} x_{e}$ for a molecule me ans that G (0) can be determined since

$$
G(0)=\frac{\omega_{e}}{2}-\frac{\omega_{e} x_{e}}{4}
$$

The minimum of a potential curve can then be determined. The following table gives the se values for several eleatronic states of OH and OD .

State	0 O	0 OD
$\mathrm{X}^{2} \pi$	1846.9 3.14	1349.4
	2.58	
$\mathrm{~A}^{2} \Sigma^{+}$	1566.5	1140.7
	2.58	1.60
$\mathrm{C}^{2} \Sigma^{\top}$	611.7	447.0^{*}
	-0.99	-0.50^{*}

On the bottom line is given the Dunham zero point correction term Y_{00},

$$
Y_{o o}=\frac{B_{e}}{4}+\frac{\alpha_{e} w_{e}}{12 B_{e}}+\frac{\alpha_{e}^{2} w_{e}^{2}}{144 B_{e}^{3}}-\frac{u_{e} x_{e}}{4}
$$

Appendix IV - Thermal broadening and Pressure broading of Spectral Lines.

Some spectral lines in the spectrum of OH and OD were observed to be broad. The increased breadth is not due to thermal broadening nor pressure broadening because transitins from the same upper state were observed to be broad and sharp (in OH , the $(1,4)$ and $(1,9)$ transitions are sharp, but $(1,5)$ and $(1,6)$ are broad). Nevertheless, the classical line breadth due to temperature and pressure can be calculated. According to Stone (1963) "Radiation and Optics", the half width of a spectral line is given by

$$
\Delta=\frac{2 w_{0}}{c}\left(\frac{2 k T}{M}\right)^{1 / 2}
$$

where ω_{0} is the frequency of the transition
c is the speed of light $=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
k is Boltzmann's constant $=1.4 \times 10^{-16} \mathrm{erg} / \mathrm{deg}$
T is the temperature $\approx 330^{\circ} \cdot \mathrm{K}$
M is the mass of the molecule

$$
\begin{gathered}
\text { For } \lambda=4000 \stackrel{\circ}{A} \text { and for molecular hydrogen } \\
\left(M=2 \times 1.7 \times 10^{-24} \mathrm{gm}\right), \\
\Delta=2.5 \times 10^{10} / \mathrm{sec} .
\end{gathered}
$$

This is only a factor of 10 less than that due to presdissociation. In fact, several H_{2} lines were identifled and they are all sharp.

From Stone, the half width of a spectral line due to pressure broadening is

$$
\gamma=\frac{8 \sqrt{\pi} D^{2} P}{(M k)^{1 / 2}}
$$

where D is the diameter of the molecule and P is the pressure. The maximum pressure is that of $\mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$ which is 95 mm Hg . Taking $D^{2}=10^{-16} \mathrm{~km}^{2}$, then for H_{2}

$$
\gamma=240 / \sec
$$

Thus collisions in the classical sense do not contribute at all to the half width. As long as the effective dameter of the molecule is less than $10^{4} \stackrel{\AA}{\mathrm{~A}}$, collisions are not important.

Appendix V - Predissociation by Rotation in the $A^{2} \Sigma^{+}$ state of $O D$

The magnitude of the dispersion hump in the A state could be determined if predissociation by rotation were observed in the $A^{2} \Sigma^{+}$state of $O D$. From table 14 , the $\nabla=13$ level is $114 \mathrm{~cm}^{-1}$ from the expected limit, $\nabla=12$ is $548 \mathrm{~cm}^{-1}, \quad v=11$ is $1284 \mathrm{~cm}^{-1}, \quad v=10$ is $2172 \mathrm{~cm}^{-1}$ and $v=9$ is $3290 \mathrm{~cm}^{-1}$. From the $\mathrm{Balues}_{\lambda}$ it is expected that, excluding rotation, $N=8$ levels are bound in $v=13$, $\mathrm{N}=12$ in $\mathrm{v}=12, \mathrm{~N}=17$ in $\mathrm{v}=11, \mathrm{~N}=20$ in $\mathrm{v}=10$ and $N=24$ in $v=9$. The $N=18$ level has been seen in $\mathrm{v}=11$ (0,11 transition) and $\mathrm{N}=21$ in $\mathrm{v}=10$ (0,10 transition). It is thus quite possible that predissociation by rotation can be detected in the $A^{2} \Sigma^{+}$state of OD with little modification of the technique described in the thesis.

Appendix VI - Electronic isotope effect
The accuracy of the dissociation energy of the $A^{2} \Sigma^{+}$ state of OH and OD , as presented in this thesis is just outside the range of detecting electronic isotope shifts. This effect arises from the difference in the shape of the potential well for two molecules, of different isotope, e.g. $O H$ and $O D$. Imagining the molecule to be neither vibrating nor rotating, the electronic motion is still present since the molecule is held together by the electrons. The electrons in turn drag the nuclei behind them. Because the center of mass is different for OH and OD , the energy to "keep the molecule at minimum" of the potential is different for OH and OD . Mathematically, this effect is due to the breakdown of the Born-Opoenheimer approximation. Bunker (1968) has calculated electronic isotope shifts in several molecules and they are typically of the order of $5 \sim 10 \mathrm{~cm}^{-1}$. The agreement of his theory with experiment is not bad.

For OH , Bunker's formula predicts that OH potential wells are deeper than the $O D$ potential wells by 6.7, 51.1, - 0.7 and $4.50 \mathrm{~cm}^{-1}$ in the X, A, B and C states respectively.

Experimentally, we have obtained $\left(5.8{ }^{+} 15\right) \mathrm{cm}^{-1}$ and $\left(-3.6^{+} 15\right) \mathrm{cm}^{-1}$ for the X and A states respectively.

[^0]: * The R branch in the $C \rightarrow A$ bands reverses upon itself, with transitions often overlapped. Consequently, the information from the R branch is not as dependable.

[^1]: * A detailed calculation is given in part (d), where the same calculation for 3 points is done by hand and checked by computer.
 + It was found that with $M<4$, equation (2) gave poor reproduction of the experimental ΔG. Nith $M>6$, the least squares deviation did not change significantly and the calculated ΔG curve behaved peculiarly at low v's.

[^2]: * Appendix VI treats electronic isotope shifts in greater detail.

[^3]: * Predissociation by rotation is a consequence of the term

[^4]: * Because of electronic isotopic shifts, the two minima are not expected to have the same energy.

