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1. Introduction

The Laplacian1 for Euclidean spaceRn has the following properties: (a) the
essential spectrum of−1 is [0,∞); (b)1 has no point spectrum; and (c)1 has
no singular continuous spectrum. If(x1, x2, . . . , xn) are the standard global coor-
dinates onRn, then theexhaustion functionb(x) = (x2

1 + x2
2 + · · · + x2

n)
1/2 sat-

isfies (i)|∇b| = 1 for x 6= 0 and (ii) Hessb2 = 2g. Hereg denotes the Euclidean
metric.

Let M be a complete Riemannian manifold that admits a proper exhaustion
functionb. If (i) and (ii) above are satisfied in a weak or approximate sense, then
we would like to show that the Laplacian1 ofM has properties similar to those of
the Euclidean Laplacian. This program was started in our earlier paper [6]. Under
general averagedL2 conditions on|1b| and ||∇b| − 1|, we showed that the es-
sential spectrum of−1 is [0,∞). More stringent pointwise decay conditions for
|Hessb2 − 2g| and||∇b| − 1| were needed to eliminate the possibility of a point
spectrum for1. The singular continuous spectrum was not discussed in [6].

The present paper extends the earlier work concerning the point spectrum and
provides new results about the singular continuous spectrum. IfM admits an ex-
haustion functionb having Properties 2.1, then Theorem 2.3 states that1 has no
square integrable eigenfunctions. The analogous result in [6] required the stronger
hypotheses||∇b|−1| ≤ cb−ε and|Hessb2−2g| ≤ cb−ε for someε > 0,whereas
Properties 2.1 impose no specific decay rate on these quantities. However, Prop-
erty 2.1(iv) restricts the third derivatives ofb, whereas no such condition was im-
posed in [6]. For manifolds with nonnegative Ricci curvature, Euclidean volume
growth, and quadratic curvature decay, Cheeger and Colding [3] and Colding and
Minicozzi [4] constructed an exhaustion function with Properties 2.1.

The singular continuous spectrum is studied in Section 3. Ifb satisfies Prop-
erties 3.1 (which are more restrictive than 2.1) then Theorem 3.5 states that−1
has no singular continuous spectrum. The asymptotically Euclidean spaces of [1]
support exhaustion functions with Properties 3.1. For these spaces, the curvature
may have variable sign but the curvature decay is faster than quadratic. Our treat-
ment of the singular continuous spectrum is an application of the abstract Mourre
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theory in [2]. The Mourre theory of [5] also inspired our treatment of the point
spectrum, although the work in Section 2 is logically self-contained.

Our main theorems generalize readily from−1 to certain Schrödinger opera-
tors−1+ V on manifolds. We prove all our results in this more general context.
For the Schrödinger operator onRn, these theorems are well-known (see [2; 5]).

The author thanks Professor F. Nier for suggesting that the Mourre theory could
be applied to the questions raised in [6] and for providing valuable references.

2. Absence of Point Spectrum

Let M be a connected complete Riemannian manifold. The symbol1 will de-
note the Laplacian acting on functions defined onM. Assume thatV is a bounded
and continuously differentiable function. The Schrödinger operator−1 + V is
essentially self-adjoint [7] onC∞0 M. Suppose thatu ∈ L2M ∩ C2M satisfies
−1u + Vu = λu (λ > 0). Thenu lies in the domain of−1 + V, considered as
an unbounded operator onL2M. It follows [7] that |∇u| ∈L2M and∫

M

|∇u|2 = −
∫
M

u1u.

We assume thatM admits a properC2 exhaustion functionb with certain prop-
erties. Suppose thatr(x) denotes the geodesic distance fromx ∈ M to a fixed
basepointp ∈M. Let g denote the metric tensor ofM. The symbolε(r) will sig-
nify a function satisfyingε(r)→ 0 asr →∞. The following properties will be
required for our exhaustion functionb in the complement of a compact setK.

Properties 2.1.

(i) c1r ≤ b ≤ c2r for some positive constantsc1 andc2.

(ii) 1− ε(r) ≤ |∇b| ≤ 1+ ε(r).
(iii) |Hessb2 − 2g| ≤ ε(r).
(iv) |d1b2| ≤ ε(r).
Hered denotes the exterior derivative and|T | is the pointwise norm of the ten-
sorT .

Suitable conditions must also be imposed upon our potential functionV ∈
L∞M ∩ C1M. Let X signify the vector field 2b∇b. We assume thatV satis-
fies the following properties inM −K, whereK is compact.

Properties 2.2.

(i) |V | ≤ ε(r).
(ii) XV ≤ ε(r).
The main result of this section is the following theorem.

Theorem 2.3. Supposeu ∈ L2M ∩ C2M satisfies−1u + Vu = λu on M
(λ > 0). Assume thatM admits an exhaustion functionb satisfying Properties 2.1
and the potential functionV satisfies Properties 2.2. Thenu ≡ 0.
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The proof of Theorem 2.3 will be presented in a sequence of lemmas. The over-
all strategy is essentially a unique continuation back from infinity. The function
u is originally assumed only to be inL2M. By employing the Mourre theory and
Rellich identities, we progressively show thatu lies in more and more restric-
tive weightedL2 spaces. Intuitively,u vanishes to infinite order at infinity. A
Carleman-type argument then shows thatu must be identically zero.

The first step was already taken in [6] as follows.

Lemma 2.4. For all positive integersk,∫
M

bk[u2 + |∇u|2] <∞.

Proof. This was proved as Proposition 3.6 of [6]. Property 2.1(iv) is not needed
and Property 2.1(ii) is only used in the weaker formc1 ≤ |∇b| ≤ c2.

Let H = −1 + V. If φ ∈ C2M then defineA = ∇φ + 1
21φ. One verifies that

A : C∞0 M → C∞0 M is a first-order skew symmetric operator. The symbolTi will
denote a component of the covariant derivative∇T of the tensorT . Repeated in-
dices denote a sum of contractions with respect to the metricg. Our main tool will
be the following (Mourre-type) estimate.

Lemma 2.5. If f ∈C∞0 M then

〈[H,A]f, f 〉 = 2
∫
M

Hessφ(∇f,∇f )+
∫
M

(1φ)jfjf −
∫
M

φiVif
2.

Proof. One computes the commutator [H,A] = HA− AH,
[H,A]f = −2φjkfjk − 2φjkkfj − 1

2(1
2φ)f − φiVif.

The lemma then follows by partial integration.

We takeφ = b2 and invoke Properties 2.1 and 2.2. For anyε > 0, there exist a
constantc > 0 and a compact setK such that, forf ∈C∞0 M,

〈Af,Hf 〉 + 〈Hf,Af 〉 ≥ 2
∫
M

fHf − ε
∫
M

f 2+ |∇f |2− c
∫
K

f 2+ |∇f |2. (2.6)

Let F = F(φ) ∈ C2M be an increasing function ofφ. Assume thatF ≤ c3

and|∇F | + |HessF | ≤ c4b
k for somek > 0. We will apply (2.6) withf = eFu,

whereu is the eigenfunction of Theorem 2.3. Althoughf is no longer compactly
supported, the more general use of (2.6) is justified by a standard cutoff function
method (the cutoff function depends uponb). Properties 2.1 and Lemma 2.4 are
used to remove the error terms in the limit.

Sinceu is an eigenfunction ofH, an elementary calculation gives

Hf = λf − 2Fifi + |∇F |2f − (1F )f.
We write ∇F = w∇φ with w = F ′(φ) > 0. Assume thatw ∈ C2M and
|∇w| + |Hessw| ≤ c4b

k for somek > 0. One observes that



104 Harold Donnelly

Hf = λf + |∇F |2f − 2wAf − (∇φ · ∇w)f.
SettingBf = 2wAf + (∇φ · ∇w)f, we have

Hf = λf + |∇F |2f − Bf.
Observe that the first order operatorsA andB are skew adjoint onC∞0 M.

Using Lemma 2.4 and cutoff functions defined in terms ofb (to justify the partial
integrations) one finds that

〈Af,Hf 〉 + 〈Hf,Af 〉 = 〈Af, |∇F |2f − 2wAf − (∇φ · ∇w)f 〉
+ 〈|∇F |2f − 2wAf − (∇φ · ∇w)f,Af 〉.

Sincew > 0, we deduce

〈Af,Hf 〉 + 〈Hf,Af 〉 ≤ 〈Af, |∇F |2f − (∇φ · ∇w)f 〉
+ 〈|∇F |2f − (∇φ · ∇w)f,Af 〉.

Using the skew symmetry and definition ofA yields

〈Af,Hf 〉 + 〈Hf,Af 〉 ≤ 〈f,∇φ(∇φ · ∇w − |∇F |2)f 〉.
Moreover, sinceB is skew-symmetric,

〈f,Hf 〉 = λ〈f, f 〉 + 〈|∇F |2f, f 〉.
Substitution of the last two formulas into (2.6) gives∫
M

∇φ(∇φ ·∇w−|∇F |2)f 2 ≥ λ
∫
M

f 2+
∫
M

f 2|∇F |2− c
∫
K

f 2+|∇f |2. (2.7)

Heref = eFu andHu = λu.
To proceed further, we make specific choices forF. These choices are moti-

vated by the proofs required in the rigorous justification of the virial theorem in
quantum mechanics [8]. Some care is needed to justify the convergence of the in-
tegrals at each stage. Suppose thats andγ are positive constants. We define a
function of the real variablet by

χs(t) =
∫ t

0
(1+ s2x2)−1dx.

Observe thatχs(t) ≤ cs, wherecs depends only upons. Moreover, with a con-
stantc independent ofs, |χ ′s(t)| ≤ 1, |χ ′′s (t)| ≤ c/t, and|χ ′′′s (t)| ≤ c/t 2. We apply
(2.7) withF = Fs = γχs((1+ b2)1/2).

An elementary calculation yields the formulas

∇φ(|∇F |2) = γ 2

4

[
χ ′sχ

′′
s (1+ b2)−3/2 − (χ ′s)2(1+ b2)−2

]|∇φ|4
+ γ

2

2
(χ ′s)

2(1+ b2)−1 Hessφ(∇φ,∇φ)
and
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∇φ(∇φ · ∇w) = γ

4

[
3

2
χ ′s(1+ b2)−5/2 − 3

2
χ ′′s (1+ b2)−2

+ 1

2
χ ′′′s (1+ b2)−3/2

]
|∇φ|4

+ γ
2

[
χ ′′s (1+ b2)−1− χ ′s(1+ b2)−3/2

]
Hessφ(∇φ,∇φ).

Consequently, with a constantc5 independent ofs, we have

|∇φ(|∇F |2)| ≤ c5γ
2 and |∇φ(∇φ · ∇w)| ≤ c5γ (1+ b2)−1/2.

Substitution in (2.7) gives, with a constantc independent ofs and for a compact
setK,

c(γ 2 + γ )
∫
M

f 2 ≥ λ
∫
M

f 2 − c
∫
K

f 2 + |∇f |2.
If γ is sufficiently small, we get

λ

∫
M

f 2 ≤ 2c
∫
K

f 2 + |∇f |2. (2.8)

We may now deduce the following lemma.

Lemma 2.9. If γ > 0 is sufficiently small, then∫
M

u2 exp[2γ (1+ b2)1/2] <∞.

Proof. For each fixedt, lim s→0 χs(t) = t. Thus lims→0Fs = γ (1+ b2)1/2. The
lemma follows because the constantc in (2.8) is independent ofs and sincef =
exp[Fs ]u.

By analogy with Lemma 2.4, we want to improve Lemma 2.9 by showing that|∇u|
also lies in an exponentially weightedL2 space. This improvement is provided by
our next lemma.

Lemma 2.10. If Hu = λu anduexp[α(1+ b2)1/2] ∈L2M for someα > 0, then
|∇u|exp[α(1+ b2)1/2] ∈L2M.

Proof. Let f = eFu with F = α(1+ b2)1/2. As before, one verifies thatHf =
λf + |∇F |2f − Bf. HereB is the skew-symmetric operator given byBf =
2Fifi + (1F )f. If ω = ω(b) is a standard cutoff function, then

〈∇f,∇(ω2f )〉 + 〈Vf, ω2f 〉 = 〈Hf,ω2f 〉
= λ〈f, ω2f 〉 + 〈f, ω2|∇F |2f 〉 − 〈Bf,ω2f 〉.

However,〈Bf,ω2f 〉 = −〈f, ω2Bf 〉 − 2〈f, Fi(ω2)if 〉. Thus,

〈∇f, ω2∇f 〉 + 〈∇f, f∇ω2〉 + 〈Vf, ω2f 〉
= λ〈f, ω2f 〉 + 〈f, ω2|∇F |2f 〉 + 〈f, Fi(ω2)if 〉.

Since|∇F | is bounded, the lemma now follows by lettingω ↑ 1.



106 Harold Donnelly

Now letα0 = sup{α | exp[α(1+ b2)1/2]u ∈ L2M }. We plan to show thatα0 =
∞. In order to argue by contradiction, we suppose thatα0 <∞. Chooseα1 > 0
andγ > 0 with α1 < α0 < α1+ γ. Our strategy is to rework the argument lead-
ing to Lemma 2.9, starting from (2.7), but with a different choice forF. Let F =
α1(1+ b2)1/2+ γχs((1+ b2)1/2). AlthoughF is now unbounded, the definition of
α1 and Lemma 2.10 suffice to justify the partial integrations.

Straightforward calculations give

∇φ(|∇F |2) = γ

4
(α1+ γχ ′)χ ′′(1+ b2)−3/2|∇φ|4

− 1

4
(α1+ γχ ′)2(1+ b2)−2|∇φ|4

+ 1

2
(α1+ γχ ′)2(1+ b2)−1 Hessφ(∇φ,∇φ)

and

∇φ(∇φ · ∇w)

= 1

4

[
3

2
(α1+ γχ ′)(1+ b2)−5/2|∇φ|4

− 3γ

2
χ ′′(1+ b2)−2|∇φ|4 + 1

2
γχ ′′′(1+ b2)−3/2|∇φ|4

]
+ 1

2

[
γχ ′′(1+ b2)−1− (α1+ γχ ′)(1+ b2)−3/2

]
Hessφ(∇φ,∇φ).

If γ is sufficiently small and withc6 independent ofs, by Properties 2.1, we thus
have

|∇φ(|∇F |2)| ≤ ε(b)α2
1 + c6α1γ,

|∇φ(∇φ · ∇w)| ≤ c6α1(1+ b2)−1/2.

Hereε(b)→ 0 asb→∞.
Using (2.7), we deduce that there is a constantc (independent ofs) and a com-

pact setK such that ∫
M

f 2 ≤ c
∫
K

f 2 + |∇f |2.

Letting s ↓ 0, one deduces thatuexp((α1+ γ )(1+ b2)1/2) ∈ L2M. This contra-
diction shows thatα0 is infinite. We have established the following.

Lemma 2.11. For all α > 0,∫
M

[u2 + |∇u|2] exp[2α(1+ b2)1/2] <∞.

One more application of formula (2.7) is needed. This time we chooseF =
α(1+ b2)1/2. Observe that

|∇F |2 = 1
4α

2(1+ b2)−1|∇φ|2 ≥ (1− ε(b))α2
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with ε(b) → 0 asb → ∞. The estimates before Lemma 2.11 hold withα = α1

andγ = 0.
In our previous argument, the second term on the right-hand side of the in-

equality (2.7) was dropped. This term is now used to strengthen our result. One
has∫

M

ε(b)(α2 + cα)f 2 ≥
∫
M

λf 2 +
∫
M

(1− ε(b))α2f 2 − c
∫
K

f 2 + |∇f |2.

Moreover, ifα is sufficiently large andK is a sufficiently large compact set, then

λ

∫
M

f 2 ≤ c(1+ α2)

∫
K

f 2 + |∇f |2

with c andK independent ofα. By Lemma 2.11, we may takeα to be arbitrarily
large. Sincef = uexp[α(1+ b2)1/2], this forcesu ≡ 0 outside a compact set.
By unique continuation, for second-order elliptic equations we haveu ≡ 0 on all
of M. This completes the proof of Theorem 2.3.

The following corollary concerns an interesting class of examples of manifoldsM

where Theorem 2.3 is applicable.

Corollary 2.12. Suppose thatMn is a complete connected Riemannian mani-
fold satisfying, forn ≥ 3:

(i) Ricci(M) ≥ 0, the Ricci curvature ofM is nonnegative;
(ii) Vol Bp(t) ≥ ct n, geodesic balls have Euclidean volume growth; and

(iii) |K| ≤ cr−2, sectional curvature decays quadratically.

If V satisfies Properties 2.2, then−1+ V has no positive eigenvalues.

Proof. The required exhaustion functionb was constructed by Cheeger and Cold-
ing [3] and Colding and Minicozzi [4]. Properties 2.1(i)–(iii) are stated explicitly
in [4, p. 28]. For (iv), recall thatb1b = (n−1)|∇b|2. Consequently,

1b2 = 2n|∇b|2 = 1
2nb
−2|∇b2|2

and
∇1b2 = −nb−3|∇b2|2∇b + nb−2 Hessb2 · ∇b2.

Thus|∇1b2| ≤ cb−1 and Property 2.1(iv) holds.

Remark. The proof of Theorem 2.3 may readily be modified to yield a more gen-
eral result. Suppose only that−1u+ Vu = λu holds in the complementM −K
of a compact setK. If M −K has no bounded components, then we conclude that
u ≡ 0 inM −K.

3. Absence of Singular Continuous Spectrum

We proceed to establish the absence of a singular continuous spectrum for cer-
tain asymptotically Euclidean spaces. The result will follow by application of the
abstract Mourre theory of [2]. Our argument requires the following strengthened
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version of Properties 2.1concerning our properC2 exhaustion functionb. Suppose
there exists anε > 0 such that, in the complement of a compact set, one has the
following.

Properties 3.1.

(i) c1r ≤ b ≤ c2r for some positive constantsc1 andc2.

(ii) ||∇b| −1| ≤ cb−ε.
(iii) |Hessb2 − 2g| ≤ cb−ε.
(iv) |(b2)kks | + |(b2)skk| ≤ cb−ε.
Herec is a positive constant. We sum over the repeated indexk.

Setφ = b2 andX = ∇φ. The operatorĀ = −i(X + 1
2 divX) is symmetric on

C∞0 M. Moreover, ifTt is the one-parameter group generated byX theniĀ is the
infinitesmal generator of the unitary one-parameter group onL2M,

Utf(x) = exp

[ ∫ t

0

divX

2
(Tsx) ds

]
f(Tt x).

By Stone’s theorem (see [8]),A is essentially self-adjoint.
SupposeH = −1+V is the Schrödinger operator onM, and assume thatV is

bounded and smooth. The domain ofH is the second Sobolev spaceH2 = { f ∈
L2M | 1f ∈ L2M } (see [7]). The potential functionV will be required to obey
the following stronger version of Properties 2.2.

Properties 3.2.

(i) |V | ≤ cb−ε.
(ii) |XV | ≤ cb−ε.

Let the first Sobolev space be denoted byH1 = { f ∈ L2M | |∇f | ∈ L2M }.
The symbolS will stand for the commutatorS = [H, iĀ]. A prerequisite for the
Mourre theory is the next lemma.

Lemma 3.3. S is a bounded operator fromH1 toH−1.

Proof. One computes the bracket

Sf = [H, iĀ]f = −2φkjfkj − 2φjkkfj − 1
2(1

2φ)f −XVf,
where the subscripts denote covariant derivatives and repeated indices are con-
tracted. Iff ∈ C2M then these are classical derivatives, but forf ∈ H1 the
derivatives may be interpreted in the distribution sense.

Suppose thatf, g ∈H1. Let ‖f ‖ denote the norm off in H1, that is,

‖f ‖2 =
∫
M

f 2 + |∇f |2.
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We consider the four terms in the pairing〈Sf, g〉. The second and fourth terms are
clearly bounded. Moreover,∫

φkjfkjg = −
∫
φkjjfkg −

∫
φkjfkgj,∫

φiijjfg = −
∫
φiijfjg −

∫
φiijfgj .

Hence the bracketS extends fromC∞0 M to a bounded operatorS : H1→ H−1.

Letψ ∈C∞(R+), with ψ(x) = 0 in a neighborhood ofx = 0 and withψ(x) = 1
in a neighborhood ofx = ∞. Let ‖S‖ denote the norm ofS as an operator from
H1 toH−1. Lemma 3.3 may be improved as follows.

Lemma 3.4. We may writeS = S1+ S2, where the decomposition satisfies

(i) ‖S1‖ + ‖S2‖ ≤ c,
(ii) ‖[S1, iĀ]‖ ≤ c, and
(iii) ‖ψ(b/t)S2‖ ≤ ct−ε
for someε > 0 and sufficiently larget ∈R+.

Proof. LetS1= −41 andS2 = S+41. Then (i) is immediate from Lemma 3.3.
For (ii), we note that14[S1, iĀ] = [H, iĀ] + XV = S + XV, whereXV is con-
sidered as a multiplication operator. Thus (ii) follows from Lemma 3.3 and the
boundedness of|XV |. The operatorS2 is given by

S2f = −2(φkj − 2gjk)fjk − 2φjkkfj − 1
2(1

2φ)f −XVf.
Then (iii) follows from Properties 3.1 and 3.2, using the method of Lemma 3.3.

The main result of this section is our next theorem.

Theorem 3.5. Suppose thatH = −1 + V is a Schrödinger operator for the
complete Riemannian manifoldM. Assume thatM admits an exhaustion function
b with the Properties 3.1. If the potentialV satisfies Properties 3.2, thenH has no
singular continuous spectrum.

Proof. Given the foregoing preliminaries and the abstract theory of [2], it suf-
fices to establish a Mourre inequality. Letχ denote the characteristic function of a
closed bounded interval on the positive real line. We need to show that, for some
α > 0 and compact operatorC, one has

χ(H )Sχ(H ) ≥ αχ2(H )+ C. (3.6)

If f ∈C∞0 M, then partial integration gives∫
M

fSf = 2
∫
M

Hessφ(∇f,∇f )+
∫
M

(1φ)jffj −
∫
M

XVf 2.
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By a standard cutoff function argument, the same formula holds for

f ∈χ(H )L2M.

If K is a sufficiently large compact set, then Properties 3.1 and 3.2 yield∫
M

fSf ≥ 2
∫
M

|∇f |2 − ε
∫
M

f 2 + |∇f |2 − c
∫
K

f 2 + |∇f |2.

Assume that 2α = inf support(χ) > 0 andf ∈ χ(H )L2M. Then∫
M

fHf =
∫
M

|∇f |2 +
∫
M

Vf 2,∫
M

fHf ≥ 2α
∫
M

f 2.

Combining these formulas gives∫
M

fSf ≥ α
∫
M

f 2 − c
∫
K

f 2 + |∇f |2.

The required estimate (3.6) now follows from the Rellich embedding lemma for
Sobolev spaces on compact sets.

The next corollary gives an interesting class of examples where Theorem 3.5 is
applicable.

Corollary 3.7. Suppose thatMn is a complete Riemannian manifold satisfying,
for n ≥ 3:

(i) Vol Bp(t) ≥ ct n, geodesic balls have Euclidean volume growth; and
(ii) |K| ≤ cr−2−ε, the sectional curvature decays faster than quadratically.

Herer is the geodesic distance from the basepointp.

Assume thatV obeys Properties 3.2. Then the Schrödinger operator−1 + V
has no singular continuous spectrum.

Proof. For these spaces, there is a compact setK such thatM −K is diffeomor-
phic to a quotient ofRn − B0(t) by a finite subgroup ofO(n). Moreover, there
exist harmonic coordinates on a neighborhood of infinity satisfying the estimates

gij = δij +O(|x|−ε) and |x|∂gij
∂xk
= O(|x|−ε)

for someε > 0 (see [1]).
We takeφ = b2 = ∑ x2

k . It suffices to verify Properties 3.1. Parts (i) and (ii)
are immediate. For (iii), one calculates

dφ = 2
∑

xkdxk and Hessφ = 2
∑

dxkdxk + 2
∑

xk∇dxk.
The result follows because the Christoffel symbols satisfy|0kij | = O(|x|−1−ε). To
establish (iv), we use the harmonicity of the coordinatesxk. Taking the trace of
Hessφ gives1φ = 2gkk. Thus|φkks | = |d1φ| = O(|x|−1−ε). Since the curva-
ture decay is faster than quadratic, we also have|φskk| = O(|x|−1−ε).
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