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We show that the eigenvalue density of a product X=X1X2¯XM of M independent N�N Gaussian random

matrices in the limit N→� is rotationally symmetric in the complex plane and is given by a simple expression

��z , z̄�=
1

M��−2/M�z�−2+�2/M� for �z���, and is zero for �z���. The parameter � corresponds to the radius of the

circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue

density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, and real or

complex random matrices. It does not change even if the matrices in the product are taken from different

Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic tech-

nique. Additionally, we conjecture that this distribution also holds for any matrices whose elements are inde-

pendent centered random variables with a finite variance or even more generally for matrices which fulfill

Pastur-Lindeberg’s condition. We provide a numerical evidence supporting this conjecture.

DOI: 10.1103/PhysRevE.81.041132 PACS number�s�: 02.50.�r

I. INTRODUCTION

Initiated by Wigner more than 50 years ago and devel-

oped by Dyson, Mehta, and others, random matrix theory

�RMT� has been successfully applied to various problems

ranging from fundamental physics �for a comprehensive re-

view, see �1�� to engineering and financial applications �2�.
One of the reasons of such a wide applicability is the univer-

sality of many results predicted by RMT. Let us take as an

example the problem addressed by Wigner, which is how to

determine the energy spectrum and level spacing distribution

of a many-body quantum system. Due to many degrees of

freedom and sophisticated nature of interactions one has to

turn to a statistical description. However, in contrast to sta-

tistical mechanics where one fixes the Hamiltonian and av-

erages over possible states of the system, Wigner proposed to

treat the very Hamiltonian as a random operator, which in

turn can be represented as a large random matrix. Relevant

properties of such a matrix are determined by symmetries of

the problem. The great discovery of RMT is that many ob-

servables are the same for various statistical ensembles of

random matrices.

To illustrate this, let us cite two classical results of RMT.

The eigenvalue density of a real symmetric or complex Her-

mitian N�N matrix, whose entries in the upper or lower

triangle are independent, identically distributed random vari-

ables with a finite variance equal to �2
/N, converges for N

→� to a limiting distribution

��	� =
1

2��2
�4�2 − 	2, for 	 � �− 2�,2�� , �1�

known as Wigner’s semicircle distribution, which is one of

the best known results of the classical RMT. The class of

matrices whose spectrum converges to the limit law �1� is

actually much broader and embraces matrices with entries

being independent random variables which fulfill Pastur-

Lindeberg’s condition �3�. This is an example of macroscopic

universality of random matrices. In this paper we concentrate

on macroscopic properties and do not discuss microscopic

properties of eigenvalue statistics.

An analogous formula for a non-Hermitian random ma-

trix, which is another example of a macroscopic law, reads

��z, z̄� = �
1

��2
for �z� � �

0 for �z� � � ,
� �2�

where z=x+ iy is a complex number. Distribution �2� is

called Girko-Ginibre’s distribution. The eigenvalue density

has a rotational symmetry in the complex plane and is uni-

form inside the circle of radius �. More generally, if a matrix

has independent but not identically distributed Hermitian and

anti-Hermitian degrees of freedom �4�, the limit law �2� as-

sumes an elliptic form,

��z, z̄� = �
1

�1 − 
2���2
for

x2

�2�1 + 
�2
+

y2

�2�1 − 
�2
� 1

0, otherwise,
�
�3�

where �2�0 is an effective scale parameter and 
� �−1,1�
is a flatness of the ellipse. For 
=0 one recovers the circular

law �2�. For 
→ �1 the support of distribution �3� reduces

to a cut �−2� ,2�� on the real �for 
→1� or imaginary �for


→−1� axis and the distribution itself reduces to a Wigner

law �1�, as one can see by projecting the elliptic distribution

�3� onto the real �imaginary� axis before taking the limit


→ �1.

It might be striking that the derivation of the �apparently

simple� functional form of ��z , z̄� for the Girko-Ginibre en-

semble is less straightforward than the one for the �more

complex� Wigner semicircle law. The reason is that there are

many powerful methods invented for Hermitian random ma-

trices: via orthogonal polynomials or Selberg’s integral �5�,
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supersymmetric method �6�, diagrammatic expansion �7�,
Dyson gas �8�, and free random variables �9�.

In this paper we would like to present a result for non-

Hermitian random matrices which is to a large extent univer-

sal, similar to the two classical examples cited above. We

shall show that the eigenvalue density �X�z , z̄� of a product

X = X1X2 ¯ XM �4�

of M �2 independent N�N Gaussian matrices for which

	X1,ij
= ¯ = 	XM,ij
=0 and 	�X1,ij�2
=�1
2
/N , . . . , 	�XM,ij�2


=�M
2

/N for all i , j assumes in the limit of N→� the follow-

ing form:

�X�z, z̄� = �
1

M�
�−2/M�z�−2+�2/M� for �z� � �

0 for �z� � � ,
� �5�

where the effective scale parameter �=�1�2¯�M. This sur-

prisingly simple formula is the main result of our paper.

What is even more surprising is that this formula holds for a

product of independent but not identically distributed Gauss-

ian matrices. This means that the individual matrices Xi’s in

the product may come from different Gaussian ensembles

�unitary �GUE�, orthogonal �GOE� or various elliptic non-

Hermitain matrices� and the eigenvalue density will always

be given by Eq. �5�. In other words, even if X1 , . . . ,XM have

oblate eigenvalue spectra, with 
1�0, . . . ,
M �0, their prod-

uct will have a rotationally symmetric one. We shall derivate

this result with the help of a diagrammatic technique appro-

priately tailored to non-Hermitian random matrices �10,11�
and to products of random matrices �12�. In order to make

the paper self-contained we will also give an introduction to

the diagrammatic methods �for a brief review, see also �13��.
It is tempting to conjecture that the limit law for the prod-

uct �5� holds also for a wider class of matrices, including

Wigner matrices whose elements are independent identically

distributed random variables with a finite variance or, more

generally, for matrices which fulfill Pastur-Lindeberg’s con-

dition �3�. We will present a numerical support for this con-

jecture.

The second objective of this paper is to use Eq. �5� in

order to verify an interesting conjecture made in Ref. �14�
saying that if the eigenvalue density ��x ,y� of a non-

Hermitian matrix X is rotationally symmetric on the complex

plane z=x+ iy, then the marginal distribution �
�
�x�

=�dy��x ,y� obtained by its projection onto the real axis or a

projection �
�
�y�=�dx��x ,y� onto the imaginary axis must be

equal to the eigenvalue density of the matrix �X+X†� /�8 or

i�X−X†� /�8, respectively, both being Hermitian matrices. If

true, this would allow one to calculate ��x ,y� from �
�
�x� via

the inverse Abel transform. In particular, if one projects the

Girko-Ginibre distribution �2� onto the real �or imaginary�
axis, one indeed obtains the Wigner semicircle law, �

�
�x�

= �2 / ���2����2−x2, which is the same as the eigenvalue

density of the matrix �X+X†� /�8 �or i�X−X†� /�8�. In �14� it

was checked numerically that the relation seemed to apply

also to more complicated ensembles. Here, we shall present a

counterexample by showing that the projection of the eigen-

value density of a product AB of two Hermitian matrices A

and B which is rotationally symmetric �Eq. �5�� is different

from the eigenvalue density of the rescaled anticommutator

�AB+BA� /�8 and the commutator i�AB−BA� /�8; so the

conjecture is not true.

II. GENERALITIES

A. Eigenvalue density and the measure

We are interested in the eigenvalue distribution of a ran-

dom matrix X �Eq. �4�� being a product of M independent

N�N real or complex Gaussian matrices. The eigenvalues

�	i of X are complex since X may in general be non-

Hermitian. The eigenvalue distribution is defined by

�X�z, z̄� =� 1

N
�
i=1

N

�2��z − 	i�� , �6�

where z̄ denotes complex conjugate of z. The averaging

	¯ 
=�¯d��X1 , . . . ,XM� is done with a factorized probabil-

ity measure, which in the simplest case of identically distrib-

uted matrices takes the form

d��X1, . . . ,XM� � �
�=1

M

e−�N�/4�Tr X�X�
†

DX�, �7�

where DX� denotes a flat measure. This formula applies to

four generic cases of X� being �a� complex, �b� complex

Hermitian, �c� real, and �d� real symmetric matrices. The

parameter � is defined as �=limN→� 2Ndof /N2, where Ndof is

the number of real degrees of freedom of the matrix X. For

case �a� the flat measure is given by DX�=�ijdX�,ijdX̄�,ij or

equivalently by DX�=�ijd�Re X�,ij�d�Im X�,ij� and �=4; for

case �b� DX�=�idXii�i�jd�Re X�,ij�d�Im X�,ij�, �=2; for

case �c� DX�=�ijdX�,ij, �=2; and finally for case �d� DX�

=�i�jdX�,ij, �=1. For cases �c� and �d� the Hermitian con-

jugate X�
† reduces to the transpose X�

T . The proportionality

symbol in Eq. �7� means that the measure is displayed with-

out a normalization constant which is fixed by the condition

�d��X1 , . . . ,XM�=1.

With this choice of � the variance of individual elements

	�X�,ij�2
=1 /N, so that the scaling parameters �1= ¯ =�M

=1 and hence �=1 in Eq. �5�. This means that the eigenvalue

density of individual matrices X� is given by the Girko-

Ginibre law �2� for cases �a� and �c� and the Wigner law �1�
for cases �b� and �d�, in both cases with �=1. For the sake of

simplicity we stick to this choice in the rest of the paper. The

spectrum for arbitrary �1 , . . . ,�M can be obtained by a trivial

rescaling.

Later on we will also consider a general case of matrices

from the elliptic ensemble with the eigenvalue distribution

�3� and a product of nonidentically distributed matrices,

where X1 , . . . ,XM belong to different elliptic ensembles.

B. Green’s function

We shall follow here the standard strategy of calculating

the eigenvalue density of a random matrix by first calculating

the Green’s function g�z , z̄� and then using an exact relation

between the eigenvalue density and the Green’s function. Let

BURDA, JANIK, AND WACLAW PHYSICAL REVIEW E 81, 041132 �2010�

041132-2



us recall this relation. Using the following representation of

the two-dimensional  function:

�2��z − 	� = lim
�→0

1

�

�2

��z − 	�2 + �2�2
= lim

�→0

1

�

�

� z̄
� z̄ − 	̄

�z − 	�2 + �2� ,

�8�

one finds that �4,15–17�

�X�z, z̄� =
1

�

�g�z, z̄�

� z̄
, �9�

where

g�z, z̄� = lim
�→0
� 1

N
�

i

N
z̄ − 	̄i

�z − 	i�
2 + �2�

= lim
�→0
� 1

N
Tr

z̄1N − X†

�z̄1N − X†��z1N − X� + �2
1N

� , �10�

and 1N is an N�N identity matrix. As we shall see later, the

Green’s function can be calculated in the limit N→� using a

summation method for planar Feynman diagrams. It is con-

venient to think of g�z , z̄� as a part of a larger object �18�, a

2N�2N matrix G with four N�N blocks �10,11�,

G = �Gzz Gzz̄

Gz̄z Gz̄z̄

� = lim
�→0
��z1N − X i�1N

i�1N z̄1N − X†�−1� .

�11�

Before we continue let us shortly comment on the notation

used in the last formula since we will also use it in the

remaining part of the paper. The subscripts zz, zz̄, z̄z, and z̄z̄

refer to the position of the N�N blocks in the corresponding

2N�2N matrix. In the shorthand notation the arguments

�z , z̄� of a function defined on the complex plane are skipped,

so the correct reading of, for instance, Gzz is Gzz=Gzz�z , z̄�.
We will also use a convention that the normalized trace of an

N�N matrix denoted by a capital letter will be denoted by

the corresponding small letter; for instance, gzz̄=
1

N
Tr Gzz̄.

Now coming back to the problem, by inverting the matrix

in the brackets on the right-hand side in the last equation we

can see that the Green’s function g�z , z̄� is equal to the nor-

malized trace of the upper-left submatrix,

g�z, z̄� � gzz�z, z̄� =
1

N
Tr Gzz�z, z̄� . �12�

When one calculates the Green’s function �10� or the matrix

G �Eq. �11��, one has to take the limit N→� first, and only

then allow for �→0. This comes from the following reason-

ing. If �=0, for finite N the function in the brackets 	¯ 
 on

the right-hand side of Eq. �10� has isolated poles on the

complex plane. However, in the limit N→� the poles coa-

lesce and the function becomes nonholomorphic. One cannot

then make an analytic continuation of the function from ho-

lomorphic to nonholomorphic region, as it is done when cal-

culating G by diagrammatic method which utilizes O�1 /z�
expansion. A small ��0 is necessary to make G analytical

everywhere. If one naively first took the limit �→0, and only

then the limit N→�, the matrix G would become block di-

agonal: Gzz= 	�z−X�−1
, Gz̄z̄
†

= 	�z̄−X†�−1
, and Gzz̄=Gz̄z=0.

However, we shall see that

gzz̄�z, z̄� = lim
�→0

lim
N→�

� 1

N
Tr

− i�1N

�z̄1N − X†��z1N − X� + �2
1N

�
�13�

and gz̄z�z , z̄� differ from zero in the nonholomorphic region.

In Ref. �10� it was shown that these quantities are related to

the statistics of left and right eigenvectors of the non-

Hermitian random matrix ensemble.

The quantities gzz̄=gz̄z are purely imaginary, and �=

−gzz̄gz̄z is a sort of order parameter for nonholomorphic be-

havior, which is positive in a region of the complex plane

where the Green’s function is nonholomorphic. The effect of

pole coalescence and the emergence of a nonholomorphic

behavior are very similar to the spontaneous breaking of a

global symmetry in statistical models. In such systems the

symmetry is preserved as long as the system size N is finite.

It may, however, get spontaneously broken in the limit N

→�. Let us take the Ising model as an example. Its Hamil-

tonian is invariant under a global transformation flipping all

spins and hence it has a Z2 symmetry. As long as the number

of spins is finite, the system is Z2 symmetric and the average

magnetization, which is an order parameter, is equal to zero.

However, in the thermodynamic limit, which is when the

system size becomes infinite, the Z2 symmetry gets sponta-

neously broken below a critical temperature and the average

magnetization is nonzero. If one first calculated the average

magnetization for a finite system and only then took the limit

N→�, the magnetization would be zero in this limit for all

temperatures. To avoid the problem one can introduce a tiny

external magnetic field h which weakly breaks the symmetry

for finite-size systems. Now, if one first takes the limit N

→� and only then h→0, one will obtain the correct result.

In our case, the small parameter � plays an analogous role to

h and it guarantees that nonholomorphic contributions will

be correctly picked up for N→�.

C. Linearization

Let us have a closer look at the function in the brackets in

the definition of the Green’s function �10�. In our original

problem the matrix X is a product X=X1¯XM of random

matrices, so it is a nonlinear object from the point of view of

the degrees of freedom that one has to average over. As a

consequence the diagrammatic method would become very

complicated. One can, however, linearize the problem by a

trick used in �12� which relies on substituting X by a matrix

Y of dimensions MN�MN which is linear in Xk’s and has

eigenvalues closely related to those of X. The matrix Y is

constructed from X�’s which are placed in a cyclic positions

of a sparse MN�MN matrix,
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Y =�
0 X1 0

0 0 X2 0

� �

0 0 XM−1

XM 0

� . �14�

One can immediately discover a relation between eigenval-

ues of Y and those of X=X1¯XM if one calculates the Mth

power Y, which gives a block-diagonal matrix

YM =�
Y1 0

Y2

�

0 YM

� , �15�

with Y� being cyclic permutations of X�’s, Y�

=X�X�+1¯X�+M−1 �in the cyclic convention X�+M �X�, and

X0�XM�. It is easy to see that all blocks Y� have the same

eigenvalues. Indeed, if 	 is an eigenvalue of Y� to an eigen-

vector v��, Y�v��=	v��, it is also an eigenvalue of Y�−1 to the

eigenvector v��−1=X�−1v��. One can see this by multiplying

both sides of Y�v��=	v�� by X�−1, obtaining X�−1Y�v��

=	X�−1v��, which is equivalent to Y�−1v��−1=	v��−1. In other

words, the matrix YM has exactly the same eigenvalues as X

and each eigenvalue is M-fold degenerated. Eigenvalues of X

are thus related to those of Y as 	X=	Y
M. The eigenvalue

density �X�z , z̄� can be calculated from �Y�w , w̄� of Y by

changing the variables z=wM,

�X�z, z̄� = M
�w

�z

�w̄

� z̄
�Y�w,w̄� =

1

M
�z�−2+�2/M��Y„w�z�,w̄�z̄�… .

�16�

The factor M in front of the Jacobian is related to the fact

that the transformation z=wM maps the complex plane M

times onto itself. The problem is thus reduced to finding the

spectral density of Y, which is linear with respect to

X1 , . . . ,XM. The density �Y�w , w̄� can be found from the ap-

propriate Green’s function. We will show below that

�Y�w , w̄� is given by a Girko-Ginibre distribution �2�, irre-

spective of M and of 
1 ,
2 , . . . ,
M. This is a general result.

In particular, for M =2 the matrix Y �Eq. �14�� has an antidi-

agonal block structure as chiral Gaussian matrices which

have been intensively studied in the context of spectral prop-

erties of the Dirac operator in QCD �19�. In this case, the

form of the eigenvalue density of Y for circular case �
1

=
2=0� can be inferred from results presented in �20–22� for

complex, quaternion real, and real matrices, respectively.

III. GREEN’S FUNCTION AND PLANAR

DIAGRAMS

In this section we recall the diagrammatic technique of

calculating the Green’s function. We begin with Hermitian

matrices and later generalize the method to non-Hermitian

ones and eventually to matrices which additionally have a

block structure like the matrix Y from the previous section.

Let us make a general comment before we proceed. The

diagrammatic method is based on the observation that the

Green’s function G can be interpreted as a generating func-

tion for connected two-point Feynman diagrams. In the limit

N→� only planar diagrams contribute to G since nonplanar

ones are suppressed by at least a factor O�1 /N� �23,24�. In

this limit one can write a set of two self-consistent algebraic

matrix equations which relate G to a generating function �
for one-line irreducible diagrams. The equations are shown

schematically in Fig. 1 and will be explained later. They can

be solved for G. We want to stress that these equations have

exactly the same form for Hermitian complex matrices and

for matrices with a block structure. They only differ by an

algebraic structure reflecting the indexing of the matrices G

and �.

We finish with a remark that these equations hold for N

→�. In the context of the discussion about the order of

taking the limits in Eq. �13�, this means that one can safely

set �=0 since the limit N→� has already been taken.

A. Hermitian matrices

We will first demonstrate the diagrammatic technique on

the example of Hermitian matrices and derive the Wigner

semicircle law �1�. Let us assume that A=A†, A= �Aab,
where a=1, . . . ,N and b=1, . . . ,N, are drawn from an en-

semble with a probability measure

d��A� � e−�N/2�Tr A2

DA , �17�

where DA=�adAaa�a�bd�Re Aab�d�Im Aab�. The normaliza-

tion constant, which is implicit in the above formula, is fixed

by the condition �d��A�=1. The eigenvalues 	i of the matrix

A are real. This makes the situation simpler than the one for

general non-Hermitian matrices discussed in Sec. II. The ei-

genvalue density can be expressed as �1�

��	� =� 1

N
�

i

N

�	 − 	i�� , �18�

where now the  function is one dimensional. Also the

Green’s function G matrix takes a simpler form,

G = 	�Z − A�−1
 �� �Z − A�−1d��A� . �19�

Here, Z=z1N, where z is a complex number. The Green’s

function g�z�� 1

N
Tr G�z� is obtained by the Stieltjes trans-

form of the eigenvalue density,

g�z� =� d	
��	�
z − 	

. �20�

The last equation yields

��	� = −
1

�
Im g�	 + i�� , �21�

for �→0, as follows from a standard representation of the

one-dimensional  function �x�=−
1

� Im�x+ i��−1. The above

Green’s function can be calculated analytically in the large N

limit, expanding Eq. �19� in terms of powers of Z−1 as fol-

lows:
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G�z� = Z−1 + 	Z−1AZ−1AZ−1
 + 	Z−1AZ−1AZ−1AZ−1AZ−1


+ ¯ . �22�

The factors Z−1’s are independent of A’s and thus can be

pulled out of the average brackets. What remains are corre-

lation functions of the type 	Ai1i2
¯Ai2n−1i2n


 which by virtue

of the Wick theorem can be expressed as products of two-

point correlation functions �propagators�,

	AabAcd
 =
1

N
adbc. �23�

This observation allows one to graphically represent Eq. �22�
as a sum over Feynman diagrams �see, for instance, �25��, as

shown in Fig. 1�B�. Each propagator is represented as a

double arc joining two pairs of matrix indices, while Zab
−1 is

drawn as a horizontal line joining indices a and b �Fig.
1�A��. In order to calculate Gab one has to sum up contribu-
tions of all connected diagrams with two external points a ,b.
For finite N this is not an easy task because there are infi-
nitely many diagrams. The problem enormously simplifies in
the limit N→� since in this limit only planar diagrams con-
tribute to the leading term of 1 /N expansion and all nonpla-
nar diagrams can be neglected �23,24�. It turns out that all

planar diagrams can be summed up using an old trick known

from field theory which reduces the problem to a closed set

of equations for G. These equations are known as Dyson-

Schwinger equations and we will discuss them now.

First, we introduce a generating function � for one-line

irreducible diagrams, that is, diagrams which cannot be split

by cutting a single horizontal line �see Fig. 1�C��. �ab gen-

erates all one-line irreducible diagrams with vertices a and b.

A)

= 〈AabAcd〉= (Z−1)ab

aa bb c d

B)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

G
= +

+

++

+ . . .

C)

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

= + + . . .Σ

D)

� � � �
� � � �

� � � �
� � � �

� � � � �
� � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
�

G
= ++ + . . .

E)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

G

=
Σ

FIG. 1. �A� Feynman rules. �Z−1�ab is drawn as a line between a and b, and the propagator 	AabAcd
 is drawn as a double arc joining a

with d and b with c, respectively. �B� Graphical representation of Eq. �22�. The last three displayed graphs correspond to the third term in

Eq. �22�. The contribution of the last diagram can be neglected in the large N limit since it is nonplanar and has a suppressing factor 1 /N2.

�C� Definition of self-energy �. �D� The first Dyson-Schwinger equation which relates G to �. �E� The second Dyson-Schwinger equation.
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The two generating functions are related to each other be-

cause any diagram from G can be constructed as a sandwich

of horizontal lines and one-line irreducible diagrams �Fig.

1�D��,

G = Z−1 + Z−1�Z−1 + Z−1�Z−1�Z−1�Z−1 + ¯ = �Z − ��−1.

�24�

This matrix equation can be viewed as a definition of �. The

introduction of � itself does not help one to solve the prob-

lem. However, one can write down an independent equation

for � and G. It follows from the observation that any one-

line irreducible diagram can be obtained from a diagram

from G by adding an arc �a propagator� to it �Fig. 1�E��. This

gives

�ab = �
c,d

Gcd

1

N
cdab = gab, �25�

or, in matrix notation, �=g1N. Taking the trace of both sides

we obtain �=g, where �� 1

N
Tr � is the normalized trace of

�. The two Eqs. �24� and �25� form a closed set of equations

which can be solved for the Green’s function g�z�. Inserting

the last equation to Eq. �24� with Z=z1N we have g�z−g�
=1 and hence g�z�=

1

2
�z−�z2−4� and ��	�=

1

2�
�4−	2, as fol-

lows from Eq. �21�.

B. Complex matrices

Let us now discuss how to calculate the Green’s function

in case of non-Hermitian Gaussian random matrices with

complex entries �see, for instance, �13��. The probability

measure is now

d��A� � e−N Tr AA†�
i,j

d�Re Aij�d�Im Aij� , �26�

which corresponds to �=4 in Eq. �7�. The propagators are

	AabAcd
 = 0, 	AabAcd
† 
 =

1

N
adbc,

	Aab
†

Acd
 =
1

N
adbc, 	Aab

†
Acd

† 
 = 0. �27�

It is convenient to think of A and A† as N�N submatrices of

a 2N�2N matrix,

A = �Azz Azz̄

Az̄z Az̄z̄

� = �A 0

0 A†� . �28�

The off-diagonal blocks are equal to zero for this particular

matrix. We use a convention discussed in Sec. II: the position

of an N�N submatrix is denoted by subscripts z , z̄. We apply

the same notation to other 2N�2N matrices: the Green’s

function, the self-energy �, and the matrix Z,

G = �Gzz Gzz̄

Gz̄z Gz̄z̄

�, � = ��zz �zz̄

�z̄z �z̄z̄

�, Z = �Zzz Zzz̄

Zz̄z Zz̄z̄

� .

�29�

Matrix elements of the block Gzz of G will be denoted by

Gab, elements of Gzz̄ by Gab̄, etc. In other words, the sub-

scripts z and z̄ serve also as templates for the corresponding

barred or unbarred indices. For completeness let us rewrite

the propagators �27� using this notation,

	AabAcd
 = 0, 	AabAc̄d̄
 =
1

N
ad̄bc̄,

	Aāb̄Acd
 =
1

N
ādb̄c, 	Aāb̄Ac̄d̄
 = 0. �30�

Now we are ready to write down the Dyson-Schwinger

equations for complex matrices. The first equation is identi-

cal to Eq. �24�, except that now G, �, and Z have dimensions

2N�2N,

�Gzz Gzz̄

Gz̄z Gz̄z̄

� = �Zzz − �zz Zzz̄ − �zz̄

Zz̄z − �z̄z Zz̄z̄ − �z̄z̄

�−1

. �31�

This equation is general, but later we will write it for a spe-

cific form of Z relevant for the calculation of the eigenvalue

density. The second equation, which corresponds to Eq. �25�,
can be derived using the propagators defined in Eq. �30�. It

can be done separately in each of sectors zz, zz̄, z̄z, and z̄z̄ as

follows:

�ad = 0, �ad̄ =
1

N
ad̄bc̄Gbc̄ = ad̄gzz̄,

�ād =
1

N
ādb̄cGb̄c = ādgz̄z, �ād̄ = 0, �32�

where gzz̄=
1

N
Tr Gzz̄ and gz̄z=

1

N
Tr Gz̄z. In matrix notation the

last equation can be written as

��zz �zz̄

�z̄z �z̄z̄

� = � 0 gzz̄1N

gz̄z1N 0
� . �33�

One should note that the form of this equation is independent

of Z, while the form of the first Dyson-Schwinger equation

�31� is independent of the propagator structure. If we insert

now

Z = lim
�→0

� z1N i�1N

i�1N z̄1N

� = �z1N 0

0 z̄1N

� �34�

to Eq. �31�, remembering that we are allowed to take �→0

since all above equations are derived for large N and hence

the limit N→� has been taken, we eventually obtain a ma-

trix equation

�Gzz Gzz̄

Gz̄z Gz̄z̄

� = �z1N − �zz − �zz̄

− �z̄z z̄1N − �z̄z̄

�−1

, �35�

which together with Eq. �33� forms a closed set of algebraic

equations for G�z , z̄�.
We will now solve this set of equations and then deter-

mine ��z , z̄� using Eq. �9�. We first notice that Eq. �33� re-

duces to a 2�2 matrix equation,
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��zz �zz̄

�z̄z �z̄z̄

� = � 0 gzz̄

gz̄z 0
� , �36�

where, as before, small letters denote the normalized traces

of the corresponding blocks; for instance, �zz=
1

N
Tr �zz.

Similarly, Eq. �35� reduces to

�gzz gzz̄

gz̄z gz̄z̄

� = �z − �zz − �zz̄

− �z̄z z̄ − �z̄z̄

�−1

, �37�

which, after eliminating �’s with the help of Eq. �36�, leads

to

�gzz gzz̄

gz̄z gz̄z̄

� = � z − gzz̄

− gz̄z z̄
�−1

=
1

�z�2 − gzz̄gz̄z

� z̄ gzz̄

gz̄z z
� .

�38�

This equation has two solutions. The first one corresponds to

gz̄z=gzz̄=0 which gives gzz=z−1 and is equivalent to the

trivial holomorphic solution and hence must be true for large

�z�. The second solution corresponds to �z�2−gzz̄gz̄z=1. In this

case the off-diagonal blocks are different from zero and gzz

= z̄. The two solutions match for �z�2=1. Therefore, the first

solution holds outside the unit circle and the second one

holds inside the circle. Using the Gauss law �9� one finds

��z, z̄� = �
1

�
for �z� � 1

0 for �z� � 1,
� �39�

which is the celebrated Girko-Ginibre distribution �15,16�.
To summarize this part, one can write the closed set of

algebraic equations for G and � in the large N limit using

diagrammatic relations between the generating function for

connected two-point planar diagrams �given by G� and the

generating function for one-line irreducible two-point planar

diagrams �given by the free energy ��. One can set �=0 in

these equations since they are derived already in the limit

N→�.

C. Complex matrices with a block structure

We are now ready to calculate the Green’s function

gY�w , w̄� for the matrix Y �Eq. �14�� which has blocks X�

being independent complex non-Hermitian Gaussian matri-

ces �12�. The matrix G will be now a 2NM �2NM matrix

having four NM �NM blocks Gww, Gww̄, Gw̄w, and Gw̄w̄

which themselves consists of M2 blocks of size N�N which

we shall denote by G��, G��̄, G�̄�, and G�̄�̄, respectively; for

instance,

Gww̄ = �
G11̄ . . . G1M̄

. . .

GM1̄ . . . GMM̄

� . �40�

There is an analogous block structure for the matrix �. One

should distinguish Greek subscripts from Latin subscripts

giving the position of the matrix elements within the block.

For instance, ���̄ is an N�N submatrix of the block �ww̄ and

����̄�ab̄ is an element of this submatrix. In this convention

the normalized trace of a block is ���̄=
1

N
Tr ���̄

=
1

N
�a=1

N ����̄�aā. One can now repeat the same procedure

which we applied to the matrix having a single block and

derive exact relations between the generating function G and

� in the planar limit. The first Dyson-Schwinger equation,

�Gww Gww̄

Gw̄w Gw̄w̄

� = �w1NM − �ww − �ww̄

− �w̄w w̄1NM − �w̄w̄

�−1

, �41�

is almost identical to Eq. �35�, except that the blocks and the

identity matrices are now of dimensions NM �NM. To write

the second equation, we need to know the propagators. Let

us first define a 2NM �2NM matrix Y, a counterpart of A

from Eq. �28�,

Y = �Yww Yww̄

Yw̄w Yw̄w̄

� = �Y 0

0 Y†� , �42�

where Y is cyclic as defined in Eq. �14� and Y† is anticyclic,

Y† =�
0 XM

†

X1
† 0 0

�

XM−2
† 0

0 XM−1
† 0

� . �43�

Since the block matrices Y��+1=X� are assumed to be inde-

pendent of each other, the only nonzero propagators are

	Y12,abY2̄1̄,c̄d̄
 = 	Y23,abY3̄2̄,c̄d̄
 = ¯ = 	YM1,abY1̄M̄,c̄d̄


=
1

N
ad̄bc̄, �44�

or in short

	Y12Y2̄1̄
 = 	Y23Y3̄2̄
 = ¯ = 	YM1Y1̄M̄
 = T , �45�

where the tensor T has elements Tabcd=
1

N
abcd, with indices

corresponding to those of the matrices on the left-hand side.

If we now insert these propagators to the second Dyson-

Schwinger equation, we obtain

���̄ = g�+1� + 11N, �46�

and ���̄=��̄�=0 for ���. The problem is symmetric with

respect to permutation of the matrices X�, so g11̄= ¯

=gMM̄ �gww̄ in the whole ww̄ block and similarly in the w̄w

block. Thus, the last equation can be compactly written as

�ww̄ = gww̄1NM, �w̄w = gw̄w1NM , �47�

where 1NM is now the identity NM �NM matrix for the

whole block, gww̄=
1

NM
Tr Gww̄, and gw̄w=

1

NM
Tr Gw̄w. Inserting

�ww=�w̄w̄=0 and Eq. �47� to Eq. �41� we see that each block

on the right-hand side of Eq. �41� is proportional to the iden-

tity matrix. Thus, Eq. �41� reduces to a 2�2 matrix equation

for the normalized traces which play the role of proportion-

ality coefficients at the identity matrices,
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�gww gww̄

gw̄w gw̄w̄

� = � w − gww̄

− gw̄w w̄
�−1

. �48�

This is identical to Eq. �38� for a complex matrix with a

single block discussed in the previous section. In other

words, the Green’s function, and hence also the eigenvalue

density of the matrix Y, does not depend on the number of

blocks in Y and is given by the Girko-Ginibre law �15,16�,

�Y�w,w̄� = �
1

�
for �w� � 1

0 for �w� � 1.
� �49�

This result is valid also for other matrices considered in Eq.

�7�, that is, for real nonsymmetric and Hermitian complex

matrices, as long as M �1. It is so because what matters is

the structure of propagators only, which is the same for all

mentioned ensembles. In particular, for M =2 one can deduce

this formula from considerations of chiral ensembles

�20–22�. In the next section we shall show how to derive the

above result for the product of M elliptic complex and/or real

matrices with different oblateness parameters 
1� ¯ �
M.

Now we will only observe that by inserting the Girko-

Ginibre spectrum into Eq. �16� we finally obtain

�X�z, z̄� = �X��z�� = �
1

M�
�z�−2+�2/M� for �z� � 1

0 for �z� � 1,
� �50�

which completes the derivation of our main result. In Figs. 2

and 3 we show a comparison between the above formula and

the spectrum of X obtained numerically by the diagonaliza-

tion of finite matrices. The agreement is very good. For the

spectrum of the product of two Hermitian matrices �GUE�
shown in the left panel of Fig. 2 we observe a small devia-

tion from rotational symmetry manifesting as an accumula-

tion of eigenvalues along the real axis and a depletion of

eigenvalues in a narrow strip close to this axis. The number

of eigenvalues on the axis grows as �N and the width of the

strip decreases as 1 /�N when N→�. This effect is almost

identical to the one known for real Girko-Ginibre matrices

�26,27�. If one multiplies three or more GUE matrices the

effect disappears. A difference between the product of two

and the product of more than two GUE matrices is that for

two the trace Tr X1X2 is real, whereas for three �or more� it is

not. In other words, the constraint of the trace to be real

introduces a weak spherical symmetry breaking of the eigen-

value spectrum.

IV. PRODUCT OF ARBITRARY GAUSSIAN MATRICES

(ELLIPTIC ENSEMBLES)

Let us now consider a general class of non-Hermitian ran-

dom matrices which include as special cases the well-known

examples of Hermitian �GUE�, Girko-Ginibre, and anti-

Hermitian ensembles. These “elliptic” ensembles were first

introduced in �4� and can be defined as follows. A complex

elliptic matrix X is obtained as a linear combination of two

identical independent Hermitian Gaussian matrices A ,B: X

=cos���A+ i sin���B, mixed with an arbitrary real mixing

parameter �. Since A and B are independent, the correspond-

ing propagators are 	AabAcd
=
1

N
adbc, 	BabBcd
=

1

N
adbc,

and 	AabBcd
=0. When one changes variables from A and B

to X and X† one finds

	XabXcd
 = 	Xab
†

Xcd
† 
 = 


1

N
adbc, 	XabXcd

† 
 = 	Xab
†

Xcd


=
1

N
adbc, �51�

where 
=cos�2��. The corresponding integration measure

for X reads

d��X� � exp�− N
1

1 − 
2�Tr XX† − 

1

2
Tr�XX

+ X†X†����
ij

d�Re Xij�d�Im Xij� . �52�

For �=0 �
=1� the matrix X is Hermitian, for �=� /2 �
=

−1� it is anti-Hermitian, while for �=� /4 �
=0� it is isotro-

pic complex.
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FIG. 2. Plots of �X�z , z̄� for X1 ,X2 being two Hermitian matrices

�left�, two complex matrices �middle�, and for X1 being a Hermitian

and X2 an elliptic random matrix with �=� /3 �right�. For each case

100 matrices of size N=100 were generated.
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FIG. 3. �Color online� Plots of M��z�2−�2/M��X��z�� obtained from

simulations for various M and matrix sizes N. The theoretical dis-

tribution �not shown in the figure� which corresponds to Eq. �5� is a

step function f��z��=1 for 0� �z��1 and zero, otherwise. Left: X

=X1X2 �M =2� for N=100 and X1 ,X2 taken from the same en-

sembles as in Fig. 2: black solid line for Hermitian, red dotted line

for complex, and blue dashed line for Hermitian elliptic matrices.

Middle: M =2, complex matrices of sizes N=50,100,200,400

�black solid, red dotted, green dashed, and blue dotted-dashed lines,

respectively�. To obtain these plots, we averaged spectra of

10 000,1000,1000, and 500 matrices and constructed histograms of

absolute values of their eigenvalues. Right: N=200 and M =2,3 ,4

�black solid, red dotted, and blue dashed lines�. For each M, 1000

matrices were generated.
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A. Eigenvalue distribution of a single elliptic random matrix

One can determine the eigenvalue distribution of X using

the same methods as in Sec. III B. The only difference is that

the propagators 	XabXcd
= 	Xab
† Xcd

† 
 �Eq. �51�� do not vanish

but are proportional to 
. This leads to the following modi-

fication of the first Dyson-Schwinger equation �36�:

��zz �zz̄

�z̄z �z̄z̄

� = �
gzz gzz̄

gz̄z 
gz̄z̄

� , �53�

while the second one �Eq. �37�� stays intact,

�gzz gzz̄

gz̄z gz̄z̄

� = �z − �zz − �zz̄

− �z̄z z̄ − �z̄z̄

�−1

. �54�

These equations can be solved for gzz. The solution reads

gzz = �
z̄ − 
z

1 − 
2
for

x2

�1 + 
�2
+

y2

�1 − 
�2
� 1

z − �z2 − 4


2

, otherwise, �

�55�

where z=x+ iy. The nonholomorphic solution matches the

holomorphic one on the ellipse. The eigenvalue density is �4�

��z, z̄� =
1

�

�gzz

� z̄
= �

1

��1 − 
2�
for

x2

�1 + 
�2
+

y2

�1 − 
�2
� 1

0, otherwise.
�

�56�

The parameter 
 is a measure of flattening of the ellipse on

which ��z , z̄��0. For 
=0 the last equation reproduces the

result for non-Hermitian complex matrices. For 
→1, the

ellipse reduces to a cut on the real axis. In order to determine

the eigenvalue density in this case one should first project the

density for 
�1 onto the real axis, �
�
�x�=�dy��x ,y�, and

then take the limit 
→1. One recovers the Wigner semicircle

law �
�
�x�=

1

2�
�4−x2, as expected.

B. Eigenvalue distribution of a product of two or more elliptic

random matrices

We are now interested in the eigenvalue density of the

product �4� where X�’s are drawn from a Gaussian ensemble

with the measure �52�. We shall show that the result is again

given by Eq. �5� and hence exhibits a large degree of univer-

sality: it does not depend on 
 and is exactly the same even

if each of the matrices X� is drawn from a Gaussian en-

semble with a different flattening parameter 
�. We will de-

rive Eq. �5� for X=X1X2 and then make a comment on the

generalization to M �2.

We will use the linearization and calculate first the eigen-

value density of the matrix Y �Eq. �14�� constructed from X1

and X2, having the only nonvanishing propagators given by

Eq. �51� with two parameters 
1 and 
2. As before, first we

have to determine the propagator structure for the block ma-

trix Y �Eq. �42�� and then apply it to derive the Dyson-

Schwinger equation. The matrix Y reads

Y = �Y 0

0 Y† � =�
0 X1 0 0

X2 0 0 0

0 0 0 X2
†

0 0 X1
† 0

� . �57�

The first nonvanishing propagator comes from the correla-

tions between X�’s and X�
† ’s, exactly as in Eq. �45�,

	Y12Y2̄1̄
 = 	Y21Y1̄2̄
 = T . �58�

The next one comes from autocorrelations of X�’s �Eq. �51��
which are proportional to 
,

	Y12Y12
 = 
1T, 	Y21Y21
 = 
2T , �59�

and the last one comes from autocorrelations of X�
† ’s,

	Y1̄2̄Y1̄2̄
 = 
1T, 	Y2̄1̄Y2̄1̄
 = 
2T . �60�

Here, T denotes again a tensor with elements Tabcd

=
1

N
adbc, where a ,b are indices of the first matrix and c ,d

are indices of the second one on the right-hand sides of the

above equations. All other correlations between the blocks of

Y vanish. We can now write two Dyson-Schwinger equa-

tions:

�
�11 �12 �11̄ �12̄

�21 �22 �21̄ �22̄

�1̄1 �1̄2 �1̄1̄ �1̄2̄

�2̄1 �2̄2 �2̄1̄ �2̄2̄

� =�
0 
1g21 g22̄ 0


2g12 0 0 g11̄

g2̄2 0 0 
1g2̄1̄

0 g1̄1 
2g1̄2̄ 0
� ,

�61�

�
g11 g12 g11̄ g12̄

g21 g22 g21̄ g22̄

g1̄1 g1̄2 g1̄1̄ g1̄2̄

g2̄1 g2̄2 g2̄1̄ g2̄2̄

�
=�

w − �11 − �12 − �11̄ − �12̄

− �21 w − �22 − �21̄ − �22̄

− �1̄1 − �1̄2 w̄ − �1̄1̄ − �1̄2̄

− �2̄1 − �2̄2 − �2̄1̄ w̄ − �2̄2̄

�
−1

. �62�

In the first equation the off-diagonal blocks are the same as

in the previous section �Eq. �46��. The diagonal blocks

�ww ,�w̄w̄ now depend on 
�’s. As an illustration we show in

Fig. 4 a graphical representation of the equation for �12

=
1g21 which explains the flip of indices. Let us first look for

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Σ
µ, ν ∈
{1, 2, 1̄, 2̄}

1 11 1222 2µ ν

Σ
GG

= =

FIG. 4. Example of calculation of �12 in Eq. �61�. We write the

second Dyson-Schwinger equation for �12. The only nonvanishing

propagator is the one between indices 1,2 and 1,2. Taking the trace

of both sides of the equation we arrive at �12=
1g21.
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a holomorphic solution, so assume that off-diagonal blocks

of g vanish: gww̄=gw̄w=0. In this case the above equations

reduce to

��11 �12

�21 �22

� = � 0 
1g21


2g12 0
�, �g11 g12

g21 g22

�
= �w − �11 − �12

− �21 w − �22

�−1

, �63�

with the corresponding equations for �w̄w̄ and gw̄w̄ being

complex conjugate of those above. This gives

�g11 g12

g21 g22

� = � w − 
1g21

− 
2g12 w
�−1

, �64�

which has two solutions: one with g11=
1

w
and the other one

with g11=w /�
1
2. We take the first one because it has the

correct asymptotic behavior for large w. For this solution we

have g22=
1

w
and g12=g21=0. The holomorphic solution has

to be sewed with the nonholomorphic, one so that at the

boundary g12=g21=0. If we assume that these elements van-

ish also inside the nonholomorphic region �and correspond-

ingly g1̄2̄=g2̄1̄=0�, then the Eq. �61� reduces to

�
�11 �12 �11̄ �12̄

�21 �22 �21̄ �22̄

�1̄1 �1̄2 �1̄1̄ �1̄2̄

�2̄1 �2̄2 �2̄1̄ �2̄2̄

� =�
0 0 g22̄ 0

0 0 0 g11̄

g2̄2 0 0 0

0 g1̄1 0 0
� , �65�

with vanishing diagonal blocks. This equation is identical to

the equation with 
1=
2=0 and was discussed in the previ-

ous section. As we know it gives the Girko-Ginibre distribu-

tion for the matrix Y and hence we obtain Eq. �5� for X

=X1X2.

One can repeat the whole reasoning for a product of more

than two matrices. One finds again that the solution 1 /w

valid outside the nonholomorphic region corresponds to van-

ishing blocks g��=g�̄�̄=0 for ���, and that it can be sewed

with the nonholomorphic solution for which the blocks also

vanish. This gives �ww=�w̄w̄ and one obtains exactly the

same equations as for 
1= ¯ =
M =0. Therefore, for M �2

the eigenvalue distribution of Y is also given by the Girko-

Ginibre law. This result is universal: the spectrum of X is

given by Eq. �5�, independent of whether we multiply two

Hermitian matrices, or Hermitian by generic complex, or

Hermitian by anti-Hermitian, etc. The limiting spectrum is

always the same and differs only by finite-size effects.

One can also extend this result to purely real matrices

generated from the ensemble with a measure �4�

d��X� � exp�−
N

2

1

1 − 
2
�Tr XXT − 
Tr XX���

ij

dXij .

�66�

The case 
=1 corresponds to symmetric real matrices, 
=

−1 corresponds to antisymmetric ones, and 
=0 corresponds

to isotropic real matrices. The diagrammatic equations in the

limit N→� are exactly the same as before, because the

propagators have the same structure.

V. PROJECTION OF THE SPECTRUM OF A

COMMUTATOR OF GUE MATRICES

In this section we show that the conjecture made in �14� is

not true. Let us consider a matrix X=X1X2 which is a product

of two Hermitian GUE matrices X1 ,X2. According to the

formula �5�, the eigenvalue density of X is �X�z , z̄�=
1

2��z� for

�z��1 and zero, otherwise. The projection of this function on

the real �or imaginary� axis gives

�
�
�x� =

1

�
ln

1 + �1 − x2

�x�
, �67�

for −1�x�1. According to �14�, this result should be equal

to the eigenvalue density �+�x� of �X1X2+X2
†X1

†� /�8 or �−�x�
of i�X1X2−X2

†X1
†� /�8. Up to a scaling factor of �8, these

spectral densities are equal to the spectra of the anticommu-

tator �X1 ,X2 or the commutator i�X1 ,X2�, because X1

=X1
† , X2=X2

†. Moreover, �−�x�=�+�x� as follows from the

observation that in the limit N→� all the moments of the

commutator and the anticommutator are the same:

Tr	�X1 ,X2�k
=Tr	�X1 ,X2k
 for all k=1,2 , . . ..

We calculate now the eigenvalue density �+�x� of the res-

caled anticommutator �X1 ,X2 /�8. We define two matrices

A= �X1+X2� /�2 and B= �X1−X2� /�2 which are also mutually

independent Hermitian matrices with a factorized probability

measure

d��A,B� � e−N/2 Tr A2

e−N/2 Tr B2

DADB . �68�

We have �X1 ,X2=A2−B2. One can use the technique of free

random variables �28� to calculate the eigenvalue density of

A2−B2 since in the limit N→� the matrices A2 and B2 rep-

resent free random variables. The addition law for a sum of

free variables is expressed in terms of an R transform or

equivalently in terms of a Blue’s function B�z�, which is a

functional inverse of the Green’s function G(B�z�)=z and

takes a simple form Ba+b�z�=Ba�z�+Bb�z�−z−1, where a and

b are free random variables. In our case a=A2, b=−B2. The

Green’s function Ga of A2 is a special case of the Green’s

function for the Wishart distribution, while Gb for −B2 cor-

responds to a reflected Wishart spectrum 	→−	, and hence

Ga�z� =
1 − �1 − 4/z

2
, Gb�z� = − Ga�− z� =

− 1 + �1 + 4/z

2
.

�69�

The Blue functions for both cases read

Ba�z� =
1

z�1 − z�
, Bb�z� =

1

z�1 + z�
, �70�

and thus

Ba+b�z� = Ba + Bb −
1

z
=

1 + z2

z�1 − z2�
. �71�

This equation has to be inverted for Ga+b�z�, which is the

Green’s function for the anticommutator
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z =
1 + Ga+b�z�2

Ga+b�z��1 − Ga+b�z�2�
, �72�

which leads to a cubic equation for Ga+b�z�. The solution

which has the correct behavior Ga+b�z�→1 /z for large z

reads

Ga+b�z� =
1 + 3z2 + �− 1 − 18z2 + 3�3�z2 + 11z4 − z6�2/3

3z�− 1 − 18z2 + 3�3�z2 + 11z4 − z6�1/3
.

�73�

Taking into account the scaling factor of �8 we finally arrive

at

�+�x� = −
�8

�
Im Ga+b�x�8 + i0+�

=
�3

6�

1 + 24x2 − �1 + 144x2 − 6�6�x2 + 88x4 − 64x6�2/3

�x��1 + 144x2 − 6�6�x2 + 88x4 − 64x6�1/3
.

�74�

This is different from �
�
�x� of Eq. �67�. In Fig. 5 we compare

both spectral densities and show also results of numerical

simulations which perfectly agree with Eq. �74�. This falsi-

fies the conjecture that, if the spectrum of a non-Hermitian

matrix is rotationally symmetric, it can be found by solving

the symmetrized or antisymmetrized Hermitian problem.

VI. CONCLUSIONS

The main result of this paper is that the eigenvalue density

of a product of large centered �with zero mean� Gaussian

matrices assumes a very universal form �5� with a single

scaling parameter � representing the radius of a circular sup-

port in the complex plane and related to the amplitude of

fluctuations of matrix entries. The matrices in the product do

not have to be identical and each of them may belong to a

different elliptic ensemble.

Taking into account the universality of the Wigner’s semi-

circle law or the Girko-Ginibre distribution for matrices hav-

ing their entries drawn from independent distributions, it is

tempting to conjecture that our result will also hold in this

setting. Namely, we suppose that the same asymptotic result

holds for products of Wigner matrices having independent

elements drawn from any centered distribution which fulfills

Pastur-Lindeberg’s condition �3�. To assess the validity of

this conjecture we performed numerical simulations, assum-

ing various distributions of elements of the matrices. The

only requirement was that the variance of the distribution

was equal to 1 /N. We did not observe any deviations from

Eq. �5� for short-tailed distributions. In Fig. 6 we show an

example for a uniform distribution with zero mean and vari-

ance 1 /N.

As far as future projects are concerned, it would be inter-

esting to generalize the discussion to the Gaussian symplec-

tic ensemble �21� and to study microscopic properties of ei-

genvalues of the product of various types of Gaussian

matrices from different invariant ensembles �20–22�. It

would also be interesting to analytically derive the formula

for the eigenvalue distribution of the product of M matrices

of finite size N �see Fig. 2 in the middle�. For the Girko-

Ginibre ensemble �29� it is given by ��z��erfc��2��z�
−1��N� / �2��. We expect a qualitatively similar behavior

also for the product of matrices.

The discussion presented in this paper holds for Gaussian

matrices for which the first moment has zero mean,

	Tr X�
=0. It would be interesting to check how it changes

when 	Tr X�
�0. This could be a step toward a generaliza-

tion of Voiculescu’s S-transform composition rule �30� for

calculating the eigenvalue density of asymptotically large

matrices representing free random variables, to the case

when their product has complex eigenvalues.

ACKNOWLEDGMENTS

We thank the Polish Ministry of Science Grants No.

NN202 229137 �2009–2012� �Z.B.� and No. NN202 105136

�2009–2011� �R.A.J.�. R.A.J. was partially supported by the

Marie Curie ToK KraGeoMP �Grant No. SPB 189/6.PRUE/

2007/7�. B.W. acknowledges partial support by the EC-RTN

Network ENRAGE under Grant No. MRTN-CT-2004-

005616 and EPSRC Grant No. EP/030173.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

x

ρ
(x

)

FIG. 5. Comparison between �+�x� from Eq. �74� �solid line�,
�

�
�x� from Eq. �67� �dashed line�, and numerical simulations

�circles� for N=100 �1000 matrices were generated�.
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FIG. 6. Plots of numerically obtained �X��z�� for X1 ,X2 being

two symmetric matrices which entries �upper triangle� are taken

from uniform distribution �−�3 /N ,�3 /N�, for N=200 and for 1000

matrices generated. Dashed line shows the theoretical distribution

in the limit N→�.
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