Spectrum Prediction in Cognitive Radio Networks
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Abstract—Spectrum sensing, spectrum decision, spectrum
sharing, and spectrum mobility are four major functions of
cognitive radio (CR) systems. Spectrum sensing is utilized to
identify primary users’ spectrum occupancy status, based on
which CR users can dynamically access the available channels
through the regulation processes of spectrum decision, spectrum
sharing, and spectrum mobility. To alleviate the processing delays
involved in these four functions and to improve the efficiency of
spectrum utilization, spectrum prediction has been extensively
studied in literature. This article surveys the state-of-the-art of
spectrum prediction in CR networks. We summarize the major
spectrum prediction techniques, illustrate their applications, and
present the relevant open research challenges.

I. INTRODUCTION

Currently, the use of the wireless frequencies is mainly
regulated by centralized authorities (Federal Communications
Commission (FCC) in the US) that allocate the spectrum
statically in temporal and spatial dimensions such that the
spectrum band assigned to each user is valid for an extended
period of time (usually decades) and for a large geographical
region (country wide). An illustration of this static spectrum
assignment policy is presented in Fig. 1(a). Obviously, large
portions of the spectrum remain temporally and/or spatially
under-utilized/unused. But due to the proliferation of mobile
devices in recent years, the demand on bandwidth continues
to increase, making dynamic spectrum access a better choice
for managing the spectrum resource.

Cognitive Radio (CR), which provides the capability to
harness the potential of unused/underutilized spectrum (spec-
trum holes) in an opportunistic manner, is a key enabling
technology for dynamic spectrum access. An illustration of
the cognitive radio technology is presented in Fig. 1(b), from
which it is easy to observe that CR can significantly improve
the overall spectrum utilization when the CR users are allowed
to utilize the spectrum holes. A cognitive radio network
typically involves two types of users: primary users (PUs), who
are incumbent licensed users of the spectrum, and CR users
(also known as secondary users), who try to opportunistically
access the unused licensed spectrum as long as the harmful
interference to primary users is limited.

To effectively implement the concept of cognitive radio
networking, CR systems need the capability to perform the
following functions [1]: spectrum sensing, spectrum deci-
sion, spectrum sharing, and spectrum mobility. In spectrum
sensing, CR users sense the PU spectrum occupancy status
and recognize the spectrum holes in the licensed bands that
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can be used for their own communications. Based on the
sensing results, CR users determine which spectrum band
to use (spectrum decision), how to share the spectrum with
other CR users (spectrum sharing), and when to evacuate
the current spectrum band for the returned PUs (spectrum
mobility). Considering the fact that all these four functions
introduce time delays that undermine the spectrum sensing
accuracy as well as the spectrum utilization efficiency of CR
systems, and PU activities exhibit regularity in both the time
and spatial domains, spectrum prediction has been proposed.

Prediction in cognitive radio networks is a challenging prob-
lem that involves several subtopics such as channel status pre-
diction, PU activity prediction, radio environment prediction,
and transmission rate prediction. In this article, we present
an overview on the most important prediction techniques in



cognitive radio networks. This article is organized as follows.
The necessity of prediction is addressed in Section II, and
Section III introduces the prediction techniques and their ap-
plications. Open research issues and challenges are discussed
in Section IV, followed by a conclusion in Section V.

II. NECESSITY OF PREDICTION IN COGNITIVE RADIO
NETWORKS

Cognitive radio is a technology that enables secondary users
to discover and access the spectrum holes in the licensed
bands. The CR technology includes four major functions,
which are presented in Fig. 2.
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Fig. 2. Operation of the cognitive radio functions

The operation of the CR functions shown in Fig. 2 can
be described as follows. A CR user sequentially senses the
spectrum bands and constructs a spectrum pool consisting
of all the discovered spectrum holes in the spectrum sensing
stage, and selects a channel from the pool for its own transmis-
sions in the spectrum decision stage. In order to enhance the
channel capacity, the CR user may share the available channel
with other CR users via appropriate spectrum sharing policy.
Moreover, the CR user must evacuate its occupied channel
upon the return of the primary users according to a spectrum
mobility policy, to guarantee the priority of the primary users
and protect the PU transmissions.

By making use of these four functions, CR users can
opportunistically utilize the unused licensed spectrum for their
own communications. But several shortcomings are identified,
which might hinder the capacity enhancement of CR networks:

o Sensing the wide-band spectrum results in non-negligible
time delays [2].

o Spectrum decision based on the real-time sensing results
undermines the spectrum utilization efficiency due to the
time delays introduced by spectrum sensing and spectrum
decision [3].

« In spectrum sharing, CR users may join at different times
with different bandwidth demands and QoS requirements.

Assigning appropriate spectrum bands to the burst hetero-
geneous CR service requests may lead to considerable
time delays, which results in low efficiency in traditional
spectrum sharing policies.

o CSMA based traditional spectrum mobility policy always
results in transmission collisions since the CR user does
not evacuate its occupied channel until the appearance of
the PU is detected [4].

To overcome these shortcomings, prediction based tech-
niques have been extensively studied. In prediction based
spectrum sensing [2], [S]-[7], a CR user can skip the sensing
duty on some channels that are predicted to be busy, thus re-
ducing the sensing time and energy consumption. In prediction
based spectrum decision [4], [5], [8], a CR user predicts the
quality of the channels in terms of the idle probabilities, idle
durations, and other properties, and then selects a high quality
channel for sensing and accessing to increase the efficiency
of its dynamic spectrum access. In prediction based spectrum
mobility [4], [8], [9], a CR user predicts the appearance time
of PUs, and evacuates the channel before the start of the
PU transmissions. To the best of our knowledge, prediction
based spectrum sharing has never been addressed in literature.
Nevertheless, it is obvious that the existence of a prediction
based spectrum sharing model can help to predict the requests
of the CR users in time, space, and frequency domains, based
on which the spectrum bands can be pre-assigned for effective
spectrum sharing before CR requests come. Such a process can
better exploit the channel capacity and reduce the response
delay.

All these prediction based methods have demonstrated that
prediction is an effective way to improve the performance
of cognitive radio networks. In the following section we
summarize the most typical prediction techniques and their
applications in CR networks.

III. TYPICAL PREDICTION TECHNIQUES

In this section, we introduce a few prediction techniques
and their applications in cognitive radio networks. Two widely
used prediction methods, hidden Markov models and neural
networks, are to be introduced first, followed by the presenta-
tion of the Bayesian inference based prediction, moving aver-
age based prediction, autoregressive model based prediction,
and static neighbor graph based prediction. Finally, we present
a table to summarize the surveyed prediction methods and their
applications.

A. Hidden Markov Model Based Prediction

A Hidden Markov Model (HMM) can be considered as
a generalization of a mixture model that consists of two
processes: the variation of the hidden states is a Markov
process, and the observation under a specific hidden state is
a normal random process. In cognitive radio networks, the
channel occupancy states (busy or idle) are hidden since they
are not directly observable, and the sensing results of the
CR users are the observation of the channel states. Define
the hidden state space as X = {z1,22}, with 21 = 0



and zo = 1 indicating that the channel is idle and busy,
respectively. Similarly, define the observation state space as
Y = {y1,y2} , with y; = 0 and y» = 1 indicating that the
spectrum sensing result is idle and busy, respectively. Let g,
denote the channel state on time slot n and o, denote the
corresponding sensing result. Then, a HMM can be described
by its parameters A = (m, A, B), where 7 is the initial state
probability distribution: m = [m;]1x2, m; = P(q1 = 1), i € X;
A is the state transition probability matrix: A = [a;;]ax2,
aij = P(gn+1 = jlgn = 1), 4,5 € X; and B is the emission
probability matrix: B = [bjx]ax2, bjr = P(on, = k|gn = j),
jeX, keY.

In HMM based prediction [5], [6], the only prior knowledge
of a CR user is the spectrum sensing results within N time
slots, denoted by O = {01, -+ ,on}, withn € {1,--- N}
and o, € Y. Having this knowledge, the CR user takes the
following three steps, shown in Fig. 3, to make a HMM based
prediction:

1) HMM training: In this process, the observation sequence

O = {o1,--- ,on} is used as a training sequence to train
a HMM model and estimate its parameters. Baum-Welch
algorithm is one of the most commonly used HMM
training algorithms, in which the HMM parameters are
estimated by maximizing the probability of observing
the sequence O.

2) Channel state decoding: Solving the optimization prob-
lem Q = argmax P(Q, O|A) according to the Viterbi
algorithm to decode the unknown channel state se-
quence Q@ = {q1, - ,qn}, with n € {1,--- N} and
gn € X, which generates the observation sequence
O={o1, - ,on}.

3) Prediction decision: Given the estimated parameters and
decoded channel states, the future channel state can be
predicted according to the following rule:

if P(Q,1|A > P(Q,0[|A); Gny1 =1 (busy);
if P(Q,1|A < P(Q,0|A); Gn+1 = 0 (idle);

Where §n 41 is the predicted channel state in time slot
N +1.

The HMM based prediction method has been widely used
in cognitive radio networks. In [3], a HMM based channel
state prediction was proposed to minimize the negative impact
of the response delays caused by hardware platforms. The
authors claimed that spectrum sensing introduced time delays
that reduce the accuracy of the sensing results. Therefore,
spectrum decision based on real-time spectrum sensing may
lead to transmission collisions between CR users and primary
users. Nevertheless, spectrum decision based on channel state
prediction can provide an effective way to tackle the problem
since the CR users gain information of the current channel
states from the spectrum sensing results and that of the future
channel states from the prediction results. By selecting a chan-
nel that is sensed as well as predicted to be idle, the CR users
can improve the spectrum utilization efficiency and reduce the
interference with the primary users. In [4], the HMM based
prediction is used to design a smart spectrum mobility scheme.
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Fig. 3. HMM based prediction

This study indicates that the CSMA based traditional spectrum
mobility model always results in transmission collisions since
a CR user does not evacuate its currently occupied channel
before the detection of the PUs. However, in prediction based
smart spectrum mobility [4], also known as proactive channel
switching, a CR user predicts the idle duration of the channel
and the appearance time of the PUs, and leaves the incumbent
channel before detecting any signal from the PUs. Therefore,
it can efficiently reduce the transmission collisions and inter-
ference with the PUs. In this scheme, the authors modeled the
channel usage pattern as a binary series with 0 indicating no
traffic on the channel and 1 indicating the channel is currently
occupied. By using the HMM based prediction method, a CR
user can predict the channel states in the near future and make
a transmission decision accordingly. The CR user can continue
to transmit if the predicted result is idle, and evacuates the
channel if the predicted result is busy. After the evacuation
decision is made, the CR user switches to another channel.
In order to solve the switching channel selection problem,
[9] proposed a HMM based prediction approach, in which
each CR user computes a hopping sequence according to the
predicted channel availability information and switches the
channels according to the sequence.

B.  Multilayer Perceptron Neural Network Based Prediction

A multilayer perceptron (MLP) is a feedforward artificial
neural network model that maps sets of input data onto a set
of appropriate output. In MLP based prediction [6], [7], the
input data is the history observations while the output is the
prediction of the future states.

As shown in Fig. 4, a multilayer perceptron consists of three
or more layers (an input and an output layer with one or more
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Fig. 4. Multilayer Perceptron Neural Networks

hidden layers) of nodes in a directed graph. Each node in one
layer connects with a certain weight to every node in the next
layer. Excluding the nodes at the input layer, each node is a
neuron (or computing unit) that calculates a weighted sum of
the input and transform the sum through a nonlinear activation
function I'(+).

The main challenge in multilayer perceptron neural network
based prediction is the training of the model, namely changing
connection weights of the graph. The training process can be
described as follows: 1) process each piece of observation
and produce corresponding output; 2) calculate the error of
each output compared with the expected value; 3) adjust the
connection weights by minimizing the error in the entire
output. After the training process, prediction can be made
by providing the newest observation as the input to the MLP
model.

Tumuluru et al. applied the MLP based prediction method
for spectrum sensing in cognitive radio networks [6], [7]. In
their approach, each CR user predicts the future channel states
by using a MLP base predictor and senses only those channels
that are predicted to be idle. Such a targeted spectrum sensing
can reduce the energy consumption of the CR users.

C. Bayesian Inference based Prediction

Bayesian Inference (BIF) is an approach of inference where
Bayes’ rules are utilized to update the probability distribution
of a hypothesis when additional evidence data is learned.

In cognitive radio networks, a CR user can compute a prior
probability distribution (also known as prior) of each system

parameter 6, denoted by P(#), from experimental subjective
assessments, before any data is taken into account. Through
n time-slot spectrum sensing, some observed data X =
{x1,22, -+ ,x,} are collected. Then, the CR user computes a
likelihood function of parameter 6, denoted by L(6|X), as the
probability of the observed data given that parameter. That
is, L(A|X) = P(X]|6). After acquiring the prior probability
distribution and the likelihood function, Bayesian inference
can be used to derive the posterior probability distribution
of the system parameter 6 conditioned on the data X =
{z1, 29, -+ ,x,}. In Bayesian inference based prediction, the
CR user first derives the posterior probability distribution
P(6]X) according to Bayes’ rule: P(8|X) = w,
and then uses the derived posterior to predict the data to be
observed.

In our work [5], we designed a Bayesian inference based
channel quality prediction method for cognitive radio net-
works. In our approach, we modeled the spectrum sensing pro-
cess as a Non-Stationary Hidden Markov Model (NSHMM),
estimated the model parameters, which carry the information
about the expected duration of the channel states and the
spectrum sensing accuracy (detection accuracy and false alarm
probability) of the SU, via a Bayesian inference approach,
and predicted the channel quality according to the inferred
channel idle duration and spectrum sensing accuracy. After our
prediction process, each channel is associated with a predicted
channel quality. Then the channels are ranked in a descending
order of the predicted quality. Our simulation based perfor-
mance study indicated that the ordered sequence can be used



for both spectrum sensing (sensing the channels sequentially
according to the ordered sequence) and spectrum decision
(selecting the first channel of the sequence) to improve the
network performance in terms of network throughput and time
cost of finding available channels.

D. Moving Average Based Prediction

Moving average (MA) based prediction [10] is commonly
used to predict a trend in a sequence of values. Consider
a history sequence of length N, a k-order moving average
predictor predicts the next value of the sequence as the average
of the last k values in the sequence. To enhance the influence
of the most recent observations on the prediction result, an up-
grade version of the moving average based prediction, namely
an exponential moving average (EMA) based prediction, can
be implemented, where exponentially decreasing weighting
factors are applied to older observations.

In [2], EMA based prediction is used to enhance the
spectrum sensing performance. Each CR user collects the
history energy level of the channels as observations and
predicts the future energy level via an EMA based predictor.
Then, the CR user skips the sensing duty on those channels
whose predicted energy level is higher than a preset threshold
(considered as occupied by the PUs). Through this approach,
the whole spectrum sensing time and energy consumption can
be reduced.

E. Autoregressive Model Based Prediction

Autoregressive model (ARM), a kind of linear prediction
formula, can also be used to predict the future states of a
cognitive radio network based on the previous observations
[8]. In this approach, the prediction decision is made according
to the prediction rule: Xy = S wiXr_i +wp, where X7
is the predicted state at future time 7', X_; is the observation
at time 7" — ¢, p is the order of the autoregressive model, ¢;,
is the parameter of the model, and wyr is the white noise at
time 7.

In ARM based prediction, a CR user first estimates the
model parameters @;,7 = 1,2,--- ,p, with Yule-alker equa-
tions, maximum likelihood estimation, or other approaches.
Then, it inputs the history observations into the prediction rule,
and predicts the future state of the system as Xr.

In [8], an autoregressive spectrum hole prediction model
was proposed. Each CR user estimates the model parameters
using Yule-alker equations and predicts the future channel
states according to the prediction rule. No specific application
was indicated for this prediction method in this paper; but
intuitively, it can be used for spectrum decision and spectrum
mobility: a CR user can select a channel that is predicted to
be idle for its own use during the spectrum decision stage, or
evacuate the channel it currently occupies when the channel is
predicted to be busy in the near future for spectrum mobility.

F. Static Neighbor Graph Based Prediction

In [10], a static neighbor graph (SNG) based predictor was
designed to predict the future PU locations according to the

pre-collected topology information of PU mobility. A directed
graph representing the PU mobility history is first constructed
as follows: when a CR user observes the PU move from
location ¢ to location j, it adds a directed edge (i,j) to the
graph and sets the weight of the edge to w;; = 1 if the
edge (i,7) is not in the graph; or it adds 1 to the weight
of the edge, w;; = w;; + 1, if the edge (¢,j) is in the
graph. After the construction of the graph, a normalization
procedure is performed on the weights of the edges such that
for Vi, ¥;w;; = 1. Then, the PU mobility property is predicted
as follows: if the current location of the PU is 7, and the CR
user finds location ¢ in the graph, it returns a list (j,w;;) for
all edges (¢,7) and then predicts the future location of the
PU as j = argmaxw;;. Using the SNG based PU mobility
prediction, more useful information of the network topology
can be obtainedd and the routing protocol performance of the
network can be improved.

G. Summary of The Prediction Applications in CR Networks

In the previous subsections, we have introduced six pre-
diction techniques and sketched their applications in CR
networks. We observe that prediction has been employed to
improve the performance of the CR network in terms of
reducing the delay of finding available channels, decreasing
the energy consumption, minimizing the interference with
primary users, and improving the network throughput. The
applications of each prediction method are summarized in Ta-
ble I. Note that since different prediction methods are designed
for different performance improvement objectives, no perfor-
mance comparison study is carried out here. Besides, Table I
only lists the reported applications based on each prediction
technique. Future research may reveal more applications for
each prediction approach. Also note that prediction based
methods have their drawbacks too. For example, they require
more memory spaces for history observation storage and more
computational power for prediction result calculation.

IV. OPEN ISSUES AND RESEARCH CHALLENGES

In this section we discuss a few open research issues that
need to be investigated for the development of prediction
methods in cognitive radio networks.

1) Prediction for spectrum sharing: To the best of our
knowledge, no prediction method for spectrum sharing
has been proposed. The difficulty of this research lies in
the prediction of CR user activities. Due to the hetero-
geneous property of the CR users and the uncertainty
property of the CR communications, it’s hard to predict
the service requests of the CR users in time, space, and
frequency domains. Thus, it is difficult to coordinate the
spectrum sharing between CR users through prediction.

2) Long term prediction: As we observe from Section III,
most existing research simply focuses on predicting the
system states of the next time slot. It’s challenging to
make an accurate long term prediction due to the error
accumulation problem.



TABLE I

THE EXAMPLE APPLICATIONS OF THE PREDICTION TECHNIQUES IN CR

Application

Methodology

For spectrum sensing

For spectrum decision

For spectrum mobility

For PU mobility prediction

HMM based prediction

[3]

[4] [9]

MLP based prediction

[6], [7]

BIF based prediction

[5]

[5]

MA based prediction

[2]

ARM based prediction

[8]

(8]

SNG based prediction

[10]

3) PU activity map prediction: Prediction in single domain
(time, space, or frequency) can only provide unilateral
information of the future states of the system to the CR
users. If we could predict a PU activity map, which
provides information regarding PUs’s occupied spectrum
bands, their physical positions, and their transmission
powers, it would certainly benefit the CR users and
the primary users to provide a more efficient utilization
of the spectrum resource. However, this is a difficult
task since all the prediction methods require history
observations, which indicates that extended spectrum
sensing is needed to construct a history PU activity map
before prediction can be performed.

V. CONCLUSION

Prediction is a promising approach for better realization
of cognitive radio networks. Extensive research has been
performed on various prediction techniques and applications.
However, effort is still needed to design prediction based spec-
trum sharing methods, provide long-term accurate spectrum
prediction, and devise PU activity map prediction schemes.
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