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ABSTRACT In this paper, we investigate the spectrum resource and power allocation problem for the
tradeoff between maximizing the sum rate and minimum rate requirements of users in non-orthogonal
multiple access (NOMA) system. First, we formulate the NOMA techniques, basic principles, and
double-objective optimization (DOO) problem. Then, the non-convexity of the DOO problem is converted
into a single-objective optimization (SOO) problem by power discretization method. Global optimal
search (GOS) algorithm is applied to solve the user-subchannel matching and power allocation problem. Due
to its high complexity and unfairness among users, it is only suitable for determining the upper bound of users
throughput performance. Finally, yet importantly, a spectrum resource and power allocation algorithm with
adaptive proportional fair (APF) user pairing is proposed to convert the original optimization problem into
user pairing, sub-channel, and power allocation. The users paired on the sub-channel are determined by the
scheduling priority which is based on the equivalent channel gain. The BS dynamically adjusts the forgetting
factor in the APF algorithm based on the variance of all the users’ scheduling priorities so as to influence the
update of users’ scheduling weights. The power allocation stage proposes three power allocation schemes
to ensure the users’ minimum data rate requirements under the condition that effectively guarantees the
correct execution of successive interference cancellation (SIC). The simulation results demonstrate that it
can not only approach the throughput performance compared with the global optimal search and the classical
water-filling (WF) power allocation using matching theory but also can improve the fairness of the users.

INDEX TERMS Non-orthogonal multiple access (NOMA), spectrum resource and power allocation, global
optimal search (GOS), adaptive proportional fair (APF) user pairing, fairness.

I. INTRODUCTION

In the coming decades, more and more application scenar-
ios and emerging technologies will place higher demands
on 5G networks, such as Artificial Intelligence (AI), Inter-
net of Things (IoT) and Big Data (BD). 5G will develop
current mobile and fixed networks into new, integrated and
ultra-flexible energy-efficient networks [1]. The traditional
orthogonal multi-user access (OMA) can only be used by at
most one user in each scheduling period, such as orthogonal
frequency division multiple access (OFDMA) for downlink
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and single-carrier frequency division multiple access (SC-
FDMA) for uplink. In order to avoid interference between
cells, single-user detection, decoding and a simple receiver
design are enabled [2]. However, by its nature, the use of
OMA means that scarce bandwidth resources are completely
occupied by this user, despite its poor channel conditions.
Obviously, this has a negative impact on the throughput and
spectral efficiency (SE) of whole system [3].

Newmulti-user access schemes have emerged and become
potential alternatives for OFDMA and SC-FDMA. A promis-
ing solution is non-orthogonal multiple access (NOMA) with
successive interference cancellation (SIC). Unlike OMA,
in order to improve spectral efficiency, NOMA allocates
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the same spectrum resources to multiple users [4]. In [5],
Zeng et al. studied energy efficiency (EE) maximization and
showed that NOMA can also deliver higher EE than OMA.
Through rigorous mathematical analysis of the NOMA and
OMA systems with optimal resource allocation strategies,
the authors proved that the NOMA is always suprior to any
traditional OMA system [6]. In [7], Zeng et al. proved that
MIMO-NOMA dominates MIMO-OMA in terms of both
sum rate and ergodic sum rate. However, since more than one
users are multiplexed on the same sub-band, it will inevitably
lead to interference among the multiple users. In order to
cancellate signal interference among users in NOMA, 5G net-
works consider designing more advanced interference man-
agement technologies [8].

A. EXISTING RESEARCH ON NOMA

Recently, many studies have discussed different aspects of
NOMA. For example, the issue of user pairing, power and
spectrum resource allocation based on NOMA has attracted
widespread attention. In [9], Lei et al. analyzed the tractabil-
ity of the NOMA resource allocation problem using mathe-
matical methods and provided theoretical insights and algo-
rithm solutions for optimizing NOMA power and channel
allocation. Some studies are actively finding sub-optimal
throughput performance gain. In order to provide a compet-
itive suboptimal solution, the authors combined Lagrangian
duality and dynamic programming to optimize multi-user
power and sub-channel allocation in the NOMA system [2].
We note that in some studies of NOMA (e.g., [10]–[12]),
by setting the users and sub-channels to two groups of partic-
ipants pursuing their own interests, the authors used a match-
ing algorithm to converge to a pairwise stable match after
a limited number of iterations. In [13], Di et al. formulated
the centralized scheduling and resource allocation problem as
equivalent to a multi-dimensional stable roommate matching
problem, in which the users and time/frequency resources
are considered as disjoint sets of objects to be matched with
each other. The particle swarm genetic algorithm allocates
power to each sub-channel based on channel state information
(CSI) [14], which can achieve better performance than the tra-
ditional average power allocation andwater-filling algorithm.
Considering the majority of resource allocation algorithms
divided the entire bandwidth into sub-bands did not fully
exploit the potential of NOMA. A concept of vertical pairing
is proposed [15], the users can group in pairs and the entire
bandwidth is allowed to be occupied, then the Lagrangian
duality method is used to solve the problem of power alloca-
tion. In [16],Wu et al. adopted the vertical decomposition and
proposed a layered-algorithm to compute the optimal power
allocation for the NOMA downlink relay-transmission. How-
ever, such resource allocation algorithm resulted in low spec-
trum utilization. In [17], Zenget al. illustrated the tradeoff
between the sum rate andmaximumnumber of admitted users
and proposed an effective user admission scheme. In fact,
NOMA resource allocation can be converted to subcarrier
allocation (SA) and power allocation (PA) [18], for SA,

a greedy algorithm based on user grouping is proposed, for
PA, iterative water-filling and specific user rate maximization
criteria will be considered together. The results showed that
the algorithm had higher spectral efficiency and resisted user
overload.

However, the above algorithms did not consider the
fairness of users while pursuing the maximum throughput
performance gain. In [19], Islam et al. introduced the con-
cept of cluster fairness and proposed the divide-and-next-
largest-difference-based user pairing algorithm. In [20], for
the single-carrier NOMA system, the authors used the pro-
portional fair scheduling algorithm to derive an approxi-
mate optimal power allocation solution. In [21], Okamoto
proposed an improved proportional fair scheduling scheme
that takes into account the fairness of the target frame and
the instantaneous fairness of the assigned subbands. How-
ever, the above algorithms did not consider the complex-
ity while pursuing fairness. So, the fairness and complexity
were weighed [22]–[24]. Genetic algorithm is a powerful
heuristic algorithm that can quickly converge to the solution,
which can balance the system throughput and user fairness
of multi-user NOMA downlink system [22]. In order to
avoid unnecessary comparisons of candidate users, in [23],
Liu et al. addressed preconditions for user pairing. In [24],
the authors proposed a low complexity water-filling power
allocation algorithm, which is applied to the proportional fair
scheduler of the downlink NOMA system. In [25], in order
to maintain SC-FDM attributes and reduce the scheduling
complexity of non-orthogonal multiplexing users with con-
tinuous resource allocation, the authors adopted an enhanced
proportional fair scheduling scheme. For the issue of user
pairing and resource allocation, the main idea of the problem
is not only to find a balance between system performance gain
and user fairness, but also the solution of the problem should
be low complexity. In [26], Islam et al. conducted a compre-
hensive survey of the most advanced capacity analysis, power
allocation strategies, user fairness and user pairing schemes
in NOMA and provided solutions to these important issues.
However, the above algorithms did not balance throughput,
fairness and complexity. In order to satisfy the users’ pursuit
of high quality of experience (QoE), new solutions must be
provided.

B. MOTIVATION AND CONTRIBUTIONS

For the downlink NOMA system, effective user pairing and
resource allocation algorithm can significantly affect system
throughput performance and user fairness. To date, most
studies have transformed the original optimization objective
function into a suboptimal step-by-step solution. The NOMA
resource allocation problem urgently requires a global opti-
mal solutionwith a performance upper bound. The first exten-
sion contribution of this article is as follows:
• The authors convert the double-objective optimization
problem of maximizing the capacity of the NOMA
downlink system into a single-objective optimization
problem, and then based on the idea of exhaustive
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search, we propose a global optimal search algorithm
with the upper bound of throughput performance.

The highest complexity of global optimal search algorithm
compromises the fairness among users while obtaining the
optimal system capacity upper bound. Therefore, it poses a
challenge to practical applications. So the next contributions
of this article are as follows:
• In order to ensure fairness among users, a spectrum
resource and power allocation with adaptive propor-
tional fair user pairing algorithm is proposed. In the
phase of user pairing and sub-channel allocation,
the scheduling priority is determined by the equiva-
lent channel gain, and users with higher priority will
be selected for pairing. Then, the forgetting factor is
dynamically adjusted in the APF algorithm based on the
variance of all the users’ scheduling priorities, so as to
influence the update of users’ scheduling weights.

• For the optimized variables of power allocation, we pro-
pose three power allocation schemes. In order to ensure
the fairness of the paired users’ throughput performance
on the sub-channel, the first power allocation scheme
directly allocates the total power of the sub-channel with
proportional rate constraint. In order to achieve max-
imum system throughput under conditions that ensure
proper detection of the successive interference cancella-
tion, the second power allocation scheme firstly meets
the minimum power requirements of the paired users,
and then the remaining power on the sub-channel is
allocated to the high channel gain user. The third power
allocation scheme allocates the remaining power with
proportional rate constraint.

C. PAPER ORGANIZATION

The rest of the paper is organized as follows. In Section II,
the system model will be described and the optimal objective
function will be proposed. In section III a global optimal
search algorithm for power discretization is proposed, which
has the upper bound of optimal throughput performance.
Section IV describes the algorithm of spectrum resource and
power allocation with adaptive proportional fair user pairing.
Section V carries on the simulations to the above mentioned
algorithms. Finally, section VI summarizes the results.

II. FUNDAMENTALS OF DOWNLINK NOMA

In this section, we will discuss the basic concepts and study
the user pairing, spectrum resources and power allocation of
NOMA based downlink multi-user networks.

A. SYSTEM MODEL

The system consists of a single base station (BS) and the
BS sends the signal to a group of mobile users denoted by
N = {1, · · · ,N }. As shown in Fig. 1, the users are assumed
to be uniformly deployed in a circular area, all transceivers
are equipped with a single antenna. The BS divides the avail-
able bandwidth into a set of sub-channels that are smaller

FIGURE 1. System model of the NOMA systems.

than the coherent bandwidth, denoted by K = {1, · · · ,K }.
In this case, the bandwidth of each sub-channel is denoted
by Bs = B/K , where B is the total system bandwidth.
According to the NOMA protocol, one sub-channel can be
allocated to multiple users, and one user can receive from
the BS through multiple sub-channels. Because more than
one users are multiplexed on the same sub-channel, the co-
channel interference in the NOMA system will be very
strong. Therefore, it is unrealistic for all users in the system
to perform NOMA together. It is recommended to adopt a
hybrid MA that combines NOMA and traditional MA. In the
system, the users are divided into multiple groups, each group
implements NOMA, and different groups allocate orthogonal
spectrum resource [10]. We assume that the BS fully under-
stands channel state information. Based on the CSI of each
sub-channel, the BS allocates different power to the users
in the subset of non-orthogonal sub-channels. We consider
a block fading channel whose channel gain remains constant
for one scheduling period but varies independently of each
other. On the sub-channel k , the channel gain coefficient
between the multiplexed user n and the BS is denoted by
hn,k = gn,kPL(dn), where gn,k denotes the Rayleigh fading
channel gain, dn is the distance between the user n and the BS,
and PL(·) is the path loss function. We assume that M users
are multiplexed on the sub-channel k . The signal transmitted
by the BS through the sub-channel k can be expressed as [27]

xk =
∑

n∈M

√
xk,npk,nsn (1)

where the binary variable xk,n represents whether sub-channel
k is allocated to the user n, where the binary variable pk,n rep-
resents the power allocated to the user n on the sub-channel
k , and sn is the modulated symbol, and E

[

|sn|2
]

= 1. since
BS and all users are equipped with a single antenna, the signal
received by the user n on the sub-channel k can be formulated
as [27]

yk,n = hk,nxk + wn (2)

where wn ∼
(

0, σ 2
)

is the additive white Gaussian
noise (AWGN) with zero average, and σ 2 is the
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noise variance. The equivalent channel gain (ECG) is denoted
byHk,n =

∣

∣hk,n
∣

∣

2
/σ 2. At the receiver, successive interference

cancellation techniques are used to cancel interference among
users, with lower channel gain user treats the signal of the
higher channel gain user as a noise, while the user with higher
channel gain first reconstructs the signal of the lower channel
gain user and then uses the SIC to cancel the signal of the
lower channel gain user to obtain its own signal.

B. OPTIMIZATION PROBLEM FORMULATION

Similarly, for the capacity optimization problem of user
pairing and resource allocation in NOMA downlink system,
we assume that the number of users multiplexed on each
sub-channel is M , the throughput achieved by the multiplex-
ing user n on the sub-channel k is expressed as [10]

Rk,n =
∑

n∈N
Bk log2

(

1+
xk,npk,n

∣

∣hk,n
∣

∣

2

Ik,n + σ 2

)

(3)

Ik,n is the interference for user n introduced by the users
within the number of M multiplexed users who have higher
channel gain on the sub-channel k

Ik,n =
∑

m∈

{

M | |hk,m|
2

σ2
>
|hk,n|2
σ2

}

xk,mpk,m|hk,n|2
(4)

In order to avoid the form of the OFDMA solution,
we assume that the range of M is Mf ≤ M ≤ Mu, where Mf

is the lower bound of the multiplexed user on the sub-channel
and Mu is the upper bound. The optimization problem is
formulated to maximize the total data rate overall system
bandwidth

pk,n = allocated power to user n on sub− channel k

xk,n =

{

1, if sub− channel k is allocated to user n
0, otherwise

max
xk,n,pk,n

∑

k∈K

∑

n∈N
Bk log2

(

1+
xk,npk,n

∣

∣hk,n
∣

∣

2

Ik,n + σ 2

)

(5)

s.t. : C1 :
∑

n∈N
xk,npk,n ≤ pk ∀k ∈ K (6)

C2 :
∑

n∈N

∑

k∈K
xk,npk,n ≤ Ptotal (7)

C3 : Mf ≤
∑

n∈N

∑

l∈L
xk,n ≤ Mu ∀k ∈ K (8)

C4 : Rn > Rn,min ∀n ∈ {N |xk,n = 1}, k ∈ K (9)

C5 : xk,n ∈ {0, 1} ∀k ∈ K n ∈ N (10)

Due to the power transmitted by the BS and the power allo-
cation for each sub-channel is limited, therefore, the power
allocation variable pk,n must satisfy constraints (6), (7). Con-
straint (8) ensure that each sub-channel can only be allocated
at mostMu users. In order to ensure each user’s QoS require-
ment, the constraint (9) indicates that the user implemented
data rate must be greater than the user’s minimum data rate.

Constraint (10) indicates whether a discrete binary variable
xk,n is allocated.
Because of the structure of the utility function, the dis-

crete variables xk,n, pk,n and the existence of the constraints,
the optimization problem has mixed integer nonlinear pro-
gramming (MINLP) characteristics. It is difficult to obtain the
optimal solution for this type of problem. Common solutions
include the following categories:

(1) Adopt heuristic algorithm, such as the genetic algo-
rithm mentioned in the literature [14], [22], particle
swarm algorithm, etc. This type of algorithm does not
have a strict theoretical basis, it is inspired by people’s
actual life experience and rules of things.

(2) By reducing the degree of freedom in allocation vari-
ables, the original problem is decomposed into several
sub-problems, such as [18]. The typical application
of such method is converted to sub-carrier and power
allocation.

(3) Converting the original problem into a convex
optimization problem by rationally changing the
constraints. For example, literature [9], the convex
optimization problem is the easiest to solve for all
optimization problems, and its convexity guarantees
that the local optimum is the global optimum.

III. GLOBAL OPTIMAL SEARCH(GOS) OF POWER

DISCRETIZATION ALGORITHM

In order to achieve maximum system utility, we need to
optimize user and sub-channel matching variable xk,n, user
power allocation variable pk,n. Because both the user and
sub-channel are discrete values, so the user pairing and
user-subchannel matching can be achieved based on exhaus-
tive search idea, but the value of power allocation for the
paired users are continuous, so it is impossible to combine
all of them based on the idea of exhaustive search. However,
in practical systems, the power is typically set in discrete
steps. Therefore, by discretizing the total power budget into
the number of L uniform power level, the power interval
between each level is denoted by ς = Ptotal/L. The con-
tinuous power value of the discrete power level l is denoted
by pl = ς ∗ l, and l ∈ {1, 2, . . . ,L}. After the power
is discretized, the original binary optimization variable xk,n,
pk,n are transformed into an optimization variable, denoted by
C l
k,n. So the original optimization problem can be achieved

the optimal utility based on the idea of group search.

A. OPTIMIZATION PROBLEM CONVERSION

Therefore, the utility function and optimization variables
after power discretization can be expressed as

max
C

U =
∑

n∈N

∑

k∈K

∑

l∈L
C l
k,nR

l
k,n (11)

s.t. : C1 :
∑

n∈N

∑

l∈L
clk,np

l ≤ Pk ∀k ∈ K (12)

C2 :
∑

k∈K

∑

n∈N

∑

l∈L
clk,np

l ≤ Ptotal (13)
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C3 : Mf ≤
∑

n∈N

∑

l∈L
clk,n ≤ Mu ∀k ∈ K (14)

C4 :
∑

l∈L
clk,n ≤ 1 ∀k ∈ K n ∈ N (15)

C5 : Rn > Rn,min ∀n ∈ {N |xk,n = 1}, k ∈ K (16)

C6 : C l
k,n ∈ { 0 1 } ∀k ∈ K n ∈ N l ∈ L (17)

Constraint (12) indicates that the power level pl allocated to
the user n multiplexed on the sub-channel k cannot exceed
the total power pk allocated for the sub-channel. Constraint
(13) indicates that the sum of power levels allocated by all
users in the entire bandwidth cannot exceed the total power
Ptotal transmitted by the BS. Constraint (14) indicates that the
maximum number of users multiplexed on each sub-channel
cannot exceedMu. Constraint (15) ensures each user can only
select one power level on each sub-channel. In order to ensure
each user’s QoS requirement, the constraint (16) indicates
that the user implemented data rate must be greater than the
user’s minimum data rate. Constraint (17) indicates whether
a discrete binary variable clk,n is allocated. Therefore, the data
rate that can be achieved by allocating power level l to user n
on the sub-channel k is expressed as

Rlk,n = Bk log2

(

1+
pl
∣

∣hk,n
∣

∣

2

I k,n + σ 2

)

(18)

Ik,n =
∑

m∈

{

M | |hk,m|
2

σ2
>
|hk,n|2
σ2

}

∑

l′∈l

cl
′
k,mp

l′ |hk,n|2 (19)

Ik,n is the interference of power discretization for user n
introduced by the users within the number of M multiplexed
users who have higher channel gain on the sub-channel k .

B. INTRA-SUB-CHANNEL USER PARING AND POWER

ALLOCATION

In this section, we ignore the view of the complexity and
aiming to propose an algorithm that approximates the optimal
solution, it is used to determine the upper bound of the
throughput performance that the system can provide. So,
the idea of group search can effectively ensure the optimal
performance of the system under the premise of sacrificing
complexity. The algorithm which user pairing and resource
allocation under global optimal search of power discretization
is divided into two steps.

The first step is the user pairing and power allocation on the
sub-channel. First, on the sub-channel k , we will pair all the
number of N users based on the idea of group search. After
pairwise pairing is performed, the paired users are ranked in
descending order according to the equivalent channel gain to
obtain different paired user pairs pm,n. Then, the BS transmits
L different total power levels for sub-channel k . For each user
in the user pairs pm,n, the power level allocated by the BS to
them are denoted by l ′ = 0 : 1 : l, l ′′ = l ′ + 1 : 1 : l, and
l ′+l ′′ ≤ l. Through implementing iterative processes to max-
imize the throughput of the currently paired user pair pm,n.
Then repeat above steps to obtain the maximum throughput

of different paired user pairs pm′,n′ for the current power level
l on the sub-channel k and selected the maximum throughput
of the user pairs as the maximum utility, denoted by uk,l .
Finally, the power level l of the sub-channel k is adjusted,
and the achieved maximum utility value denoted by uk,l′ . The
specific description of the algorithm is as follows:

Algorithm 1 Intra-Sub-Channel User Paring and Power Allo-
cation
Require: the total number of users= N ; the number of users

M on each sub-channel = 2; the power level constraint
on each sub-channel = L;

Ensure: the maximum utility uk,l for each power level l ∈ L
to user pairs pm,n on the sub-channel k;

1: Initialize uk,l ← ∅, for ∀k ∈ K ,∀n ∈ N ,∀l ∈ L;
2: for user m, n ∈ N and m 6= n do

3: (a) get paired user pairs pm,n based on group search
4: (b) sort them ECG in descending order
5: end for

6: for power level l on the sub-channel k do
7: for each paired user pairs pm,n and assume their ECG

satisfy Hk,m > Hk,n do

8: for user m allocated power level l ′ = 0 : 1 : l; user
n allocated power level l ′′ = l ′ + 1 : 1 : l do

9: if l ′ + l ′′ ≤ l then
10: (c) according to (18) calculating their through-

put Rl
′
k,m, R

l′′
k,n,

11: if Rl
′
k,m 6= 0, Rl

′′
k,n 6= 0 then

12: (d) select max
{

Rl
′′
k,n + R

l′
k,m

}

among paired

user pairs as the maximum utility uk,l
achieved by paired users pm,n at this power
level l on the sub-channel k

13: end if

14: end if

15: end for

16: end for

17: end for

18: for power level l = 1 : 1 : L do

19: repeat steps 6-17, get maximum utility uk,l for each
power level l on the sub-channel k

20: end for

When the power allocation of the paired user is determined,
next, the BS will allocate power among sub-channels based
on the maximum sum rate.

C. INTER-SUB-CHANNEL POWER ALLOCATION

The second step is the power allocation among sub-channels.
For different sub-channels, repeating above steps to get the
maximum utility value uk,l which achieved by different
paired users at the different power level l. Under the condition
that the power level l allocated for all sub-channels less than
the total power Ptotal transmitted by the BS, by combinating
the maximum throughput utility uk,l based on the idea of
group search to achieve the maximum utility UL

K ,N by all
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paired users of the entire bandwidth. By determining the
combination of uk,l , we can be ensured the binary variable
clk,n and the user n allocated power level l on the sub-channel
k . The specific description of the algorithm is as follows:

Algorithm 2 Inter-Sub-Channel Power Allocation

Require: the maximum utility uk,l for each power level
l ∈ L to user pairs pm,n on the sub-channel k; the number
of sub-channel = K ; the power level constrain on each
sub-channel = L;

Ensure: clk,n for power level l is allocated to user n on the
sub-channel k , UL

K ,N for maximum throughput utility
achieved by all paired users across entire bandwidth

1: Initialize uk,l ← ∅, for ∀k ∈ K ,∀n ∈ N ,∀l ∈ L;
2: for sub-channel k = 1 : K do

3: perform Algorithm 1, and obtain uk,1, uk,2, . . . , uk,L
4: end for

5: for power level l = 1 : 1 : L do

6: each sub-channel select one power level l achieved
maximum utility uk,l

7: if the sum of all the K sub-channel’s power level L
less than the total power level l and Rn > Rn,min,
Rm > Rm,min then

8: exhaustively combinate the maximum utility uk,l
achieved at each power level l on each sub-channel
k

9: end if

10: end for

11: select maximum UL
K ,N =

{

u1,l + u2,l′+, . . . , uK ,l′′
}

as
the system achieved Maximum utility and via uk,l to
determine clk,n

To reduce the complexity of SIC, the global optimal search
algorithm first describes the case ofMf = Mu = 2. As shown
in Fig. 2, we describe the implementation of the global opti-
mal search algorithm with Mu = 3.

The above algorithm is also applicable to the case where
the number of multiplexed users is greater than two users.
In the fifth part of this paper, it is verified by simulation
that the upper bound of the number of multiplexed users are
equal to 3, 4, 5. The global optimal search of power dis-
cretization algorithm converges to a maximum utility value
uk,l for each power level l on the sub-channel k through
multiple iterations. For the case of Mf = Mu = 2, its
complexity denoted by O

(

(N (N − 1)/2 )L3
)

, the complex-
ity increases with the number of users N , and the power
level L, so when the power interval ς is smaller and the
number of users N is larger, the complexity is higher, and
the fairness between users is not taken into consideration
when ensuring the maximum system utilityUL

K ,N . Therefore,
this algorithm is not practical and is only suitable for eval-
uating the throughput performance upper bound. Based on
this, a low-complexity spectrum resource and power alloca-
tion with adaptive proportional fair user pairing algorithm is
proposed.

FIGURE 2. Global optimal search for NOMA (Mu = 3).

IV. SPECTRUM RESOURCE AND POWER ALLOCATION

WITH ADAPTIVE PROPORTIONAL FAIR USER PAIRING

ALGORITHM

In this section, the original optimization problem is trans-
formed into the sub-problems of user pairing, sub-channel
and power allocation by reducing the degree of freedom in
allocation variables. First of all, in order to ensure the user’s
fairness, an adaptive proportional fair user pairing algorithm
based on equivalent channel gain is proposed.

A. ADAPTIVE PROPORTIONAL FAIR USER PAIRING

ALGORITHM BASED ON EQUIVALENT CHANNEL GAIN

The existing user pairing algorithms are all based on channel
state information which feedback by the users. For a given
sub-channel, assuming that the sorted candidate user sets is
denoted by U = {u1, u2, . . . , uN } and Hk,1 > Hk,2 >

· · · > HK ,N . In [28], the authors proposed two user pairing
algorithms based on channel gain, the one selected the n− th
user and the (N + 1− n) − th user into a user pair, and
another selected the n − th user and the (N/2− n) − th

user form a user pair. The authors found that the two user
pairing algorithms have the same system detection error rate.
However, In [29], the authors pointed out that when the
channel gain gap between paired users is maximum, the sys-
tem can achieve the maximum utility. However, the above
user pairing algorithms are based on the principle of user
channel gain ranking and did not consider the user’s schedul-
ing priority. So proportional fair scheduling policy has been
adopted in the majority of papers dealing with NOMA [13],
[18], [19]. All above PF scheduling algorithms can guarantee
user fairness and throughput performance, but user schedul-
ing priority based on the ratio of average throughput and
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instantaneous throughput. For the users multiplexed on the
same sub-channel, the solution of those algorithms have
higher calculation complexity. Because the user’s reachable
data rate is a monotonically increasing function of its channel
quality. In this case, we convert the ratio of user throughput
to the ratio of the equivalent channel gain on the sub-channel.
Therefore, based on the idea of traditional PF algorithm,
an adaptive proportional fair user pairing algorithm based
on equivalent channel gain is proposed. For user n on the
sub-channel k , its scheduling priority is expressed as

ρk,n(t) = Hk,n(t)/H̄k,n(t) (20)

In the time slot t , the equivalent channel gain of the user
n on the sub-channel k is denoted by Hn,k (t), the average
equivalent channel gain for the user n on the sub-channel k
from the initial time to the time slot t − 1 denoted by H̄k,n(t).
The average channel gain of each user on the sub-channel k
is updated in the time slot t + 1 according to the following
formula

H̄k,n(t + 1)=

{

αHk,n(t)+(1− α)H̄k,n(t), n ∈ N
(1− α)H̄k,n(t), n /∈ N

(21)

where α called forgetting factor, and denoted by α = 1/Tc.
Tc is the time window parameter. Taking time slot t0 as
the starting point of an observation interval, we assume that
two users m, n multiplexed on the sub-channel k have the
same initial average equivalent channel gain, and denoted
by H̄k,m(t0) = H̄k,n(t0). So, the user’s scheduling priority
is determined only by the instantaneous equivalent channel
gain at the initial scheduling moment. We assume Hk,m >

Hk,n, so scheduling priority denoted by ρk,m > ρk,n, and
the user m first scheduled. Next time slot, the user m, n
average equivalent channel gain is updated to H̄k,m(t0 +
1) = αHk,m(t0) + (1 − α)H̄k,m(t0) and H̄k,n(t0 + 1) =
αHk,n(t0)+ (1− α)H̄k,n(t0). The BS recalculates the priority
of the scheduling users in the time slot t0+ 1. We assume the
time slot t0+ tg their scheduling priority meet ρk,n(t0+ tg) >
ρk,m(t0 + tg). Therefore, according to the priority calculation
formula (20), when we take the bigger Tc, the slower update
rate of user’s average equivalent channel gain, and denoted
by H̄k,n(t + 1) ≈ H̄k,n(t). Within a long observation interval,
it can ensure that the scheduling probabilities of each user
are close to each other. However, for users who stay in the
system for a short time, the PF algorithm cannot guarantee its
fairness. Based on this, in each scheduling slot, the variance
of all the users’ scheduling priority is first calculated. The
variance of scheduling priority ξ (t) for all N users on the
sub-channel k in the time slot t is expressed as

ξ (t) = N−1
∑

n∈N

[

ρk,n(t)− N−1
∑

i∈N
ρk,i(t)

]2

(22)

The larger ξ (t), the greater priority gap among users.
Therefore, for better short-term fairness, we can set larger
α (t) to speed up the user’s priority approaching speed. When
the priority gap between users is smaller, we can set smaller

α (t) to ensure users with good channel quality to get more
scheduling opportunities and obtain good throughput perfor-
mance. If α (t) is considered as the amplitude attenuation
of the signal, and ξ (t) is equivalent to frequency, we can
construct function α (t) = f [ξ (t) ]. An adaptive proportional
fair user pairing algorithm is proposed which dynamically
adjusts the forgetting factor α by

α(t) = max

{

2αref − 2αref
{

1+ [ξ (t)]N (t)
}−1

, ε

}

(23)

where ε = 0.002. Since the forgetting factor α of the
traditional proportional fair scheduling algorithm is taken as
0.01, so we dynamically adjust α (t) based on αref = 0.01.
The larger the order N (t) and the faster ξ (t) converges
to 0, the better the short-term fairness of the system. If α→ 0,
the scheduling priority of all users will tend to be constant,
resulting in the scheduling set tend to be fixed. Therefore,
we design N (t) = ξ (t) + τ as a monotonically increasing
function of ξ (t). Where τ is a positive number close to 0,
and it ensures N (t) 6= 0. When ξ (t) > 1, N (t) > 1, and
with the ξ (t) increasing, N (t) monotonous increase, so it
can get bigger α (t), this accelerates the speed in which the
user’s priority is approaching and can obtain better short-term
fairness. When ξ (t) < 1,N (t) < 1, and as the ξ (t) reduction,
the N (t) decreases, so long-term fairness can be guaranteed.
In each scheduling slot, firstly, based on adaptive equiv-

alent channel gain proportional fair scheduling algorithm to
calculate the user’s scheduling priority on each sub-channel
of the entire bandwidth. In order to reduce the complexity
of SIC, we assume the case of Mf = Mu = 2. Then
the BS selects users which have the highest priority on the
sub-channel k to schedule. In next scheduling time slot t + 1
updated the user’s average ECG. The specific description of
the algorithm is as follows:
When the above resource allocation process is completed,

the power allocation is performed for the case where two
users are multiplexed on the sub-channel k .

B. THREE POWER ALLOCATION SCHEMES

In order to simplify the power allocation, the total power is
equally allocated by the BS to all the K sub-channels, and
the power on each sub-channel is denoted by pk = Ptotal/K .
So the total power of two users which multiplexed on any
sub-channel k equal to pk . The original optimization problem
is transformed into

max
pk,n

∑

k∈K

∑

n∈N
Bk log2

(

1+
pk,n

∣

∣hk,n
∣

∣

2

Ik,n + σ 2

)

(24)

s.t. : C1 :
∑

n∈N
xk,npk,n = pk ∀k ∈ K (25)

C4 : Rn>Rn,min ∀n ∈ {N |xk,n=1}, k ∈ K (26)

Downlink multi-user NOMA power allocation not only guar-
antees the user’sminimumdata rate requirements and fairness
between users, but also needs to allocate appropriate power
for paired users based on the above criteria. The proportional
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Algorithm 3 Adaptive Proportional Fair User Pairing
Algorithm Based on Equivalent Channel Gain

1: Initialize instantaneous ECG Hk,n(t) that the user feed-
back to the BS; updated average ECG H̄k,n(t) in schedul-
ing time slot t

2: for sub-channel k = 1 : K do

3: for user n = 1 : N do

4: (a) calculate the scheduling priority ρk,n (t) accord-
ing to (20),

5: (b) select the two users with the highest scheduling
priority to pair.

6: end for

7: (c) BS count the priority variance ξ (t) of all users
according to (22)and determined the order N (t)

8: (d) determine forgetting factor α (t) according to (23)
for each sub-channel k

9: end for

10: for sub-channel k = 1 : K do

11: for user n = 1 : N do

12: updat user n average ECG according to (21) in next
scheduling time slot t + 1

13: end for

14: end for

constraint based on the minimum data rate requirement can
not only guarantee the fairness of the paired users, but also by
analyzing the calculation formulas of the throughput for the
high and low channel gain users, it is found that low channel
gain user in order to achieve throughput performance similar
to that of high channel gain user, the allocated power must be
much larger than that of high channel gain user. Moreover,
due to the proportional constraint relationship between the
data rates of the paired users, the power allocation between
the two users remains relatively stable, it can ensure the
correct and stable implementation of the SIC. Based on
this, the following three power allocation schemes (PAS) are
proposed:

1) THE FIRST POWER ALLOCATION SCHEME

The first allocation scheme allocates the total power of the
sub-channel pk with proportional rate constraint. For any
sub-channel k , multiplexed usersm, n, we assume their equiv-
alent channel gain satisfies Hk,m > Hk,n, then its power
allocation with the proportional rate constraint must satisfy
the following restrictions

max
pk,n

∑

k∈K

∑

n∈N
Bk log2

(

1+
pk,n

∣

∣hk,n
∣

∣

2

Ik,n + σ 2

)

(27)

s.t. : C1 :
∑

n∈N
xk,npk,n = pk ∀k ∈ K (28)

C4 : Rk,m : Rk,n = Rm,min : Rn,min (29)

For the optimization problem of the equations (27), (28), and
(29), the Lagrangian multiplier is used to solve the prob-
lem. we assume all users have the same minimum data rate

requirements, the detailed solution is shown in Appendix A.
Then, the allocated power for the high channel gain user m
and the low channel gain user n are represented respectively
as follows

pk,m=
Rminσ

2
(

∣

∣hk,m
∣

∣

2−
∣

∣hk,n
∣

∣

2
)

2µ
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
−
σ 2
(

∣

∣hk,m
∣

∣

2+
∣

∣hk,n
∣

∣

2
)

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2

(30)

pk,n=
2pk

(

∣

∣hk,m
∣

∣

2+
∣

∣hk,n
∣

∣

2
)

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
+
σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2

−
Rminσ

2
(

∣

∣hk,m
∣

∣

2 −
∣

∣hk,n
∣

∣

2
)

2µ
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
(31)

µ =
σ 2Rmin

(

∣

∣hk,m
∣

∣

2 −
∣

∣hk,n
∣

∣

2
)

σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

+ ψ
(32)

ψ =
√

(

σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
))2
+ 4

∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

4
pkσ 2

− σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

(33)

The above power allocation scheme does not consider the
minimum data rate requirement of the two users multiplexed
on sub-channel. So the following algorithmwill first meet the
minimum power requirements and it is expressed as

pk,n.min =
2
Rn,min
Bk − 1
∣

∣hk,n
∣

∣

2
(
∑

m∈{M |}
pk,m.min|hk,n|2 + σ 2) (34)

When solving the minimum power requirements of the paired
users, it is necessary to solve the power requirements of the
high channel gain user, and then to solve the power require-
ments of the low channel gain user. If {pn.min + pm.min} < pk ,
then the remaining power is denoted by prk = pk −
(pn.min + pm.min). The following allocation schemes allocate
remaining power to the paired users.

2) THE SECOND POWER ALLOCATION SCHEME

According to the capacity maximization criterion, the second
power allocation scheme allocates remaining power prk for the
paired users on the sub-channel k . In order to ensure max-
imum throughput on the sub-channel, the power should be
allocated as much as possible to the user with higher channel
gain that are depicted in Appendix B. However, in order to
ensure the correctly implement of the SIC, the transmit power
of any user with low channel gain must be greater than the
transmit power of all users with relatively strong channel
gain. Therefore, for the case of two users multiplexed on the
same channel, we propose a power allocation scheme that
ensures the correct detection of the SIC, and is expressed as

pk,nHk,m − pk,mHk,m ≥ psic (35)

pk,m + pk,n = pk (36)

pk,m,max ≤
pk − psic/Hk,m

2
(37)
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where the psic is the minimum power difference needed
to distinguish between the decoded signal and the rest of
undecoded signal. The maximum power pk,m,max is the high
channel gain user to ensure the correct implementation of
the SIC that can be obtained. Therefore, when allocating
power, the relationship between the remaining power prk and
{pk,m,max − pk,m,min} should be firstly determined, if prk ≤
pk,m,max − pk,m,min, then pk,m = pk,m,min + prk , else p

r
k >

pk,m,max − pk,m,min, then pk,m = pk,m,max. pk,n = pk − pk,m.

3) THE THIRD POWER ALLOCATION SCHEME

The third allocation scheme allocate the remaining power prk
of the sub-channel k with proportional rate constraint. So the
original optimization problem is converted into

max
prk,n

∑

k∈K

∑

n∈N
Bk log2

(

1+
prk,n

∣

∣hk,n
∣

∣

2

Ik,n + σ 2

)

(38)

s.t. : C1 : prk,m + p
r
k,n = prk (39)

C4 : Rrk,m : R
r
k,m = Rm,min : Rn,min (40)

where prk,m, p
r
k,n are the remaining power allocated for the

users with high channel gain and low channel gain, respec-
tively. For optimization problems consisting of equations
(38), (39) and (40), we use the Lagrangian multiplier to solve.
Then, the remaining power allocated for the paired user are
expressed as

prk,m=
Rminσ

2
(

∣

∣hk,m
∣

∣

2−
∣

∣hk,n
∣

∣

2
)

2µ
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
−
σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2

(41)

prk,n=
2prk

∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
+
σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

2
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2

−
Rminσ

2
(

∣

∣hk,m
∣

∣

2 −
∣

∣hk,n
∣

∣

2
)

2µr
∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

2
(42)

µr =
σ 2Rmin

(

∣

∣hk,m
∣

∣

2 −
∣

∣hk,n
∣

∣

2
)

σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

+ ψ r
(43)

ψ r =
√

(

σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
))2
+ 4

∣

∣hk,m
∣

∣

2∣
∣hk,n

∣

∣

4
prkσ

2

−σ 2
(

∣

∣hk,m
∣

∣

2 +
∣

∣hk,n
∣

∣

2
)

(44)

So, the total power allocated for the users m, n on the
sub-channel k are expressed as

pk,m = prk,m + pk,m,min (45)

pk,n = prk,n + pk,n,min (46)

V. SIMULATION RESULTS

A. SIMULATION SCENARIO SETUP

In this section, we evaluate the performance of the pro-
posed global optimal search algorithm, spectrum resource
and power allocation with adaptive proportional fair user

TABLE 1. Simulation Parameter.

pairing algorithm, and compare their performance with the
most classical matching theory with water-filling power allo-
cation algorithm and OFDMA scheme. To guarantee the
number of scheduled users, we use the proportional fair
scheduling algorithm to assign the sub-channels to users.
Firstly, the complexity of all algorithms is evaluated, then
the simulation analysis mainly evaluates two system-level
performance parameters, system throughput performance and
users fairness. For simulation, we assumed that all users are
uniformly distributed in a circular area with a radius of 200m.
The channel state information is an ideal condition. The main
simulation parameters are shown in Table 1.

B. COMPLEXITY ANALYSIS

In this section, we will analyze the complexity of all NOMA
schemes, including global optimal search, spectrum resource
and power allocationwith adaptive proportional fair user pair-
ing and the most classical matching theory and water-filling
power allocation. The global optimal search requires the
exhaustive search. In the intra-sub-channel user paring and
power allocation stage, we assume that the upper limit of
the multiplexed user on each sub-channel is Mu. So the
number of candidate user sets is CMu

N = N !
Mu!N−Mu! . For the

power allocation of the each paired user, we exhaustively
consider all the power level L and allocated power to each
user in a dynamic iterative manner. Then the most profitable
matched pair is selected according tomaximizing utility value
uk,l . For the worst case, the candidate power sets is LMu+1.
In inter-sub-channel power allocation stage, by combining
the utility value uk,l implemented on all the sub-channels
and then selected the most profitable according to the objec-
tive function as discussed in Eq. (11) of Section III. The
candidate utility value sets is CK

L∗K =
(L∗K )!

K !(L∗K−K ) . So, for

the worst case, in order to achieve maximum utility UL
K ,N ,

the complexity of the global optimal search can be expressed

as O
(

N !
Mu!N−Mu

∗ LMu+1 ∗ K
)

. For the matching theory and

water-filling power allocation scheme, its complexity comes
from two stages, the sorting phase and the matching phase,
and in a few existing works, e.g., [10], [12] proved that the
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FIGURE 3. GOS performance for different parameter Mu vs. number of
users.

complexity can be expressed as O(NK 2). For the spectrum
resource and power allocation with adaptive proportional
fair user pairing algorithm, its complexity comes from three
stages. First, the complexity of calculating scheduling pri-
ority of all users on each sub-channel and allocating power
for the paired users with higher priority is O (KN ). Then,
the BS counted the priority variance ξ (t) of all users and
determined the order N (t) to update forgetting factor α (t) on
each sub-channel k , the complexity isO (KN ). Finally, in next
time slot, the complexity of recalculating the average ECG
of all the users on each sub-channel is O (KN ). The above
complexity is the summation relationship, so the total com-
plexity can be expressed O (KN ). Therefore, the spectrum
resource and power allocation with adaptive proportional fair
user pairing has the lowest complexity.

C. NUMERICAL RESULTS

1) PERFORMANCE IN THROUGHPUT AND UPPER BOUND

The initial stage of the simulations, we analyze the GOS
that provides the optimal performance upper bound. First,
the impact of the parameter Mu with the different num-
ber of multiplexed users 2, 3, 4, 5 and the parameter L
with the different power levels 10, 20, 50, 100 is evaluated,
respectively in Fig. 3. from Fig. 4. We find out that the
total sum-rate increase with the number of users increase.
Increasing Mu leads to more total throughput for NOMA
schemes, because more users are allowed to share the same
sub-channel. But the sum-rate growth becomes slower asMu

increase. As shown in Fig. 4, as the power level gradually
becomes larger, a greater granularity of power discretization
is provided, the number of iterations that are aggregated
into the optimal solution increased. Therefore, the solution
quality can be improved, so it can provide a higher system
performance. This is because, in order to provide an upper
bound, the objective function UL

K ,N is over-computed. From
the Fig. 4, a majority of the iterations is part of the tailing-off
effect. The utility UL

K ,N both approach the achievable

FIGURE 4. GOS performance for different parameter L vs. number of
users.

FIGURE 5. Performance for different algorithms vs. number of users.

values with 15 iteration or fewer. Note that each iteration has
polynomial-time complexity.

The next part of our simulation study the characteristics of
users throughput performance for GOS, matching theory and
water-filling power allocation, spectrum resource and power
allocation with adaptive proportional fair user pairing and
OFDMA scheme of proportional fair scheduling algorithm,
respectively in Fig. 5. For the GOS, in the phase of intra-sub-
channel user pairing and power allocation, the global optimal
search performs group search for paired users, then dynam-
ically adjust the power to converge to a maximum utility
value uk,l for each power level l. In the phase of inter-sub-
channel power allocation, under the constraint of total power,
we exhaustively combinate the uk,l to get themaximumutility
value UL

K ,N . The matching theory performs bilateral match-
ing through the sub-channels’ and the users’ preference list,
and the users on the sub-channel use water-filling for power
allocation. Both of above algorithms have higher through-
put performance gains. For spectrum resource and power
allocation with adaptive proportional fair user pairing, the
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FIGURE 6. Performance ratio for different algorithms vs. number of users.

matching process of users and sub-channels is simplified by
the determined user pairing relationship. The power alloca-
tion is based on the above three schemes, respectively. Under
the constraint that the SIC is correctly executed, the scheme
2 allocates the remaining power to the user with high channel
gain as much as possible. As shown in Fig. 5, its system
throughput performance is superior to scheme 1 and scheme
3 with proportional rate constraint. Scheme 1 directly allo-
cates the total power of the sub-channel with proportional
rate constraint, but the scheme 3 first satisfies the minimum
data rate, and then allocates the remaining power with pro-
portional rate constraint. we found that scheme 3 performs
slightly better than scheme 1. OFDMA has the lowest perfor-
mance gain since each sub-channel can only be assigned to
one user.
From Fig. 6, the performance of cell-edge and cell-center

users is evaluated. We add up all the paired users through-
out, respectively, and calculating the performance ratio for
high(cell-center) and low(cell-edge) ECG users. The GOS
andmatching theory with water-filling power allocation algo-
rithms achieved throughput performance between the users
of the high- and low-channel gain users are quite different.
Because, the high ECG users usually occupied more than one
sub-channel, but the paired low ECG users always different,
and thewater-filling power allocationmorewilling to allocate
power to high ECG users. However, the APF user pairing
algorithm improved the fairness for all the users sharing
the sub-channels. The PAS. 2 allocates all the remaining
power to high ECG user, and result a larger sum-rate ratio
of paired users. The PAS. 1 allocates the total power of
the each sub-channel with the proportional rate constraint,
so the paired users sum-rate ratio is 1:1, and PAS. 3 allo-
cates the total remaining power of each sub-channel with the
proportional rate constraint, its sum-rate ratio also close to
1:1. Therefore, the PAS. 3 effectively guarantees the fairness
and QoS of the paired users without losing more throughput
performance.

FIGURE 7. GOS number of accessed users for different parameter M vs.
number of the users.

FIGURE 8. Number of accessed users for different algorithms vs. number
of the users.

2) PERFORMANCE IN FAIRNESS

The next part of our performance firstly shows the number of
accessed users vs. the number of users. The GOS is firstly
evaluated in Fig. 7, since more users have the opportunity
to access the sub-channels, the number of accessed users is
higher as the parameterMu increased. But with the parameter
Mu increased, the gain of the number of scheduled users
is gradually reduced. So could not increase the number of
scheduled users by increasing the number of multiplexed
users without restrictions. Moreover, for the GOS, when the
sub-channel power is large, the best channel gain user is
usually selected for pairing, and when the sub-channel power
is small, the total power of the sub-channel is generally
allocated to the high-channel gain user. So it results in very
few users accessed the sub-channel. It impairs the right of
cell-edge users to access the spectrum resources. So the GOS
is unrealistic, it is only suitable for determining the system
performance upper bound.

From Fig. 8, when the number of users is smaller than the
number of sub-channels, all the users have accessed to the
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FIGURE 9. Fairness for different parameter Mu vs. number of users.

spectrum resources in both OFDMA and NOMA schemes.
For the matching and adaptive proportional fair user pairing
algorithms, as the number of users increases, the number of
scheduled users tends to a fixed value, and the number of
scheduling users of the APF user pairing is higher than the
matching theory. But all of them still much larger than the
OFDMA scheme. Because, only one user can be allocated to
one sub-channel of the OFDMA scheme, there can only be at
most K users accessed, this results in a rapid decrease in the
percentage of accessed users.
As our finally part of results, we evaluate the fairness of all

theNOMAschemes andOFDMAscheme. The fairness of the
system is evaluated based on the Jain’s fairness index [30].

Jain′s fairness index =

(

N
∑

n=1
Rn

)2

N
N
∑

n=1
R2n

(47)

From Fig. 9, the fairness of GOS increases as the parameter
Mu increased. Because a largeMu provides more flexibility in
sub-channel allocation among the users. Due to the saturation
effect, the influence of constraint increases as the number of
multiplexed users per sub-channel is increased. But, note that
in Fig. 3, the improvement of throughput is marginal as the
parameter Mu increased. Since, it is appropriate to choose a
moderate parameter Mu for the NOMA system.
From Fig. 10 and Fig. 11, the fairness of all the NOMA

schemes are better than that of OFDMA scheme. The fairness
index of the adaptive proportional fair user pairing algo-
rithm is obtained with the average of three power allocation
schemes. It dynamically adjusts the forgetting factor α to
ensure the fairness of long-term and short-term users. But
the GOS and matching theory sacrificing the interests of
vulnerable groups at the same time as maximizing benefits.
In fact, in NOMA, users having a low ECG are given the
possibility of being paired with other users (high ECG) on
certain sub-channel and allocated higher power level than that

FIGURE 10. Fairness for different algorithms vs. number of users.

FIGURE 11. Fairness for different algorithms vs. number of sub-channels.

of the users close to the center of the cell. On the contrary,
when PF scheduling is used for the OFDMA, only one user
is scheduled on each sub-channel, therefore, the user of the
cell-edge is deprived of accessing a large number of sub-
channels. From this perspective, we can see that NOMA
is more fair than OFDMA, because, it compensates for the
impact of distance on users’ ECG by providing appropriate
power levels. However, the fairness of all schemes decreases
as the number of users increases and the fairness of all
schemes increases as the number of sub-channel increases
in Fig. 10 and Fig. 11.

VI. CONCLUSION

This paper studied the spectrum resource and power alloca-
tion problem in the downlink NOMA systems. An extension
of the work is the consideration of upper bound. In this case,
one solution is to perform a global optimal search. Numerical
results demonstrated that the proposed algorithm can ensure
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the best throughput performance by the different power dis-
cretization granularities. But, because the highest complexity
and the worst fairness that is considered unrealistic. So select-
ing the moderate power discretization parameters and the
number of multiplexed users are necessary to reduce com-
plexity. In this case, a low complexity spectrum resource and
power allocation with adaptive proportional fair user pairing
algorithm is proposed, the APF user pairing can achieve
both the fairness and high system sum-rate. Additionally,
by exploring different power allocation schemes with propor-
tional rate constraint, we found that it can not only ensure the
correct execution of SIC, but also the throughput performance
achieved close to the upper bound. The development of opti-
mization algorithm for this problem is subject to further study.

APPENDIX A

Taking into account the objective function and constraints,
using the Lagrangian dual decomposition approach to solve
the formulated problem in (27) to (29) and (38) to (40). First
of all describe the problem of first power allocation scheme
solving process, the third power allocation scheme is similar
to the first, therefore, only the results are given.

γk,m =
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where µ and λ represent the Lagrange multipliers. Differen-
tiating against pk,n, pk,m, µ and λ respectively, we obtain
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Setting each of these equations to zero and solving (49) for
the Lagrange variable λ which can be used to solve (50)

for pk,m
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Next, solving for pk,n by using (51), we assume that the total
transmit power of all sub-channel are equal, so which we can
obtain that
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Since (53), (54) still have the Lagrange multiplier µ so
it must be solve in order to allocate the transmission power
for user m, n, Using the (52) for the Lagrange variable µ we
obtain
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As for oblective function (38) and constrations (39) and (40),
We use the same solution idea.

APPENDIX B

For the second power allocation scheme for user m, n on the
sub-channel k , we give the proof in this section. The objective
function under the second scheme can be expressed as
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where F is the total throughput. Differentiating against pk,m,
pk,n, respectively, we obtain
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It is obvious that
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For the constraint that
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Thus we can get

dF

dpk,m
>

dF

dpk,n
(63)

According to (62), for the same power increment, the user
with higher channel gain has the a greater contribution to
the total throughput. Thus, after ensuring minimum data rate
requirements for the user m, n on the sub-channel, the BS
should allocate the remaining power to the high channel gain
user as much as possible.
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