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Abstract

Cognitive radio is a new concept of reusing spectrum in an opportunistic man-
ner. Cognitive radio is motivated by recent measurements of spectrum uti-
lization, showing unused resources in frequency, time and space. Introducing
cognitive radios in a primary network inevitably creates increased interference
to the primary users. Secondary users must sense the spectrum and detect pri-
mary users’ signals at very low SNR, to avoid causing too much interference.
This dissertation studies this detection problem, known as spectrum sensing.

The fundamental problem of spectrum sensing is to discriminate an observation
that contains only noise from an observation that contains a very weak signal
embedded in noise. In this work, detectors are proposed that exploit known
properties of the second-order moments of the signal. In particular, known
structures of the signal covariance are exploited to circumvent the problem of
unknown parameters, such as noise and signal powers or channel coefficients.

The dissertation is comprised of six papers, all in different ways related to spec-
trum sensing based on second-order statistics. In the first paper, we consider
spectrum sensing of orthogonal frequency-division multiplexed (OFDM) signals
in an additive white Gaussian noise channel. For the case of completely known
noise and signal powers, we set up a vector-matrix model for an OFDM signal
with a cyclic prefix and derive the optimal Neyman-Pearson detector from first
principles. For the case of completely unknown noise and signal powers, we
derive a generalized likelihood ratio test (GLRT) based on empirical second-
order statistics of the received data. The proposed GLRT detector exploits the
time varying correlation structure of the OFDM signal and does not require any
knowledge of the noise or signal powers.

In the second paper, we create a unified framework for spectrum sensing of
signals which have covariance matrices with known eigenvalue multiplicities.
We derive the GLRT for this problem, with arbitrary eigenvalue multiplicities
under both hypotheses. We also show a number of applications to spectrum
sensing.
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The general result of the second paper is used as a building block, in the third
and fourth papers, for spectrum sensing of second-order cyclostationary signals
received at multiple antennas and orthogonal space-time block coded (OSTBC)
signals respectively. The proposed detector of the third paper exploits both
the spatial and the temporal correlation of the received signal, from knowl-
edge of the fundamental period of the cyclostationary signal and the eigenvalue
multiplicities of the temporal covariance matrix.

In the fourth paper, we consider spectrum sensing of signals encoded with an
OSTBC. We show how knowledge of the eigenvalue multiplicities of the covari-
ance matrix are inherent owing to the OSTBC, and propose an algorithm that
exploits that knowledge for detection. We also derive theoretical bounds on the
performance of the proposed detector. In addition, we show that the proposed
detector is robust to a carrier frequency offset, and propose another detector
that deals with timing synchronization using the detector for the synchronized
case as a building block.

A slightly different approach to covariance matrix estimation is taken in the
fifth paper. We consider spectrum sensing of Gaussian signals with structured
covariance matrices, and propose to estimate the unknown parameters of the co-
variance matrices using covariance matching estimation techniques (COMET).
We also derive the optimal detector based on a Gaussian approximation of the
sample covariance matrix, and show that this is closely connected to COMET.

The last paper deals with the problem of discriminating samples that contain
only noise from samples that contain a signal embedded in noise, when the
variance of the noise is unknown. We derive the optimal soft decision detector
using a Bayesian approach. The complexity of this optimal detector grows
exponentially with the number of observations and as a remedy, we propose a
number of approximations to it. The problem under study is a fundamental one
and it has applications in signal denoising, anomaly detection, and spectrum
sensing for cognitive radio.
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Populärvetenskaplig

Sammanfattning

Ständigt ökade krav på högre datatakter i trådlösa kommunikationssystem, och
begränsade eller outnyttjade frekvensband har lett till ett nytt koncept, kallat
kognitiv radio. Traditionellt så tilldelas frekvensband, eller spektrum, under rel-
ativt långa tidsperioder och licensägaren har ensamrätt att utnyttja spektrumet
för en specifik tillämpning och trådlös teknik. En övervägande majoritet av de
spektra som är användbara för digital radiokommunikation är licensierade, och
således till synes upptagna. Flertalet mätningar av det faktiska användandet av
olika spektra har dock visat att de i praktiken är outnyttjade en stor del av tiden
eller på vissa platser. Trots att de användbara frekvensbanden är tilldelade olika
operatörer så finns det alltså outnyttjade resurser, så kallade “spektrumhål”.

Den grundläggande idén med kognitiv radio är att återanvända dessa outnyt-
tjade resurser. För att utnyttja dessa resurser måste en kognitiv radio därför
kunna avgöra om någon redan använder ett frekvensband eller om det faktiskt
finns ett spektrumhål. Denna detektionsprocess kallas spektrumavkänning (eng.
spectrum sensing).

Denna avhandling föreslår algoritmer för spektrumavkänning som utnyttjar
kända strukturer, eller korrelation, hos den signal som man vill detektera. Mod-
erna trådlösa system använder olika sätt att representera och skydda data, till
exempel genom modulation och kodning. För att skydda informationen mot
olika typer av störningar så införs redundans till signalen på ett kontrollerat
sätt. Denna redundans kan införas till exempel i olika tidpunkter av signalen
(tidskorrelation) eller mellan signaler som skickas och tas emot på flera anten-
ner samtidigt (rumskorrelation). I allmänhet är dessa metoder strikt reglerade
i den standard som bestämmer hur ett visst trådlöst system är uppbyggt och
fungerar. Eftersom frekvensband är tilldelade till operatörer endast för en viss
tillämpning, så är det oftast känt vilken typ av radiosignal som eventuellt har
sänts på ett visst frekvensband. Redundans kan också skapas hos mottagaren
genom att använda flera antenner, och därmed ta emot flera olika versioner av
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samma sända signal. Denna kunskap om den mottagna signalens struktur kan
utnyttjas för att bättre kunna avgöra om det finns någon sändare som skickar
en sådan signal eller inte. I avhandlingen föreslås metoder som utnyttjar både
tids- och rumskorrelation. Några metoder kan tillämpas på ganska generella
signalstrukturer, medan andra är designade mer specifikt för några typer av
signaler som är väldigt vanliga i moderna trådlösa system.
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Chapter 1

Background and Problem

Formulation

The ever increasing demand for higher data rates in wireless communications
in the face of limited or under-utilized spectral resources has motivated the
introduction of cognitive radio. Traditionally, licensed spectrum is allocated
over relatively long time periods, and is intended to be used only by licensees.
The usage of frequency bands, or spectrum, is strictly regulated and allocated
to specific communication techniques. The vast majority of frequency bands
are allocated to licensed users, which are also steered by standards. There
are a number of organizations working on standards for frequency allocation,
for example the International Telecommunication Union (ITU), the European
Telecommunications Standards Institute (ETSI) and the European Conference
of Postal and Telecommunications Administrations (CEPT). Various measure-
ments of spectrum utilization have shown substantial unused resources in fre-
quency, time and space [1, 2]. The concept behind cognitive radio is to exploit
these under-utilized spectral resources by reusing unused spectrum in an op-
portunistic manner [3, 4]. The phrase “cognitive radio” is usually attributed to
Mitola [4], but the idea of using learning and sensing machines to probe the
radio spectrum was envisioned several decades earlier (cf. [5]).

Cognitive radio systems typically involve primary users of the spectrum, who are
incumbent licensees, and secondary users who seek to opportunistically use the
spectrum when or where the primary users are idle. The unused resources are
often referred to as spectrum holes or white spaces. There might, for example,
be geographical positions where some frequency bands are allocated to a primary
user system, but not currently used. These geographical spectrum holes could
be employed by secondary users as shown in Figure 1.1. There might also be
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4 Chapter 1. Background and Problem Formulation

Figure 1.1: Example of geographical spectrum holes.

certain time intervals for which the primary system does not use the licensed
spectrum, as shown in Figure 1.2. These time domain spectrum holes could
also potentially be employed by secondary users.

The introduction of cognitive radios inevitably creates increased interference
and thus can degrade the quality-of-service of the primary system. The impact
on the primary system, for example in terms of increased interference, must be
kept at a minimal level. Therefore, cognitive radios must sense the spectrum
to detect whether it is available or not, and must be able to detect very weak
primary user signals [6, 7]. Thus spectrum sensing is one of the most essential
components of cognitive radio. Note that here we are describing and address-
ing so-called “interweave” cognitive radio systems, meaning that the secondary
users exploit only those resources which are not used by the primary users.
Other methods of spectrum sharing have also been envisioned. These include
overlay and underlay systems, where the secondary and primary users coexist
and techniques such as spread-spectrum or dirty-paper coding are used to avoid
excessive interference. Such systems are not addressed here except to the extent
that they may also rely on spectrum sensing.

The problem of spectrum sensing is to decide whether a particular slice of

4



5

F
re

q
u
en

cy

Time

Figure 1.2: Example of time domain spectrum holes.

the spectrum is “available” or not. That is, in its simplest form we want to
discriminate between the two hypotheses

H0 : y[n] = w[n], n = 1, . . . , N

H1 : y[n] = x[n] +w[n], n = 1, . . . , N,
(1.1)

where x[n] represents a primary user’s signal, w[n] is noise and n represents
time. The received signal y[n] is vectorial, of length L. Each element of the
vector y[n] could represent, for example, the received signal at a different an-
tenna at the time instant n. Note that (1.1) is a classical detection problem,
which is treated in numerous detection theory textbooks. Detection of very
weak signals x[n], in the setting of (1.1) is also a traditional topic, dealt with in
depth in [8, Ch. II-III], for example. The novel aspect of the spectrum sensing
when related to the long-established detection theory literature is that the sig-
nal x[n] has a specific structure that stems from the use of modern modulation
and coding techniques in contemporary wireless systems. Clearly, since such a
structure may not be trivial to represent, this has resulted in substantial re-
search efforts. At the same time, this structure offers the opportunity to design
very efficient spectrum sensing algorithms.

5



6 Chapter 1. Background and Problem Formulation

In the sequel, we will use bold-face lowercase letters to denote column vectors
and bold-face capital letters to denote matrices. A discrete-time index is de-
noted with square brackets and the mth user is denoted with a subscript. That
is, ym[n] is the vectorial observation for user m at time n. When considering a
single user, we will omit the subscript for simplicity. Moreover, if the sequence is
scalar, we use the convention y[n] for the time sequence. The lth scalar element
of a vector is denoted by yl[n], not to be confused with the vectorial observation
ym[n] for user m.

For simplicity of notation, let the vector y , [y[1]T , y[2]T , . . . , y[N ]T ]T of
length LN contain all observations concatenated in one column vector. In the
same way, denote the total concatenated signal by x and the noise by w. The
hypothesis test (1.1) can then be rewritten as

H0 : y = w,

H1 : y = x+w.
(1.2)

A standard assumption in the literature, which we also make throughout this
introduction, is that the additive noise w is zero-mean, white, and circularly
symmetric complex Gaussian. We write this as w ∼ N (0, σ2I), where σ2 is the
noise variance.

6



Chapter 2

Fundamentals of Signal

Detection

In signal detection, the task of interest is to decide whether the observation y

was generated under H0 or H1. Typically, this is accomplished by first forming
a test statistic Λ(y) from the received data y, and then comparing Λ(y) with a
predetermined threshold η:

Λ(y)
H1

≷
H0

η. (2.1)

The performance of a detector is quantified in terms of its receiver operating
characteristics (ROC), which gives the probability of detection PD = Pr(Λ(y) >
η|H1) as a function of the probability of false alarm PFA = Pr(Λ(y) > η|H0).
By varying the threshold η, the operating point of a detector can be chosen
anywhere along its ROC curve. There is always a tradeoff between the prob-
abilities of false alarm and detection. The choice of the operating point along
the ROC curve depends on the application. On the one hand, from a primary
user’s perspective it is desirable that the probability of detection is large. The
secondary users must detect the primary user’s signal with high probability in
order not to interfere with the primary user. On the other hand, from a sec-
ondary user’s perspective it is desirable to detect the available spectrum holes
with high probability to be able to use as much of the spectrum as is pos-
sible. In that case we wish to detect a spectrum hole with high probability
Pr(Λ(y) ≤ η|H0) = 1 − PFA. That is, we wish to keep PFA small. To conclude
this reasoning, in the cognitive radio context there is a tradeoff between the
secondary users’ spectrum usage and the impact of interference to the primary
users, and this tradeoff is embodied in a tradeoff between PFA and PD.
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8 Chapter 2. Fundamentals of Signal Detection

Clearly, the fundamental problem of detector design is to choose the test statistic
Λ(y) and to set the decision threshold η in order to achieve good detection
performance. These matters are treated in detail in many books on detection
theory (e.g. [8]). Detection algorithms are either designed in the framework of
classical statistics or in the framework of Bayesian statistics. In the classical
(also known as deterministic) framework, either H0 or H1 is deterministically
true and the objective is to choose Λ(y) and η so as to maximize PD subject
to a constraint on PFA: PFA ≤ α. In the Bayesian framework, by contrast, it
is assumed that the source selects the true hypothesis at random according to
some a priori probabilities Pr(H0) and Pr(H1). The objective in this framework
is to minimize the so-called Bayesian cost. Interestingly, although the difference
in philosophy between these two approaches is substantial, both result in a test
of the form (2.1) where the test statistic is the likelihood-ratio [8, Ch. II]

Λ(y) =
p(y|H1)

p(y|H0)
. (2.2)

2.1 Unknown Parameters

To compute the likelihood ratio Λ(y) in (2.2), the probability distribution of
the observation y must be perfectly known under both hypotheses. This means
that one must know all parameters, such as noise variance, signal variance and
channel coefficients. If the signal to be detected, x, is perfectly known, then1,
y ∼ N (x, σ2I) under H1, and it is easy to show that the optimal test statistic
is the output of a matched filter [8, Sec. III.B]:

Re(xHy)
H1

≷
H0

η,

where xH denotes the Hermitian (conjugate) transpose of x. In practice, the
signal and noise parameters are not known. In the following, we will discuss
two standard techniques that are used to deal with unknown parameters in
hypothesis testing problems.

In the Bayesian framework, the optimal strategy is to marginalize the likelihood
function to eliminate the unknown parameters. More precisely, if the vector θ

contains the unknown parameters, then one computes

p(y|Hi) =

∫
p(y|Hi, θ)p(θ|Hi)dθ,

where p(y|Hi, θ) denotes the conditional PDF of y under Hi and conditioned
on θ, and p(θ|Hi) denotes the a priori probability density of the parameter

1Recall that we assume circularly symmetric Gaussian noise throughout.
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2.2. Constant False-Alarm Rate (CFAR) Detectors 9

vector given hypothesis Hi. In practice, the actual a priori parameter density
p(θ|Hi) often is not perfectly known, but rather is chosen to provide a mean-
ingful result. How to make such a choice, is far from clear in many cases. One
alternative is to choose a non-informative distribution in order to model a lack
of a priori knowledge of the parameters. One example of a non-informative
prior is the gamma distribution, which is used in Paper F to model an unknown
noise power. Another option is to choose the prior distribution via the so-called
maximum entropy principle. According to this principle, the prior distribution
of the unknown parameters that maximizes the entropy given some statisti-
cal constraints (e.g. limited expected power or second-order moment) should
be chosen. The maximum entropy principle has been used in the context of
spectrum sensing for cognitive radio in [9].

In the classical hypothesis testing framework, the unknown parameters must
be estimated somehow. A standard technique is to use maximum-likelihood
(ML) estimates of the unknown parameters, which gives rise to the well-known
generalized likelihood-ratio test (GLRT):

max
θ

p(y|H1, θ)

max
θ

p(y|H0, θ)

H1

≷
H0

η.

This is a technique that usually works quite well, although it does not necessarily
guarantee optimality. Other estimates than the ML estimate may also be used.

2.2 Constant False-Alarm Rate (CFAR) Detec-
tors

A detector is said to have the property of constant-false alarm rate (CFAR), if
its false alarm probability is independent of parameters such as noise or signal
powers. In particular, the CFAR property means that the decision threshold
can be set to achieve a pre-specified PFA without knowing the noise power. The
CFAR property is normally revealed by the equations that define the test (2.1):
if the test statistic Λ(y) and the optimal threshold are unaffected by a scaling
of the problem (such as multiplying the received data by a constant), then
the detector is CFAR. CFAR is a very desired property in many applications,
especially when one has to deal with noise of unknown power, as we will see
later.

2.3 Energy Detection

As an example of a very basic detection technique, we present the well known
energy detector, also known as the radiometer [10]. The energy detector mea-

9



10 Chapter 2. Fundamentals of Signal Detection

sures the received energy during a finite time interval, and compares it to a
predetermined threshold. It should be noted that the energy detector works
well also for other cases than the one we will present, although it might not be
optimal.

To derive this detector, assume that the signal to be detected does not have any
known structure that could be exploited, and model it via a zero-mean circularly
symmetric complex Gaussian variable x ∼ N (0, γ2I). Then, y|H0 ∼ N (0, σ2I)
and y|H1 ∼ N (0, (σ2 + γ2)I). After removing irrelevant constants, the optimal
(Neyman-Pearson) test can be written as

Λ(y) =
‖y‖2
σ2

=
1

σ2

LN∑

i=1

|yi|2
H1

≷
H0

η. (2.3)

The operational meaning of (2.3) is to compare the energy of the received signal
against a threshold and this is why (2.3) is called the energy detector. Its
performance is well known, cf. [8, Sec. III.C], and is given by

PFA = Pr(Λ(y) > η|H0) = 1− Fχ2
2NL

(
2η

σ2

)

and

PD = Pr (Λ(y) > η|H1) = 1− Fχ2
2NL

(
2η

σ2 + γ2

)

= 1− Fχ2
2NL

(
F−1
χ2
2NL

(1− PFA)

1 + γ2

σ2

)
,

where Fχ2
2NL

(·) denotes the cumulative distribution function of a χ2-distributed
random variable with 2NL degrees of freedom. Clearly, PD is a function of PFA,
NL and the SNR , γ2/σ2. Note that for a fixed PFA, PD → 1 as NL → ∞ at
any SNR. That is, ideally any pair (PD, PFA) can be achieved if sensing can be
done for an arbitrarily long time. This is typically not the case in practice, as
we will see in the following section.

It has been argued that for several models, and if the probability density func-
tions under both hypotheses are perfectly known, energy detection performs
close to the optimal detector. For example, it was shown in [7] that the perfor-
mance of the energy detector is asymptotically equivalent, at low SNR, to that
of the optimal detector when the signal is modulated with a zero-mean finite
signal constellation, assuming that the symbols are independent of each other
and that all probability distributions are perfectly known. Similar results have
been shown numerically in other works, for example in Paper A for the detec-
tion of an orthogonal frequency-division multiplexing (OFDM) signal. These
results hold if all probability density functions, including that of the noise, are

10



2.4. Fundamental Limits for Sensing: SNR Wall 11

perfectly known. By contrast, if for example the noise variance is unknown,
the energy detector cannot be used because knowledge of σ2 is needed to set
the threshold. If an incorrect (“estimated”) value of σ2 is used in (2.3) then the
resulting detector may perform rather poorly. We discuss this matter in more
depth in the following section.

2.4 Fundamental Limits for Sensing: SNR Wall

Cognitive radios must be able to detect very weak primary user signals [6, 7].
This is difficult, because there are fundamental limits on detection at low SNR.
Specifically, due to uncertainties in the model assumptions, accurate detection
is impossible below a certain SNR level, known as the SNR wall [11, 12]. The
reason is that to compute the likelihood ratio Λ(y), the probability distribution
of the observation y must be perfectly known under both hypotheses. In any
case, the signal and noise in (1.2) must be modeled with some known distri-
butions. Of course, a model is always a simplification of reality, and the true
probability distributions are never perfectly known. Even if the model would
be perfectly consistent with reality, there will be some parameters that are un-
known such as the noise power, the signal power and the channel coefficients,
as noted above.

To exemplify the SNR wall phenomenon, consider the energy detector. To set
its decision threshold, the noise variance σ2 must be known. If the knowledge
of the noise variance is imperfect, the threshold cannot be correctly set. Setting
the threshold based on an incorrect noise variance will not result in the desired
value of false-alarm probability. In fact, the performance of the energy detector
quickly deteriorates if the noise variance is imperfectly known [7, 11]. Let σ2

denote the imperfect estimate of the noise variance, and let σ2
t be the true noise

variance. Assume that the estimated noise variance is known only to lie in a
given interval, such that σ2 ∈ [ 1ρσ

2
t , ρσ

2
t ] for some ρ > 1. To guarantee that the

probability of false alarm is always below a required level, the threshold must
be set to fulfill the requirement in the worst case. That is, we need to make
sure that

max
σ2∈[ 1

ρ
σ2
t ,ρσ

2
t ]
PFA

is below the required level. The worst case occurs when the noise power is at
the upper end of the interval, that is when σ2 = ρσ2

t . It was shown in [12] that
under this model, the number of samples LN that are required to meet a PD

requirement, tends to infinity as the SNR = γ2/σ2
t ց (ρ2 − 1)/ρ. That is, even

with an infinite measurement duration, it would be impossible to meet the PD

requirement when the SNR is below the SNR wall (ρ2−1)/ρ. This effect occurs
only because of the uncertainty in the noise level. The effect of the SNR wall
for energy detection is shown in Figure 2.1. The figure shows the number of

11
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Figure 2.1: The number of samples required to meet PFA = 0.05 and PD = 0.9 using
energy detection under noise uncertainty.

samples that are needed to meet the requirements PFA = 0.05 and PD = 0.9 for
different levels of the noise uncertainty.

It was shown in [12] that errors in the noise power assumption introduce SNR
walls to any moment-based detector, not only to the energy detector. This re-
sult was further extended in [12] to any model uncertainties, such as color and
stationarity of the noise, simplified fading models, ideality of filters and quanti-
zation errors introduced by finite-precision analog-to-digital (A/D) converters.
It is possible to mitigate the problem of SNR walls by taking the imperfections
into account, in the sense that the SNR wall can be moved to a lower SNR
level. For example, it was shown in [12] that noise calibration can improve the
detector robustness. Exploiting known features of the signal to be detected can
also improve the detector performance and robustness. Known features can be
exploited to deal with unknown parameters using marginalization or estimation
as discussed before. It is also known that fast fading effects can somewhat allevi-
ate the requirement of accurately knowing the noise variance in some cases [13].
Note also that a CFAR detector is not exposed to the SNR wall phenomenon,
since the decision threshold is set independently of any potentially unknown
signal and noise power parameters.

12



Chapter 3

Feature Detection Based on

Second-Order Statistics

Information theory teaches us that communication signals with maximal infor-
mation content (entropy) are statistically white and Gaussian and hence, we
would expect signals used in communication systems to be nearly white Gaus-
sian. If this was the case, then no spectrum sensing algorithm could do better
than the energy detector. However, signals used in practical communication sys-
tems always contain distinctive features that can be exploited for detection and
that enable us to achieve a detection performance that substantially surpasses
that of the energy detector. Perhaps even more importantly, known signal fea-
tures can be exploited to estimate unknown parameters such as the noise power.
Therefore, making use of known signal features effectively can circumvent the
problem of SNR walls discussed in the previous section. The specific properties
that originate from modern modulation and coding techniques have aided in
the design of efficient spectrum sensing algorithms.

The term feature detection is commonly used in the context of spectrum sensing
and usually refers to exploitation of known statistical properties of the signal.
The signal features referred to may be manifested both in time and space. Fea-
tures of the transmitted signal are the result of redundancy added by coding,
and of the modulation and burst formatting schemes used at the transmit-
ter. For example, OFDM modulation adds a cyclic prefix which manifests itself
through a linear relationship between the transmitted samples. Also, most com-
munication systems multiplex known pilots into the transmitted data stream or
superimpose pilots on top of the transmitted signals, and doing so results in
very distinctive signal features. A further example is given by space-time coded
signals, in which the space-time code correlates the transmitted signals. The

13



14 Chapter 3. Feature Detection Based on Second-Order Statistics

received signals may also have specific features that occur due to characteristics
of the propagation channel. For example, in a MIMO (multiantenna) system,
if the receiver array has more antennas than the transmitter array, then sam-
ples taken by the receiver array at any given point in time must necessarily be
correlated.

In this section, we will review a number of state-of-the-art detectors that exploit
signal features and which are suitable for spectrum sensing applications. This
will serve as a background to the techniques proposed in this dissertation. Most
of the presented methods are very recent advances in spectrum sensing, and
there is still much ongoing research in these areas.

3.1 Detectors Based on Autocorrelation Proper-
ties

A very popular and useful approach to feature detection is to estimate the
second-order statistics of the received signals and make decisions based on these
estimates. Clearly, in this way we may distinguish a perfectly white signal from
a colored one. This basic observation is important, because typically, the re-
dundancy added to transmitted signals in a communication system results in
its samples becoming correlated. The correlation structure incurred this way
does not necessarily have to be stationary; in fact, typically it is not as we
shall see. Since cov(Ax) = Acov(x)AH for any deterministic matrix A and
stochastic vector x, the correlation structure incurred by the addition of redun-
dancy at the transmitter is usually straightforward to analyze if the transmit
processing consists of a linear operation. Moreover, we know that the distri-
bution of a Gaussian signal is fully determined by its first and second-order
moments. Therefore, provided that the communication signals in question are
sufficiently near to Gaussian and that enough samples are collected, we expect
that estimated first and second-order moments are sufficient statistics to within
practical accuracy. Since communication signals are almost always of zero-mean
(in order to minimize the power spent at the transmitter), just looking at the
second-order moment is adequate. Taken together, these arguments tell us that
in many cases we can design near-optimal spectrum sensing algorithms by es-
timating second-order statistics from the data, and making decisions based on
these estimates.

We explain detection based on second-order-statistics using OFDM signals as
an example. Further details on the detectors presented in this introductory
section are given in Paper A. OFDM signals have a very explicit correlation
structure imposed by the insertion of a cyclic prefix (CP) at the transmitter.
Moreover, OFDM is a popular modulation method in modern wireless stan-
dards. Consequently a sequence of papers have proposed detectors that exploit

14
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Figure 3.1: Model for the N samples of a received OFDM signal.
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Figure 3.2: Example of a periodic autocorrelation function for an OFDM signal with
a cyclic prefix.

the correlation structure of OFDM signals [14–16] and Paper A. We will briefly
describe those detectors in the following. These detectors can be used for any
signal with a CP structure, for example single-carrier transmission with a CP
and repeated training or so-called known symbol padding, but in what follows
we assume that we deal with a conventional OFDM signal.

Consider an OFDM signal with a CP, as shown in Figure 3.1. Let Nd be the
number of data symbols, that is, the block size of the inverse fast Fourier trans-
form (IFFT) used at the transmitter or equivalently the number of subcarriers.
The CP has length Nc, and it is a repetition of the last Nc samples of the
data. Assume that the transmitted data symbols are independent and iden-
tically distributed (i.i.d.), zero-mean and have variance γ2, and consider the
autocorrelation function (ACF)

rx[n, τ ] , E [x[n]x∗[n+ τ ]] . (3.1)

Owing to the insertion of the CP, the OFDM signal is nonstationary and there-
fore the ACF rx[n, τ ] in (3.1) is time-varying. In particular, it is non-zero at time
lag τ = Nd for some time instances n, and zero for others. This is illustrated
in Figure 3.2. The non-zero values of the ACF occur due to the repetition of
symbols in the CP. This non-stationarity property of the ACF can be exploited

15



16 Chapter 3. Feature Detection Based on Second-Order Statistics

in different ways by the detectors, as we will see in what follows. Of course,
the more knowledge we have of the parameters that determine the shape of the
ACF (Nc and Nd specifically, and σ2 and γ2), the better performance we can
obtain.

For simplicity of notation, assume that the receiver has observed K+1 consecu-
tive OFDM signals out of an endless stream of OFDM modulated data, so that
the received signal y[n] contains N = K(Nc +Nd) +Nd samples. Furthermore,
for simplicity we consider an additive white Gaussian noise (AWGN) channel.
The quantitative second-order statistics will be the same in a multipath fading
channel, but the exact ACF may be smeared out due to the time dispersion.
However, averaging the second-order statistics over multiple OFDM symbols
mitigates the impact of multipath fading, and the detection performance is
close to the performance in an AWGN channel in many cases (cf. [14]). We are
interested in estimating rx[n,Nd], and we form the following estimate of it:

r̂[n] , y[n]y∗[n+Nd], n = 1, . . . , K(Nc +Nd).

Note that rw[n, τ ] = 0 for any τ 6= 0, since the noise is white and zero-mean.
Here rw[n, τ ] and ry[n, τ ] are defined based on w[n] and y[n] similarly to (3.1).
Hence, ry [n,Nd] = rx[n,Nd] whenever Nd 6= 0. By construction E[r̂[n]] =
ry[n,Nd] = rx[n,Nd] is the ACF of the OFDM signal at time lag Nd for Nd 6= 0.
We know from the above discussion (see Figure 3.2) that r̂[n] and r̂[n+ k(Nc +
Nd)] have identical statistics and that they are independent. Therefore, it is
useful to define

R̂[n] ,
1

K

K−1∑

k=0

r̂[n+ k(Nc +Nd)], n = 1, . . . , Nc +Nd.

What is the best way of making decisions on signal presence versus absence
based on r̂[n]? We know that the mean of r̂[n] is nonzero for some n and zero
for others and this is the basic observation that we would like to exploit. It is
clear that the design of an optimal detector would involve an accurate analysis
of the statistical distribution of r̂[n]. This is a nontrivial matter, since r̂[n]
is a nonlinear function of y[n]. Moreover, this analysis is difficult if there are
unknown parameters such as the noise power.

The recent literature has proposed several ways forward.

• One of the first papers on the topic was [15], in which the following sta-
tistical test was proposed:

max
θ

∣∣∣∣∣
θ+Nc∑

n=θ+1

r̂[n]

∣∣∣∣∣
H1

≷
H0

η. (3.2)

16



3.1. Detectors Based on Autocorrelation Properties 17

The test in (3.2) exploits the non-stationarity of the OFDM signal. The
variable θ in (3.2) has the interpretation of synchronization mismatch. The
intuition behind this detection is therefore to catch the “optimal” value
of θ and then measure, for that θ, how large is the correlation between
values of y[n] spaced Nd samples apart. For this to work, the detector
must know Nc and Nd. Perhaps more importantly, in order to set the
threshold one also needs to know σ2 and hence the detector in (3.2) is
susceptible to the SNR wall phenomenon. This is so for the same reasons
as previously discussed for the energy detector: the test statistic in (3.2)
is not dimensionless and hence the test is not CFAR.

The original test in [15] looks only at one received OFDM symbol but it
can be extended in a straightforward manner to use all K symbols. The
resulting statistic then sums the variables R̂[n] instead of r̂[n] and we have

max
θ∈{0,...,Nc+Nd−1}

∣∣∣∣∣
∑

n∈Sθ

R̂[n]

∣∣∣∣∣
H1

≷
H0

η, (3.3)

where Sθ ⊂ {1, 2, . . . , Nc +Nd} denotes the set of Nc (cyclic) consecutive
indices for which E[R̂[n]] 6= 0, given the synchronization error θ.

• A different path was taken in [14]. The detector proposed therein uses the
empirical mean of the autocorrelation normalized by the received power,
as the test statistic. More precisely, the test is

∑N−Nd

n=1 Re(r̂[n])
∑N

n=1 |y[n]|2
H1

≷
H0

η. (3.4)

The advantage of (3.4) is that in order to use this test, one needs to
know only Nd, but not Nc. This is useful if Nc is unknown, or if there is
substantial uncertainty regarding Nc; think for example, of a system that
alternates between CPs of different lengths or that uses different CPs on
different component carriers. On the other hand, a potential disadvantage
of (3.4) is that it does not exploit the fact that the OFDM signal is non-
stationary. This is evident from (3.4) as all samples of r̂[n] are weighed
equally when forming the test statistic; hence, the time-variation of the
ACF is not reflected in the detection criterion. Not surprisingly, one can
obtain better performance if this time-variation is exploited.

By construction, (3.4) is a CFAR test. Hence, it requires no knowledge
of the noise power σ2. We note in passing that a detector similar to [14],
but without the power normalization, was proposed in [16].

• In Paper A we propose another detector that exploits the non-stationarity
of an OFDM signal. The detector of Paper A is essentially an approxi-
mation of the GLRT, treating the synchronization mismatch between the
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18 Chapter 3. Feature Detection Based on Second-Order Statistics

transmitter and the receiver, and the signal and noise variances, as un-
known parameters. It is also a CFAR detector and needs no knowledge of
σ2
n. It differs from the detectors in [14] and [16] in that it explicitly takes

the non-stationarity of x[n] into account. Further details of the proposed
detector are given in Paper A.

3.2 Detectors Based on Cyclostationarity

In many cases, the ACF of the signal is not only non-stationary, but is also
periodic. Most man-made signals show periodic patterns related to symbol
rate, chip rate, channel code or cyclic prefix. Such second-order periodic signals
can be appropriately modeled as second-order cyclostationary random processes
[17]. As an example, consider again the OFDM signal shown in Figure 3.1. The
autocorrelation function of this OFDM signal, shown in Figure 3.2, is periodic.
The fundamental period is the length of the OFDM symbol, Nc+Nd. Knowing
some of the cyclic characteristics of a signal, one can construct detectors that
exploit the cyclostationarity [18, 19] and benefit from the spectral correlation.

A discrete-time zero-mean stochastic process y[n] is said to be second-order
cyclostationary if its time-varying ACF ry [n, τ ] = E [y[n]y∗[n+ τ ]] is periodic
in n [17, 18]. Hence, ry[n, τ ] can be expressed by a Fourier series

ry[n, τ ] =
∑

α

Ry(α, τ)e
jαn,

where the sum is over integer multiples of fundamental frequencies and their
sums and differences. The Fourier coefficients depend on the time lag τ and are
given by

Ry(α, τ) = lim
T→∞

1

T

T−1∑

n=0

ry [n, τ ]e
−jαn.

The Fourier coefficients Ry(α, τ) are also known as the cyclic autocorrelation
at cyclic frequency α. The process y[n] is second-order cyclostationary when
there exists an α 6= 0 such that Ry(α, τ) > 0, because ry [n, τ ] is periodic in
n precisely in this case. The cyclic spectrum of the signal y[n] is the Fourier
coefficient

Sy(α, ω) =
∑

τ

Ry(α, τ)e
−jωτ .

The cyclic spectrum represents the density of correlation for the cyclic frequency
α.

Knowing some of the cyclic characteristics of a signal, one can construct de-
tectors that exploit the cyclostationarity and thus benefit from the spectral

18
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correlation (see, e.g., [18–20]). Note that the inherent cyclostationarity prop-
erty appears both in the cyclic ACF Ry(α, τ) and in the cyclic spectral density
function Sy(α, ω). Thus, detection of the cyclostationarity can be performed
both in the time domain, and in the frequency domain. The paper [18] pro-
posed detectors that exploit cyclostationarity based on one cyclic frequency,
either from estimates of the cyclic autocorrelation or of the cyclic spectrum.
The detector of [18] based on cyclic autocorrelation was extended in [19] to
use multiple cyclic frequencies. The cyclic autocorrelation is estimated in [18]
and [19] by

R̂y(α, τ) ,
1

N −Nd

N−Nd−1∑

n=0

y[n]y∗[n+ τ ]e−jαn.

The cyclic autocorrelation R̂y(αi, τi,Ni
) can be estimated for the cyclic frequen-

cies of interest αi, i = 1, . . . , p, at time lags τi,1, . . . , τi,Ni
. The detectors of [18]

and [19] are then based on the limiting probability distribution of R̂y(αi, τi,Ni
),

i = 1, . . . , p.

In practice only one or a few cyclic frequencies are used for detection, and this is
usually sufficient to achieve a good detection performance. Note, however, that
this is an approximation. For example, a perfect Fourier series representation
of the signal shown in Figure 3.2 requires infinitely many Fourier coefficients.
The autocorrelation-based detector of [14] and the cyclostationarity detector
of [19] are compared in [21], for detection of an OFDM signal in AWGN. The
results show that the cyclostationarity detector using two cyclic frequencies
outperforms the autocorrelation detector, but that the autocorrelation detector
is superior when only one cyclic frequency is used.

3.3 Detectors that Rely on a Specific Structure
of the Sample Covariance Matrix

Signal structure, or correlation, is also inherent in the covariance matrix of the
received signal. Some communication signals impart a specific known structure
to the covariance matrix. This is the case, for example, when the signal is re-
ceived by multiple antennas [22–24] (single-input/multiple-output - SIMO), [9]
(multiple-input/multiple-output - MIMO). In many cases, the covariance ma-
trix has eigenvalues with known multiplicities owing to the reduncandy added
to a communication signal. In Paper B, we show how the knowledge of arbi-
trary eigenvalue multiplicities can be exploited to obtain CFAR detectors. In
Papers C and D the result of Paper B is used as a building block to propose
detectors for spectrum sensing of a second-order cyclostationary signal (such as
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20 Chapter 3. Feature Detection Based on Second-Order Statistics

OFDM) received at multiple antennas and when the signal is encoded with an
orthogonal space-time block code (OSTBC) respectively.

Consider again the vectorial discrete-time representation (1.1). For better un-
derstanding we will start with the example of a single symbol received by mul-
tiple antennas (SIMO). This case was dealt with, for example, in [9, 22, 23]
and [24]. Suppose that there are L > 1 receive antennas at the detector. Then,
under H1, the received signal can be written as

y[n] = hs[n] +w[n], n = 1, . . . , N, (3.5)

where h is the L×1 channel vector and s[n] is the transmitted symbol sequence.
Assume further that the signal is zero-mean Gaussian, i.e. s[n] ∼ N (0, γ2),
and as before w[n] ∼ N (0, σ2I). Then, the covariance matrix under H1 is
Ψ , E[y[n]y[n]H |H1] = γ2hhH + σ2I. Let λ1, λ2, . . . , λL be the eigenvalues of
Ψ sorted in descending order. Since hhH has rank one, then λ1 = γ2 ‖h‖2+ σ2

and λ2 = . . . = λL = σ2. In other words, Ψ has two distinct eigenvalues with
multiplicities one and L− 1 respectively. Denote the sample covariance matrix
by

R̂ ,
1

N

N∑

n=1

y[n]y[n]H .

Moreover, let ν1, ν2, . . . , νL denote the eigenvalues of R̂ sorted in descending
order. An example of the eigenvalues ν1, ν2, . . . , νL in this case, with four receive
antennas, N = 1000 and SNR = 10 log10(γ

2/σ2) = 0 dB, is shown at the top of
Figure 3.3. It is clear that there is one dominant eigenvalue under H1 due to
the rank-one channel vector. It can be shown (cf. [22] and [23]) that the GLRT
when the channel h and the powers σ2 and γ2 are unknown is given by

ν1

tr(R̂)
=

ν1∑L
i=1 νi

H1

≷
H0

η. (3.6)

Here, we have considered independent observations y[n] at multiple antennas.
A similar covariance structure could of course also occur for a time-series. Then,
we could construct the sample covariance matrix by considering a scalar time-
series y[n], n = 1, 2, . . . , N as in [25] and [26], and letting y[n] = [y[n], y[n +
1], . . . , y[n+ L− 1]]T for some integer L > 0. This can be seen as a windowing
of the sequence y[n] with a rectangular window of length L. The choice of
the window length L will of course affect the performance of the detectors. The
reader is referred to the original papers [25] and [26] for discussions of this issue.

Now, consider more generally that the received signal under H1 can be written
as

y[n] = Gs[n] +w[n], n = 1, . . . , N, (3.7)
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Figure 3.3: Example of the sorted eigenvalues of the sample covariance matrix R̂ with
four receive antennas, for N = 1000 and SNR = 10 log

10
(γ2/σ2) = 0 dB.

The Alamouti scheme codes two complex symbols over two time intervals
and two antennas.
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where G is a low rank matrix, and s[n] ∼ N (0, γ2I) is an i.i.d. sequence.
Then, the covariance matrix is Ψ = γ2GGH + σ2I under H1, which is a “low-
rank-plus-identity” structure. Suppose that Ψ has d distinct eigenvalues with
multiplicities q1, q2, . . . , qd respectively. This can happen if the signal has some
specific structure, for example in a multiple antenna (MIMO) system [9], when
the signal is encoded with an orthogonal space-time block code (Paper D), or
if the signal is an OFDM signal (Paper C). Examples of the sorted eigenvalues
of R̂ for an orthogonal space-time block code (Alamouti), and for a general
MIMO system [9], with two transmit and four receive antennas, are shown
in Figure 3.3 (middle and bottom respectively). The reason that the number
of eigenvalues for the Alamouti case is four times higher than for the general
MIMO system is that the space-time code is coded over two time intervals,
and the observation is divided into real and imaginary parts (see Paper D for
details). For the Alamouti code, the four largest eigenvalues are significantly
larger than the others. In fact, the expected values of the four largest eigenvalues
are equal, due to the orthogonality of the code. For the general MIMO case,
we note that two of the eigenvalues are larger than the others, because the
channel matrix has rank two (there are two transmit antennas). In this case,
however, the expectations of the two largest eigenvalues are different in general.
Define the set of indices Si , {(∑i−1

j=1 qj)+1, . . . , (
∑i−1

j=1 qj)+qi}, i = 1, 2, . . . , d.
For example, if there are two distinct eigenvalues with multiplicities q1 and q2
(= L − q1) respectively, then S1 = {1, . . . , q1} and S2 = {q1 + 1, . . . , L}. It is
shown in Paper B that the GLRT when the eigenvalues are unknown, but have
known multiplicities and order, is

(
1
Ltr(R̂)

)L

∏d
i=1

(
1
qi

∑
j∈Si

νj

)qi
H1

≷
H0

η. (3.8)

It can be shown that in the special case when q1 = 1 and q2 = L − 1, this test
is equivalent to the test (3.6). Further details on these matters are given in
Paper B.

Properties of the covariance matrix are also exploited for detection in [25] and
[26], without knowing the structure. Detection without any knowledge of the
transmitted signal is usually referred to as blind detection, and will be discussed
further in the following section.

3.4 Blind Detection

Even though a primary user’s signal is correlated or has some other structure,
this structure might not be perfectly known. An example of this is shown at the

22



3.4. Blind Detection 23

bottom of Figure 3.3. This eigenvalue structure occurs in a general MIMO sys-
tem, when the number of receive antennas is larger than the number of transmit
antennas. In general, the number of antennas and the coding scheme used at the
transmitter might not be known. The transmit antennas could of course also
belong to an (unknown) number of users that transmit simultaneously [27, 28].
If the transmitted signals have a completely unknown structure, we must con-
sider blind detectors. Blind detectors are blind in the sense that they exploit
structure of the signal without any knowledge of signal parameters. We saw in
the previous section that the eigenvalues of the covariance matrix behave differ-
ently under H0 and H1 if the signal is correlated. This is still true, even if the
exact structure of the eigenvalues is not known. Blind eigenvalue-based tests,
similar to those described in the previous section, have been proposed recently
in [25] and [26].

We will begin by describing the blind detectors of [25] and [26] based on the
eigenvalues of the sample covariance matrix. The presentation here will be
slightly different from the ones in [25] and [26], in order to include complex-
valued data and be consistent with the notation used above. The paper [25]
proposes two detectors based on the eigenvalues of R̂, similar to the detectors
of the previous section. The detectors proposed in [25] are

ν1
νL

H1

≷
H0

η and
tr(R̂)

νL

H1

≷
H0

η,

where νi, i = 1, 2, . . . , L are the sorted eigenvalues of R̂, as before. Thus, ν1 is
the maximum eigenvalue and νL is the minimum eigenvalue. The motivation
for these tests is based on properties similar to those discussed in Section 3.3.
If the received sequence contains a (correlated) signal, the expectation of the
largest eigenvalues will be larger than if there is only noise, but the expectation
of the smallest eigenvalues will be the same in both cases.

Blind detectors are commonly also based on information theoretic criteria, such
as Akaike’s Information Criterion (AIC) or the Minimum Description Length
(MDL) [27–30]. These information theoretic criteria typically result in eigen-
value tests similar to those of the previous section. The aims of [27] and [28]
are not only to decide whether a signal has been transmitted or not, but rather
also to estimate the number of signals transmitted. Assume as in the previous
section that the received signal under H1 is y[n] = Gs[n] +w[n]. The number
of uncorrelated transmitters is the rank d of the matrix G. The problem under
consideration in [27] and [28] is then to determine the rank of G by minimizing
the AIC or MDL, which are functions of d (written as AIC(d) and MDL(d)).
The result of [27] is applied in [29] and [30] to the problem of spectrum sensing.
More specifically, the estimator of [27] is used in [29] to determine whether the
number of signals transmitted is zero or non-zero. This idea is further simplified
in [30] to that of using only the difference AIC(0)− AIC(1) as a test statistic.
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24 Chapter 3. Feature Detection Based on Second-Order Statistics

Note that these detectors are very similar to the detectors of the previous sec-
tion and to the detectors described in the beginning of this section. They all
exploit properties of the eigenvalues of the sample covariance matrix, and use
functions of the eigenvalues as test statistics. The detectors of this section use
only the assumption that the received signal is correlated. They are all blind
detectors, in the sense that they do not require any more knowledge.
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Chapter 4

Cooperative Spectrum

Sensing

Spectrum sensing using a single cognitive radio has a number of limitations.
First of all, the sensitivity of a single sensing device might be limited because of
energy constraints. Furthermore, the cognitive radio might be located in a deep
fade of the primary user signal, and as such might miss the detection of this
primary user. Moreover, although the cognitive radio might be blocked from
the primary user’s transmitter, this does not mean it is also blocked from the
primary user’s receiver, an effect that is known as the hidden terminal problem.
As a result, the primary user is not detected but the secondary transmission
could still significantly interfere at the primary user’s receiver. To improve
the sensitivity of cognitive radio spectrum sensing and to make it more robust
against fading and the hidden terminal problem, cooperative sensing can be
used. The concept of cooperative sensing is to use multiple sensors and combine
their measurements into one common decision. In this section, we will consider
this approach, including both soft combining and hard combining, where for
the latter we will also look at the influence of fading of the reporting channels
to the fusion center.

4.1 Soft Combining

Assume that there are M sensors. Then, the hypothesis test (1.2) becomes

H0 : ym = wm, m = 1, . . . ,M,

H1 : ym = xm +wm, m = 1, . . . ,M.
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Suppose that the received signals at different sensors are independent of one
another, and let y =

[
yT
1 , yT

2 , . . . ,y
T
M

]T
. Then, the log-likelihood ratio is

log

(
p(y|H1)

p(y|H0)

)
= log

(
M∏

m=1

p(ym|H1)

p(ym|H0)

)
=

M∑

m=1

log

(
p(ym|H1)

p(ym|H0)

)
=

M∑

m=1

Λ(m),

(4.1)

where Λ(m) = log
(

p(ym|H1)
p(ym|H0)

)
is the log-likelihood ratio for the mth sensor. That

is, if the received signals for all sensors are independent, the optimal fusion rule
is to sum the local log-likelihood ratios.

Consider the case in which the noise vectors wm are independent wm ∼ N (0, σ2
mI),

and the signal vectors xm are independent xm ∼ N (0, γ2
mI). After removal of

irrelevant constants, the log-likelihood ratio (4.1) can be written as

M∑

m=1

‖ym‖2
σ2
m

γ2
m

(σ2
m + γ2

m)
. (4.2)

The statistic ‖ym‖2

σ2
m

is the soft decision from an energy detector at the mth
sensor, as shown in (2.3). Thus, the optimal cooperative detection scheme is to
use energy detection for the individual sensors, and combine the soft decisions
by the weighted sum (4.2). This result is also shown in [31], for the case when
σ2
m = 1, and thus γ2

m is equivalent to the SNR experienced by the mth sensor.

The main source of correlation between users is shadow fading. Multipath
fading is uncorrelated at very small distances, on the scale of half a wavelength,
and thus this kind of correlation can easily be avoided. Hence the correlation
is mainly distance-dependent, and the cooperation gains are limited by the
physical separation of the cognitive users. From a detection perspective, a large
separation between users is desired. However, if cognitive users are to be able to
communicate without disturbing the primary system they must be sufficiently
near to one another. Thus, there is a distance trade-off between detection
performance and cognitive communication. The cooperative gain and the effect
of untrusted users, under the assumption that the noise and signal powers are
equal for all sensors, are analyzed in [32]. It is shown in [32] that correlation
between the sensors severely decreases the cooperation gain and that if one out
of M sensors is untrustworthy, then the sensitivity of each individual sensor
must be as good as that achieved with M trusted users.

4.2 Hard Combining

So far we have considered optimal cooperative detection. That is, all users
transmit soft decisions to a fusion center, which combines the soft values to
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one common decision. This is equivalent to the case in which the fusion center
has access to the received data for all sensors, and performs optimal detection
based on all data. This potentially requires a very large amount of data to
be transmitted to the fusion center. The other extreme case of cooperative
detection is that each sensor makes its own individual decision, and transmits
only a binary value to the fusion center. Then, the fusion center combines
the hard decisions into one common decision, for instance using a voting rule
(c.f. [33]).

Suppose that the individual statistics Λ(m) are quantized to one bit, such that
Λ(m) ∈ {0, 1} is the hard decision from the mth sensor. Here, 1 means that a
signal is detected and 0 means that the channel is deemed to be available. The
voting rule then decides that a signal is present if at least C of the M sensors
have detected a signal, for C ∈ [1,M ]. The test decides on H1 if

M∑

m=1

Λ(m) ≥ C.

A majority decision is a special case of the voting rule when C = M/2, whereas
the AND-logic and OR-logic are obtained for C = M and C = 1, respectively.
Paper F contains a numerical comparison of cooperative sensing with indepen-
dent sensors using optimal soft combining and hard combining with a majority
decision, for the proposed detector in a multiband scenario. Let Pmd and Pfa

indicate the local probabilities of missed detection and false alarm, respectively,
and denote their global representatives as PMD and PFA. In [34], hard combining
is studied for energy detection with equal SNR for all cognitive radios. In par-
ticular, the optimal voting rule, optimal local decision threshold and minimal
number of cognitive radios are derived, where optimality is defined in terms of
the (unweighted) global probability of error PFA + PMD (note that this is differ-
ent from the true global probability of error). It turns out that when the local
probability of false alarm Pfa and missed detection Pmd are of the same order,
the majority rule is optimal, whereas the optimal voting rule leans towards the
OR rule if Pfa ≪ Pmd and to the AND rule if Pfa ≫ Pmd.
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Chapter 5

Contributions of the

Dissertation

The dissertation is comprised of six included publications, all in different ways
related to spectrum sensing based on second-order statistics. All papers con-
sider exploitation of partial knowledge of the received signal to circumvent the
problem of unknown parameters as discussed in Chapter 2. In Papers A-D,
the proposed detectors are based on a GLRT approach, whereas in Paper E we
use so called covariance matching estimation techniques (COMET) instead of
maximum-likelihood estimation. Papers A-E exploit known second-order sig-
nal features as mentioned in Chapter 3, where Paper A exploits autocorrelation
properties of an OFDM signal as presented briefly in Section 3.1, and Papers B-E
all consider different structures of the covariance matrix as mentioned in Sec-
tion 3.3. In Paper F the problem of unknown noise and signal powers are dealt
with by marginalization in a Bayesian framework, and also by estimation us-
ing knowledge of the primary user activity in a multiband scenario. Paper F
also evaluates the gain of using independent cooperative sensors as discussed in
Chapter 4.

5.1 Included Papers

The following publications are included in the dissertation. All publications are
authored by Erik Axell and Erik G. Larsson. Brief summaries of the included
papers are given in the following.
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Paper A: Optimal and Sub-Optimal Spectrum Sensing of OFDM
Signals in Known and Unknown Noise Variance

Published in IEEE Journal on Selected Areas in Communications 2011.

This is an evolved version of the paper
E. Axell and E. G. Larsson, “Optimal and Near-Optimal Spectrum Sensing of
OFDM Signals in AWGN Channels”, in Proc. 2nd International Workshop on
Cognitive Information Processing (CIP), Elba Island, Italy, June 14-16 2010,
pp. 128-133.

In this work, we consider spectrum sensing of OFDM signals in an AWGN
channel. For the case of perfectly known noise and signal powers, we set up
a vector-matrix model for an OFDM signal with a cyclic prefix and derive the
optimal Neyman-Pearson detector from first principles. The optimal detector
exploits the inherent correlation of the OFDM signal incurred by the repetition
of data in the cyclic prefix, using knowledge of the length of the cyclic prefix
and the length of the OFDM symbol. We compare the optimal detector to the
energy detector numerically, and show that the energy detector is near-optimal
(within 1 dB SNR) when the noise variance is known. Thus, when the noise
power is known, no substantial gain can be achieved by using any other detector
than the energy detector.

For the case of completely unknown noise and signal powers, we derive a GLRT
based on empirical second-order statistics of the received data with a few approx-
imations. The proposed GLRT detector exploits the time varying correlation
structure of the OFDM signal and does not require any knowledge of the noise
or the signal power. The GLRT detector is compared to state-of-the-art OFDM
signal detectors, and shown to improve the detection performance with 5 dB
SNR in relevant cases.

Paper B: A Unified Framework for GLRT-Based Spectrum Sensing
of Signals with Covariance Matrices with Known Eigenvalue Multi-
plicities

Published in the proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 2011.

In this paper, we create a unified framework for spectrum sensing of signals
which have covariance matrices with known eigenvalue multiplicities. We derive
the GLRT for this problem, with arbitrary eigenvalue multiplicities under both
hypotheses. We also show a number of applications to spectrum sensing for
cognitive radio and show that the GLRT for these applications, of which some
are already known, are special cases of the general result.
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Paper C: Multiantenna Spectrum Sensing of a Second-Order Cyclo-
stationary Signal

Published in the proceedings of IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP) 2011.

We consider spectrum sensing of a second-order cyclostationary signal received
at multiple antennas. The proposed detector exploits both the spatial and the
temporal correlation of the received signal, from knowledge of the fundamen-
tal period of the cyclostationary signal and the eigenvalue multiplicities of the
temporal covariance matrix. All other parameters, such as the channel gains or
the noise power, are assumed to be unknown. The proposed detector is shown
numerically to outperform state-of-the-art detectors for spectrum sensing of an
OFDM signal, both when using a single antenna and with multiple antennas.

Paper D: Eigenvalue-Based Spectrum Sensing of Orthogonal Space-
Time Block Coded Signals

This paper is a reworked combination, with some additions, of the papers
E. Axell and E. G. Larsson, “Eigenvalue-Based Spectrum Sensing of Orthogonal
Space-Time Block Coded Signals”, submitted to IEEE Transactions on Signal
Processing
and
E. Axell and E. G. Larsson, “Spectrum Sensing of Orthogonal Space-Time Block
Coded Signals with Multiple Receive Antennas”, in Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Process. (ICASSP), Dallas, Texas, March 14-19
2010, pp. 3110-3113.

We consider spectrum sensing of signals encoded with an orthogonal space-
time block code (OSTBC). Such signals are shown to have a specific covariance
structure which is exploited for detection. We consider unknown noise and
signal powers as well as channel coefficients, and derive the GLRT based on
knowledge of the eigenvalue multiplicities of the covariance matrix, that are
inherent owing to the OSTBC. We derive theoretical bounds for the performance
of the proposed detector. In addition, we consider unsynchronized detection.
We show that the proposed detector is robust to carrier frequency offset, and
propose a detector that deals with timing synchronization using the detector for
the synchronized case as a building block. The proposed detectors are shown
numerically to perform very well.

Paper E: Spectrum Sensing of Signals with Structured Covariance
Matrices Using Covariance Matching Estimation Techniques

Published in the proceedings of IEEE Global Communications Conference (GLOBE-
COM) 2011.
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In this work, we consider spectrum sensing of Gaussian signals with structured
covariance matrices. We show that the optimal detector based on the proba-
bility distribution of the sample covariance matrix is equivalent to the optimal
detector based on the raw data, if the covariance matrices are known. However,
the covariance matrices are unknown in general. Therefore, we propose to esti-
mate the unknown parameters using covariance matching estimation techniques
(COMET). We also derive the optimal detector based on a Gaussian approxi-
mation of the sample covariance matrix, and show that this is closely connected
to COMET.

Paper F: A Bayesian Approach to Spectrum Sensing, Denoising and
Anomaly Detection

Published in the proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 2009.

In this paper, we deal with the problem of discriminating samples that contain
only noise from samples that contain a signal embedded in noise. The focus is on
the case when the variance of the noise is unknown. We derive the optimal soft
decision detector using a Bayesian approach. The complexity of this optimal
detector grows exponentially with the number of observations and as a remedy,
we propose a number of approximations to it. The problem under study is a
fundamental one and it has applications in signal denoising, anomaly detection,
and spectrum sensing for cognitive radio. We illustrate the results in the context
of the latter.

5.2 Not Included Papers

The following publications by the author are not included in the dissertation
either because they do not fit within the main scope of the dissertation, or
another person is the lead author. The first paper in the list has served as a
foundation for the introductory part of the dissertation.

E. Axell, G. Leus, E. G. Larsson and H. V. Poor, “Spectrum Sensing for
Cognitive Radio: State-of-the-Art and Recent Advances”, IEEE Signal
Processing Magazine, vol. 29, no. 3, pp. 101-116, May 2012.

A. Blad, E. Axell and E. G. Larsson, “Spectrum Sensing of OFDM Signals
in the Presence of CFO: New Algorithms and Empirical Evaluation Using
USRP”, in Proc. IEEE Workshop on Signal Processing Adv. in Wireless
Commun. (SPAWC), Çeşme, Turkey, June 17-20 2012.
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E. Axell and E. G. Larsson, “Comments on “Multiple Antenna Spectrum
Sensing in Cognitive Radios” ”, IEEE Transactions on Wireless Commu-
nications, vol. 10, no. 5, pp. 1678-1680, May 2011.

D. Danev, E. Axell, and E. G. Larsson, “Spectrum Sensing Methods for
Detection of DVB-T Signals in AWGN and Fading Channels”, in Proc.
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Istanbul, Turkey, Sep. 26-30 2010, pp. 2721-
2726.

E. Axell, G. Leus and E. G. Larsson, “Overview of Spectrum Sensing
for Cognitive Radio”, in Proc. 2nd International Workshop on Cognitive
Information Processing (CIP), Elba Island, Italy, June 14-16 2010, pp.
322-327.

E. Axell, E. G. Larsson and J-Å Larsson, “On the Optimal K-term Ap-
proximation of a Sparse Parameter Vector MMSE Estimate”, in Proc.
IEEE Workshop on Statistical Signal Processing (SSP), Cardiff, Wales,
UK, Aug.31-Sept. 3 2009, pp. 245-248.

E. Axell, E. G. Larsson and D. Danev, “Capacity Considerations for Un-
coordinated Communication in Geographical Spectrum Holes”, Physical
Communication Journal (ELSEVIER), vol. 2, no. 1-2, pp. 3-9, 2009.
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