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ABSTRACT 

This paper deals with the problem of Spectrum Sensing and Spectrum Sharing for 

Cognitive Radar operating in spectrally dense environments. Spectrum sensing and 

spectrum sharing are the two main functions that allow a cognitive radar to measure, 

sense, learn, and be aware of the parameters related to the radio channel 

characteristics. This paper focuses on the role of Compressed Sensing (CS) in Spectrum 

Sensing and on the problem of channel parameter estimation for Spectrum Sharing. 

This paper shows how CS can allow a significant reduction in acquisition time reducing 

the cost for high-resolution analog-to-digital converters with large dynamic range, and 

high speed signal processors. We derive an algorithm for estimating the channel 

parameters that characterize the behaviour of the primary users and a spectrum sharing 

method that exploits these estimates to minimize the interference between the radar and 

the primary user. The proposed method optimizes the performance of the radar and, at 

the same time, limits the interference received by the other users.  
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1. Introduction 

Radar technology has been evolving towards higher resolution, high-precision 

detection instruments with an ever-increasing list of functionalities. One of the areas 

that have very good potential of combining the benefits of these developments is 

multifunctional radar systems. These systems join inside the same system, and 

simultaneously, multiple functions such as surveillance, tracking, confirmation of false 

alarm, back-scanning, clutter and interference estimation, which are traditionally 

performed by dedicated individual radars [1]-[2].  

For these reasons, multifunctional radar systems should be able to work with wider 

frequency bands than traditional radar systems. Clearly, this is in contrast with the 

growth of activities in the area of civil communications, the emergence of new 

technologies and new services that involve a strong demand for spectrum allocation 

inducing a very strong pressure upon the frequency channels currently allocated to 

radars.  

Some portions of the radar bands have been recently allocated to communication 

services. For instance, the International Telecommunication Union (ITU) decided to 

allocate the spectrum between 5150 and 5350 MHz and between 5470 and 5725 MHz 

on a co-primary basis to wireless access systems including RLANs (Radio Local Area 

Networks) [3]-[4]. In the United States, the National Telecommunications and 

Information Administration (NTIA) has recently devoted efforts on identifying 

frequency bands that could be made available for wireless broadband service 

provisioning. A total of 115 MHz of additional spectrum (1695-1710 MHz and 3550-

3650 MHz bands) has been identified for wireless broadband implementation [5].  

A recent work [6] focused on the primary-secondary sharing between a radar system 

and indoor system providing broadband services, considering an Air Traffic Control 

(ATC) radar operating in the 2.7-2.9 GHz band and a Surveillance Radar in the 16.7-

17.3 GHz. The case study analysed in this work is an L-band radar that shares the same 

frequency band with a JTDIS (Joint Tactical Information Distribution System) radio 

system, supposed to be the primary user of the channel. The JTIDS is a radio system for 

exchanging tactical information between aircraft and ground stations or ships and 

between aircraft. The JTDIS radio system operates in the frequency band 969-1206 

MHz, subdivided into sub-channels used for frequency hopping. 
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From the above examples, it is clear that the availability of frequency spectrum for 

multifunction radar systems has been severely compromised and the available frequency 

bands are continuously diminished. 

This unique issue of spectrum crowding and steadily increasing radar requirements 

cannot be addressed by traditional modes of operation. Future systems require the ability 

to anticipate the behaviour of radiators in the operational environment. This in turn 

leads to the need for critical and new methodologies based upon cognition as an 

enabling technology [7]-[12].  

The cognitive methodology to reduce mutual interference between the radar and the 

other radiating elements is based on two main concepts: Spectrum Sensing and 

Spectrum Sharing. Spectrum Sensing has the goal to recognize the frequencies used by 

other systems using the same spectrum in real time, while Spectrum Sharing has the 

goal to limit interference from the radar to other services and vice-versa. 

Through these functions, a cognitive radar can obtain necessary observations about 

the radio frequency channel, such as the presence of other users and the appearance of 

spectrum opportunities, i.e. spectrum holes where it is possible to transmit without 

interfering with other users of the channel. After using this information, a cognitive 

radar is able to adapt its transmit and receive parameters, such as the transmission power 

and the operating frequency, in order to achieve efficient spectrum utilization.  

In cognitive radio terminology, primary users is defined as the users who have higher 

priority or legacy rights on the usage of a specific part of the spectrum. On the other 

hand, secondary users, which have lower priority, exploit this spectrum in such a way 

that they do not cause interference to primary users.  

Therefore, secondary users need to have cognitive radio capabilities, such as sensing 

the spectrum reliably to check whether a primary user is using it and to change the radio 

parameters to exploit the unused part of the spectrum.  

In this work, we analyse the problem of a wideband radar system that shares the same 

frequency band with a communication system, the frequency band of the 

communication system is divided into several frequency channels used for dynamic 

spectrum access. The radar system is the secondary user while the communication 

system is the primary user of the channel.  

As an illustrative example, Figure 1 shows the spectrum opportunities in the 

frequency channels. As apparent, the available spectrum is divided into narrow chunks 

of bands. Spectrum opportunity in this dimension means that not all the bands are used 
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simultaneously at the same time; therefore, some bands might be available for 

opportunistic usage. To this end, a cognitive radar should detect the spectrum 

opportunities, selecting the best frequency channels and vacating the frequency when a 

primary user appears.  

In this paper, we focus on two important topics, the use of CS for Spectrum Sensing 

and the problem of channel parameter estimation for Spectrum Sharing application. In 

particular, we analyse the use of CS, focusing on how this emerging technology can 

represent a helpful tool to solve some important problems related to the hardware 

requirement for the design of a responsive spectrum sensing system, which is able to 

react to the changes of the operating frequency channel quickly. As a matter of fact, to 

have high spectrum efficiency and high sensing accuracy, a cognitive radar has to 

perform real-time wideband monitoring of the licensed spectrum, using a dual-radio 

architecture [13]-[14], where one chain is dedicated to radar operations while the other 

chain is dedicated to spectrum sensing. The drawback of such approach is the hardware 

cost, as the related systems requires high sampling rate and high resolution Analog-to-

Digital Converters (ADCs) with large dynamic range, plus the use of high speed signal 

processors. Moreover, when the required time used to estimate the spectrum occupancy 

is very short and the monitored frequency band is wide, the current generation ADCs are 

even unable to collect the required samples at the Nyquist-rate. A signal processing 

technique that can solve this problem is based on the use of Compressed Sensing. 

Recent results on CS state that it is possible to reconstruct a sparse signal from 

random projections of the sensor data (see e.g. [15]-[17]). The number of random 

projections can be very small, in proportion to the number of the channels occupied by 

the other users. Under the hypothesis that the frequency spectrum of the other users is 

sparse, CS can be profitably used to solve the hardware constraints by reducing the 

sampling rate and decreasing the computational complexity. 

The second problem considered in this paper is the estimation of the channel 

parameters that describe the behaviour of the primary users of the channels and how to 

exploit these estimates to minimize the interference between the radar and the 

communication system.  

Analysing the behaviour of the primary users and exploiting the time history of the 

channel occupancy, the cognitive radar system can evaluate the probability to have a 

spectrum opportunity, i.e. the probability that the monitored frequency channel is free at 

the time of transmitting. Evaluating this probability, a cognitive radar can decide 
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whether it is possible or not to transmit in the monitored frequency channel at the 

beginning of each time slot. 

The remaining part of the paper is organized as follows. Section 2 introduces the 

channel models for frequency spectrum occupancy of the primary user, introducing the 

concept of interfering temperature and defining two models for the primary user 

dynamics and for the spectrum occupancy. Section 3 describes how CS-based 

techniques can be used for Spectrum Sensing. Section 4 describes how to estimate the 

main channel parameters and how to evaluate the probability to have a spectrum 

opportunity using these parameter estimates. Simulation results are reported both in 

Section 3 and in Section 4. Conclusions and final remarks are summarized in Section 5. 

 

Primary user

Spectrum opportunity

time

frequency

Time Slot  

Figure 1 – Spectrum Opportunities. 

 

2. Channel Model 

As described, the cognitive radar is assumed to be the secondary user of the channel, 

therefore, it can use the spectrum only when it causes no harmful interference to the 

primary user. This requires a cognitive radar to be equipped with a spectrum sensing 

function, which can detect primary users’ appearance and decide which portion of the 

spectrum is available. 

Such a decision can be made according to various metrics. The traditional approach 

is to limit the transmitter power of interfering devices, i.e. the transmitted power should 

be no more than a prescribed noise floor at a certain distance from the transmitter.  

However, due to the increased mobility and variability of radio frequency emitters, 

constraining the transmitter power becomes problematic, since unpredictable new 

sources of interference may appear. To address this issue, the FCC Spectrum Policy 

Task Force [18] has proposed a new metric on interference assessment, the interfering 

temperature, to enforce an interference limit perceived by receivers. 
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Like other representations of radio signals, instantaneous values of interference 

temperature would vary with time and, thus, would need to be treated statistically. In 

this section, we present a model for the interference temperature dynamics and the 

Hidden Markov Model (HMM) for channel occupancy. 

 

2.1 Interfering Temperature 

The FCC has proposed the interference temperature as a metric for interference 

analysis. The US Federal Communications Commission in 2002 investigated the future 

needs of radio frequency spectrum and the limitations of current spectrum policies, as 

well as develops recommendations for enhancing current policies. One recommendation 

was the use of an interference metric to enforce current spectrum access rights and 

create new opportunities for dynamic spectrum utilization [19]-[20] 

The interference temperature is defined as the temperature equivalent of the RF 

power available at a receiving antenna per unit bandwidth [21], i.e. 

 

 
( , )

( , ) I C
I C

P f B
T f B

kB
= , (1) 

 

where PI(fC,B) is the average interference power in Watts, centered at fC, covering 

bandwidth B measured in hertz, and Boltzmann’s constant k is 1.38×10-23 JK-1. 

The FCC further established an interference temperature limit, which provides a 

maximum amount of tolerable interference for a given frequency band at a particular 

location. Any secondary transmitter using this band must guarantee that its transmission 

plus the existing noise and interference will not exceed the interference temperature 

limit at a primary user. Since any transmission in the licensed band is viewed to be 

harmful if it would increase the noise floor above the interference temperature limit, it is 

necessary that a cognitive radar receiver has a reliable spectral estimate of the 

interference temperature. Given a particular frequency band in which the interference 

temperature limit is not exceeded, that band could be made available for secondary 

usage. If a regulatory body sets an interference temperature limit TL for a particular 

frequency band with bandwidth B, then the secondary user has to keep the average 

interference below kBTL. Therefore, assuming that a secondary user is operating with 

average power P in a band [fC-B/2, fC+B/2], the interference temperature limit will 

ensure that [21]: 
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where L represents path loss attenuation between the secondary transmitter and the 

primary receiver. 

 

2.2 Statistical model for primary user’s channel occupancy 

In this section, we introduce a statistical model for primary user’s channel occupancy, 

describing the statistical model used to characterize the signal received by the cognitive 

radar and the statistical model for the observations at the output of the spectrum sensing 

detector. 

The spectrum sensing module of the cognitive radar receiver periodically scans and 

senses multiple licensed channels to measure in each channel the interference 

temperature exploiting the received signal, then it compares the measured interference 

temperature with a predefined threshold value to evaluate if the channel is busy or free. 

However, due to the noise in the channel, a free channel can be classified as busy and a 

busy channel classified as free. In order to model the channel dynamics of the primary 

users, HMMs are proposed in [22]-[24]. In the context of dynamic spectrum access 

networks, HMMs are used to model the primary user occupancy of the channel. HMMs 

represent a useful tool for this problem since true occupancy states are not always 

known to the cognitive radar after the Spectrum Sensing process. 

As discussed, the case study analysed in this work is related to an L-band 

surveillance radar, which shares the same frequency band with a JTDIS communication 

system. The frequency band used by the communication system is subdivided into N 

frequency channels of bandwidth B used for frequency division multiple access. As 

showed in Figure 1, the time axis is divided into time slots of duration �t.  

In general, a HMM is comprised of a set St of possible states and a set Ot of possible 

emissions. The possible states represent the real activity of the primary user in each 

frequency channel, if the primary user is transmitting at time slot t, the state is St=1, 

otherwise, if the channel is free, the state is St=0. However, due to the noise in the 

channel, a free channel can be classified as busy and a busy channel classified as free. 

Therefore, there are also two possible emissions, which are represented by the 

observation symbol Ot at the output of the spectrum sensing detector.  
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Figure 2 shows the HMM for spectrum occupancy in each frequency channel, in 

particular the lower part of the figure describes the primary user’s dynamic while the 

upper part the secondary user’s observation. 

The primary user’s dynamic is described by the states St=0 and St=1, and is 

characterized by the 2×2 state transition probability matrix A, that represents the 

probabilities associated with changing from one state to another and it is given by 

 

 [ ]1[ ] Pr |hk hk t ta S h S k−= = = =A ,   h,k=0,1. (3) 

 

In each frequency channel and in each time slot, if the primary user is transmitting, 

the received signal at the radar receiver is given by an oscillation at that frequency 

whose amplitude is a Gaussian random variable (r.v.) with zero mean and variance 2σ
f

, 

that is 

 

 [ ] ( 1)(2 1)
cos

2
i in

i n

N

παζ − − =  
 

f ,   i,n=1,…,N, (4) 

 

where i is the frequency channel index, while n is the n-th time sample.  

If the channel is free, the received signal [fi]n is zero. In each time slot, the multiband 

received signal is given by the combination of the signal in each frequency channel and 

Additive White Gaussian Noise (AWGN) with zero mean and variance 2σ
w

: 

 

 
1

N

i

i=
= +∑f f w . (5) 

 

The values of A may be different in each frequency channel. 

The spectrum occupancy is given by the Discrete Cosine Transform (DCT) of f, that is 

 

 T=x Ψ f , (6) 

 

where Ψ is the DCT matrix whose elements are given by 

 

 [ ]
,

( 1)(2 1)
cos

2
ii j

i j

N

πζ − − =  
 

Ψ ,   i,j=1,…,N. (7) 
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In (4) and (7) the values of ζi are given by 

 

 
1 , 1

2 , 2
i

N i

N i N
ζ

 == 
≤ ≤

 (8) 

 

Note that, in this work, without any lack of generality, we can consider real signals, 

instead of the complete complex signals. In fact, to monitor the spectrum occupancy of 

the primary users and to reduce the cost of the receiver further, it is not necessary to 

process the In-Phase (I) and Quadrature (Q) components of the received signal, but only 

one of them. Figure 3 shows the squared absolute value of x, that is the channel 

occupancy evolution during an observation time composed of ten time slots �t. The 

channel is composed of N=256 frequency bands and the Signal to Noise Ratio, defined 

as SNR= 2σ
f

/ 2σ
w

, is 20dB.  

To evaluate the channel occupancy evolution it is necessary to perform the DCT of 

the received time samples every �t seconds. When the frequency band to be monitored 

tends to be very wide and/or the time slot �t tends to be very short, it should be very 

difficult to collect the N time samples at the Nyquist-rate. In Section 3, we study how 

CS may be used to alleviate this hardware constraint. 

 

 

St=1 St=0

Ot=1 Ot=0

a10

a00a11

a01

b1(1) b1(0) b0(1) b0(0)

secondary user’s observations

primary user’s dynamics
 

Figure 2 – Hidden Markov Model representation for spectrum occupancy. 
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Figure 3 - Channel occupancy evolution in ten time slots, N=256, SNR=20dB. 

 

In the open literature, there are several Spectrum Sensing techniques to recognize if 

the channel is occupied by the primary user, such as the energy detector, feature detector 

or matched filtering detection techniques [25]. In particular, at each time slot, the 

cognitive radar records an observation symbol Ot depending upon the following 

conditions: 

 

 
0, if ( )

1, if ( )

t I L

t I L

O T t T

O T t T

= ≤
 = >

 (9) 

 

The radar periodically makes the observations and records an observation sequence 

O=[O1…OT] over a period of T time slots. The transitions from the states St to the 

observations Ot are described by the 2×2 emission probability matrix B, which 

represents the probabilities associated with obtaining a certain output given that the 

model is currently in a true state st: 

 

 [ ][ ] ( ) Pr |hk h n nb k O h S k= = = =B . (10) 

 

The emission probability matrix B is related to the Receiver Operating Characteristic 

(ROC) of the Spectrum Sensing detector. As a matter of fact, b0(1) is the probability of 

false alarm, that is the probability to classify a free channel as busy, whereas b1(0) is the 

probability of miss detection, that is the probability to classify a busy channel as free. 

Clearly, b0(0)=1–b0(1) and b1(1)=1–b1(0). These probabilities depend on the channel 
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noise, the kind of signal emitted by the primary user and the spectrum sensing detector 

used at the cognitive radar receiver, that is on the specific characteristics of the systems 

that share the same channel. Knowing these characteristics, the elements of B can be 

calculated or evaluated through Monte Carlo simulations. Hence, without loss of 

generality, hereafter we assume that B is known. Section 4 will describe how to estimate 

the channel parameters from the observation sequence O and how to exploit these 

estimates to minimize the interference between the radar and the communication 

system.  

 

3. Compressed Spectrum Sensing 

In this section, after a brief introduction to the principles of Compressed Sensing 

(CS), we focus on its application to Spectrum Sensing, that will be referred to as 

Compressed Spectrum Sensing (CSS). For more details on CS we refer the reader to 

[15]-[17] and references therein.  

CS is a signal processing methodology for signal recovery from highly incomplete 

information. 

The central results state that a sparse vector1 x N∈ ℝ  can be recovered from a small 

number of linear measurements y=Hx K∈ ℝ , K«N (or y=Hx+w when there is 

measurement noise) by solving a convex program [15]-[17]. To make this possible, CS 

relies on two principles: sparsity, which pertains to the signal of interest, and 

incoherence, which pertains to the sensing modality. Considering the real signal f N∈ ℝ  

defined in (5) and being Ψ=[ψ1… ψN] an orthonormal basis (e.g. the DCT), then the 

representation of f on the basis Ψ is given by f=Ψx, where x is the sparse coefficient 

vector. Given a set of vectors [φ1,…,φK] and denoting with Φ the K×N sensing matrix 

whose rows are the φk’s, the measures are collected by means of linear functionals 

y=Φf=ΦΨx K∈ ℝ  [15]-[16]. The interest is in undersampled situations in which the 

number K of available measurements is much smaller than the dimension N of the signal 

f. The process of recovering the Kx1 vector x=ΨT
f from the N×1 measurement vector 

y=Φf is, in general, ill-posed when K<N. However, if x is s-sparse, then the problem 

can be solved provided K≥s. A necessary and sufficient condition for this problem is 

that, for some small δ>0, the matrix H=ΦΨ satisfies the Restricted Isometry Property 

(RIP) [26]: 

                                                           
1 A vector is s-sparse if it has at most s nonzero entries. 
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2 2 2

(1 ) (1 )δ δ− ≤ ≤ +x Hx x . (11) 

 

The RIP implies that matrix H must preserve the length of s-sparse vectors. A related 

condition to RIP is referred as incoherence. The coherence between the measurement 

matrix Φ and the representation matrix Ψ measures the largest correlation between any 

two columns of these matrix and is defined as 

 

 ( )
1 ,

, max ,
k j

k j N
Nµ

≤ ≤
=Φ Ψ ψϕϕϕϕ . (12) 

 

It can be shown [15]-[17] that ( ), 1, Nµ  ∈  ΦΨ . The design of a measurement 

matrix Φ such that H=ΦΨ has the RIP requires that all possible combination of s 

nonzero entries on the vector x of length N have to satisfy (11). However, both the RIP 

and incoherence can be achieved with high probability by designing Φ as a random 

matrix [15]. 

Now, it is natural to attempt to recover x by solving the following optimization 

problem: 

 

 
0

ˆ arg min
N∈

=
x

x x
ℝ

,  s.t. ΦΨx=y. (13) 

 

In the literature, this minimization is referred as the Basis Pursuit (BP) method, 

which, for real valued signals, can be recast as a linear programming problem. The BP 

method is guaranteed to find a reconstruction of a s-sparse signal if there is no 

measurement noise. However, in the presence of measurement noise, its influence on 

the signal reconstruction can be minimized by applying the Basis Pursuit De-Noising 

(BPDN) method which finds a solution of the following problem [27]: 

 

 
1

ˆ arg min
N∈

=
x

x x
ℝ

,  s.t. 
2

σ− ≤y ΦΨx , (14) 

 

where the positive parameter σ is an estimate of the noise level in the data. The case σ=0 

corresponds to the basis pursuit problem. The BPDN method can be solved by means of 

linear programming algorithms. 
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As previously discussed, when the frequency spectrum of the user radiating in the 

same channel as the cognitive radar is a sparse signal, it is possible to apply CS ideas to 

Spectrum Sensing. For the problem at hand, the representation matrix Ψ is the DCT, 

whose elements are defined in (7). In this work, we consider two kind of measurement 

matrices Φ, the first one is the Gaussian matrix, which is formed by sampling 

independent and identically distributed (IID) entries from the normal distribution with 

zero mean and variance 1/K: 

 

 [ ] ( )
,

0,1/
i j

N KΦ ∼ ,  i=1…,K; j=1,…,N. (15) 

 

The second measurement matrix is the Spiky matrix given by randomly selecting K 

rows of the N×N identity matrix. The latter case is the more interesting because, from 

the definition of this matrix, the measurement vector y is obtained by simply selecting K 

samples of f at random. The use of CS allows to use an ADC with a rate of K/�t instead 

of an ADC with rate N/�t. For the physical implementation of the CS filters, we refer 

the reader to [28]-[30].  

Figure 4 shows the channel occupancy evolution of Figure 3 recovered using the 

Gaussian measurement matrix, whereas Figure 5 shows the results obtained using the 

Spiky measurement matrix. In both cases K=N/2 and SNR=20dB. 

 

 

Figure 4 - Channel occupancy evolution recovered using the Gaussian measurement matrix, K=N/2. 
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Figure 5 - Channel occupancy evolution recovered using the Spiky measurement matrix, K=N/2. 

 

Figure 6 shows the Root Mean Square Error (RMSE) after the reconstruction of the 

channel occupancy signal. The RMSE measures the error in reconstructing x using CSS 

w.r.t. the reference signal estimated with all the N samples, that is 

 

 
2( ) ( )

1 1

1
ˆRMSE

H M h h

mm mh mMH = =
= −∑ ∑ x x , (16) 

 

where m and h are the time slot and the Monte Carlo run indexes, respectively. 

The results are shown as a function of K (percentage of N) for both the measurements 

matrices and for different values of the Signal-to-Noise power ratio (SNR). The 

performance results obtained using the two matrices are about the same. It is also 

apparent that, in the absence of noise, it is possible to reconstruct the signal of interest 

using a very low number of samples (30% of N). However, as the noise power increases 

we need more samples to minimize the influence of the noise on the signal 

reconstruction. Anyway, when the SNR tends to be high, the signal can be almost 

perfectly reconstructed using fewer samples (40% of N). From our analysis (see Figures 

5-6), the RMSE in reconstructing the signal is strictly related to the fact that, when the 

channel is busy, we need a high number of samples to reconstruct the whole spectrum 

with high precision. However, in this case, even if we use a low number of samples, a 

busy channel is always recognized to be busy. As a matter of fact, when performing the 

cognitive spectrum sensing function, we are not interested on reconstructing the whole 
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spectrum with high accuracy, but rather on deciding which channels are busy. With 

regard to this latter operation, we apply the classical energy detector technique [31], 

which compares the squared value of each element of the spectrum occupancy vector 

rk=xk
2 with a threshold ζ to evaluate if the channel is busy/free. We evaluated the 

percentage of error in the decision on the channel occupancy applying the same 

threshold to the reconstructed signal as a function of K. 

According to the signal model described in Section 2.2, in the two hypotheses the 

elements of the vector x are given by 

 

 
2

0

2 2
1

~ (0, ),

~ (0, ),
k

k

x N H

x N H

σ
σ σ


 +

w

f w

  (17) 

 

where 2σ
f

 is the variance of the primary user’s signal and 2σ
w

 is the variance of the 

noise. Being the squared value of a Gaussian r.v. a χ2 r.v. with one degree of freedom, 

the binary hypothesis test is given by 

 

 
2 2

1 0

2 2 2
1 1

~

~ ( )
k

k

r H

r H

σ χ
σ σ χ


 +

w

f w

  (18) 

 

Indicating with P the upper incomplete gamma function, the probability of detection 

PD and the probability of false alarm PFA are given by 

 

 { } ( )
2

1 1 2 2 2 2

1
Pr | Pr ,

22
D kP r H P

ζ ζζ χ
σ σ σ σ

  
 = ≥ = ≥ =   + +   f w f w

  (19) 

 { } 2
0 1 2 2

1
Pr | Pr ,

2 2
FA kP r H P

ζ ζζ χ
σ σ

   
= ≥ = ≥ =   

   w W

.  (20) 

 

In our Monte Carlo simulations, we evaluated the percentage of error in the decision 

on the channel occupancy (i.e. if a free channel is declared as busy and vice versa), the 

results are shown in Figure 7 when ζ is fixed for a probability of detection of 0.8. Note 

that in a radar detector the probability of false alarm is fixed to a desired value and the 

probability of detection is maximized according to the Newman-Pearson criterion. It is 
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convenient to keep constant the probability of false alarm to a low value because a false 

alarm is more problematic than a miss detection. As a matter of fact, for each detection a 

lot of radar procedures, such as target tracking and target identification, are activated, if 

there are a lot of false alarms a great portion of the system memory and computational 

capabilities are occupied for the tracking of inexistent targets. For the problem of 

Spectrum Sensing, being the radar the secondary user of the channel, the more 

problematic event is the miss detection, that is when the channel is declared as free and 

the primary user is transmitting. For this reason, it is convenient to fix the probability of 

detection to a desired value and minimize the probability of false alarm. Note also that 

in this case, being the threshold dependent on the SNR, the probability of false alarm 

depends on the SNR. In particular, in the simulation the probability of detection has 

been fixed to 0.8 for each value of SNR, while the corresponding probability of false 

alarm according to (20) is 0.01 for SNR=20dB and 0.15 for SNR=15dB. 

The results in Figure 7 show that, when the SNR is sufficiently high, the error 

percentage is reasonably low, which means that the busy/free decision can still be 

carried out on the signal reconstructed with few samples (<30% of N), even if the signal 

is not accurately reconstructed. 
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Figure 6 - RMSE for channel occupancy reconstruction as a function of K (percentage of N) for different 

SNR values. 
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Figure 7 - Error percentage on the decision of channel occupancy as a function of K (percentage of N) for 

different SNR values. 

 

4. Channel Monitoring for Spectrum Sharing 

In the previous Section, we showed how the spectrum sensing detector exploits the 

received signal to obtain the observation symbols Ot used to evaluate if the channel is 

busy or free at time slot t. To detect the presence of the primary user, the spectrum 

sensing detector must process the time signal received in the whole time slot. 

Considering that the Pulse Repetition Interval (PRI) of the radar system and the time 

slot of the communication system are of the same time duration, in each channel at the 

time of transmitting (i.e. at the beginning of each PRI), the radar could not be able to 

measure if the frequency channel is effectively occupied by the communication system.  

For minimizing interference to primary users while making the most out of the 

spectrum opportunities, the cognitive radar should keep track of variations in spectrum 

availability and, exploiting the history of the spectrum usage information, should make 

predictions of the future profile of the spectrum. Therefore, the cognitive radar system 

analyses the behaviour of the primary user in the frequency channel and, exploiting the 

time history of the channel occupancy (i.e. a sequence of observation symbols), it can 

evaluate the probability to have a spectrum opportunity at the beginning of each PRI, i.e. 

the probability that the monitored frequency channel is free at the time of transmitting.  

In this Section, we describe how to estimate the channel parameters that model the 

behaviour of the primary user in a frequency channel and how to exploit this estimate to 

evaluate the probability to have a spectrum opportunity. 
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4.1 Channel parameters estimation 

As discussed in Section 2.2, the statistical parameters that describe each frequency 

channel are the state transition probability matrix A, the emission probability matrix B, 

and the initial state distribution π={πi}, defined as 

 

 [ ]1Pri is Sπ = = ,   i=0,1. (21) 

 

Matrix B is related to the ROC of the spectrum sensing detector and, as discussed in 

Section 2.2, is assumed to be a-priori known. Hence, the problem of channel parameter 

estimation is to determine a method to estimate the model parameters A and π using a 

finite observation sequence O=[O1…OT] of T elements. The observation sequence used 

to adjust the model parameters is called training sequence since it is used to “train” the 

HMM. There is no way to solve analytically this problem [32]. In fact, given any finite 

observation sequence as training data, there is no optimal way of estimating the model 

parameters. However, the most widely adopted iterative procedure is the Baum-Welch 

method, which is closely related to the Expectation-Maximization (EM) method [23], 

[24], [32], [33]. The Baum-Welch method selects the parameters A and π such that 

Pr[O|A,π] is locally maximized.  

In order to describe the iterative procedure for estimation of the HMM parameters, 

first we must define some useful variables. First consider the forward variable αt(i) 

defined as 

 

 [ ]1 2( ) Pr ... , | ,t t t ii O O O s Sα = = A π  (22) 

 

That is the probability of the partial observation sequence O1…Ot and state Si at time 

t, given the channel parameters A and π. The forward variable can be inductively 

calculated initializing 

 

 1 1( ) ( )i ii b Oα π= ,   i=0,1, (23) 

 

and iterating 

 
1

1 1
0

( ) ( ) ( )t t ij j t

i

j i a b Oα α+ +
=

 =  
 
∑ ,   1≤t≤T-1, j=0,1. (24) 
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In a similar manner, the backward variable βt(i) is defined as 

 

 [ ]1 2( ) Pr ... | , ,t t t T t ii O O O s Sβ + += = A π , (25) 

 

that is the probability of the partial observation sequence from t+1 to T, given state Si 

at time t and the channel parameters A and π. 

Similarly, βt(i) can be solved inductively initializing 

 

 ( ) 1T iβ = ,   i=0,1 (26) 

and iterating 

 
1

1 1
0

( ) ( ) ( )t ij j t t

j

i a b O jβ β+ +
=

=∑ ,   t=T-1,…,1; i=0,1. (27) 

 

Another important variable is the probability 

 

 [ ]( ) Pr | , ,t t ii s Sγ = = A πO , (28) 

 

that is the probability of being in state Si at time t, given the observation sequence O 

and the channel parameters A and π. This probability can be expressed simply in terms 

of the forward-backward variables: 

 

 
1

0

( ) ( )
( )

( ) ( )

t t
t

t t

j

i i
i

j j

α βγ
α β

=

=
∑

,   i=0,1. (29) 

 

Concluding, for the iterative estimation of the HMM parameter we must define the 

probability of being in state Si at time t and state Sj at time t+1, given the observation 

sequence O and the channel parameters A and π 

 

 1( , ) Pr , | , ,
t t i t j

i j s S s Sξ + = = = A πO ,   i,j=0,1. (30) 

 

From the definitions of the forward and backward variables, we can write (30) in the 

form [32]: 
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1 1

1 1

1 1
0 0

( ) ( ) ( )
( , )

( ) ( ) ( )

t ij j t t

t

t ij j t t

i j

i a b O j
i j

i a b O j

α β
ξ

α β

+ +

+ +
= =

=
∑∑

,   i,j=0,1. (31) 

 

It is easy to verify by using (30) that the probability in (28) is given by 

 

 
1

0

( ) ( , )t t

j

i i jγ ξ
=

=∑ ,   i=0,1. (32) 

 

If we sum γt(i) over the time index t, we get a quantity which can be interpreted as the 

expected (over time) number of times that state Si is visited, or equivalently, the 

expected number of transitions made from state Si. Similarly, summation of ξt(i,j) over t 

(from t=1 to t=T-1) can be interpreted as the expected number of transitions from state 

Si to state Sj. Using (29) and (31) with the concept of counting event occurrences, it is 

possible to define a method to iteratively estimate the parameters of an HMM. 

Considering that the ij–th element of the state transition probability matrix A can be 

considered as the ratio of the expected number of transitions from state Si to state Sj and 

the expected number of transitions made from state Si, it is possible to estimate the 

elements of A by using the following equation 

 

 

1

1
1

1

( , )

ˆ

( )

T

t

t
ij T

t

t

i j

a

i

ξ

γ

−

=
−

=

=
∑

∑
,   i,j=0,1. (33) 

 

Similarly, the initial state distribution πi can be considered as the expected number of 

times in state Si at time t=1, therefore we can estimate π using 

 

 1
ˆ ( )

i
iπ γ= ,   i=0,1. (34) 

 

If we define the current channel parameters A and π and we use them to compute 

(29) and (31), and we define the re-estimated channel parameters as Â  and π̂ , 

determined from (33) and (34), then it has been proven in [34] and [35] that the model 
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described by Â  and π̂  is more likely than the model described by A and π, in the sense 

that Pr[O| Â , π̂ ]>Pr[O|A,π], i.e. we have found a new set of channel parameters from 

which the observation sequence is more likely to have been produced.  

Based on the above procedure, if we iteratively use Â  and π̂  in place of A and π and 

repeat the re-estimation, we can improve the probability of O being observed from the 

model until some limiting point is reached. The final result of this procedure is a 

maximum likelihood (ML) estimate of the HMM [32]. This procedure is called Baum-

Welch method and it is summarized in Table 1. 

 

Input: observation sequence O=O1…ON 
 

initialize A and π 

for k=1:MaxIter 
   calculate γn(i) and ξn(i,j) from A and π 

   estimate Â  and π̂  from γn(i) and ξn(i,j) 

   substitute A and π with Â  and π̂ . 

end 
 

Output: estimate of A and γn(i), n=1,…N; i=0,1. 
 

Table 1 - Baum-Welch procedure. 

 

By Monte Carlo simulation, we evaluated that using 30 iterations the algorithm 

converges to a stable estimate of A and π. Figure 8 shows the Root Mean Square Error 

(RMSE) of the estimation of the elements of A as a function of the number of elements 

of the observation sequence T. These results have been obtained through 103 Monte 

Carlo runs by random generating a00 and a11 as independent and identically distributed 

(IID) random variables, uniformly distributed in [0,1]. Considering that (29) and (31) 

measure the expected number of transitions from one state to the other, it is clear that in 

order to have a good estimate of A, we need an high value of T, when the number of 

elements of the observation sequence is too low the estimate of A is biased. 

 



 

22

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 400 600 800 1000

a
00

a
11

T  

Figure 8 - RMSE in the estimation of A as a function of the number of elements of the observation 

sequence. 

 

4.2 Probability of Spectrum Opportunity 

In the previous Section, we showed how to estimate the channel parameters using a 

finite observation sequence. In this section, we show how the cognitive radar exploits 

these estimates to avoid interference with the primary user. We also show some 

simulation results that highlight how the proposed methodology can provide good radar 

performance in the presence of the user and low impact on the performance of the 

primary user by the presence of the radar.  

As discussed, in the analysed scenario, at the time of transmitting the cognitive radar 

is not able to evaluate instantaneously if the operating channel is free or busy. However, 

using the channel parameter estimates obtained from the last T channel observations, the 

cognitive radar can calculate the probability that at the time of transmitting the channel 

is free, i.e. the probability to have a spectrum opportunity. If this probability is 

sufficiently high, the cognitive radar transmits, otherwise it does not transmit. 

Figure 9 shows how the radar processes the continuous sequence of observations at 

the output of the spectrum-sensing detector. Since the estimation of A and γt(i) is time 

consuming, the radar receiver performs these estimates using non-overlapping blocks of 

T elements, in each block the initialization is performed using the channel parameter 

estimates of the previous block. As showed in Figure 9, the channel parameter estimates 

performed in each block are used to evaluate the probability to have a spectrum 

opportunity using a sliding window that collects the last T observations received in the 

previous time slots. 
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There are T sliding windows for each block, in particular in the k-th sliding window, 

using the estimate of A and fixing πi=γk(i), the signal processor of the radar evaluates the 

forward and the backwards variables using (23)-(27). Therefore, similarly to (29), 

evaluates the probability that the last observation in the sliding window corresponds to 

the channel state Si, that is 

 

 
1

0

( ) ( )
( )

( ) ( )

T T

T T

j

i i
i

j j

α βγ
α β

=

=
∑

,   i=0,1. (35) 

 

This probability is used to evaluate the probability to have a spectrum opportunity: 

 

 00 01(0) (1)SOp a aγ γ= + , (36) 

 

i.e. the probability that in the previous time slot the channel was free and in the 

current time slot it remains free plus the probability that in the previous time slot the 

channel was busy and in the current time slot it becomes free. The signal processor 

compares the probability to have a spectrum opportunity with a threshold λ, and 

transmits only if the probability is greater than λ.  

There are two kinds of errors. The first one, e0, is the event in which the cognitive 

radar does not transmit and the channel is free, i.e. the probability to lose a spectrum 

opportunity. The other kind of error, e1, is the case in which the radar transmits and the 

channel is occupied by the primary user, i.e. the probability to have a collision.  

Figure 10 shows the probability of these two errors as a function of the threshold λ, 

this graph can be used to tune the cognitive radar to the desired performance. These 

results have been obtained through 103 Monte Carlo runs by random generating a00 and 

a11 as independent random variables uniformly distributed in the range [0,1]. 

It is clear that when threshold λ is zero, the radar is always transmitting, therefore the 

probability of e1 coincides with the probability that the channel is busy, that for the 

matrix A that we used in our simulation, is 0.5. Similarly, when the threshold λ is one, 

the radar never transmits and the probability of e0 coincides with the probability that the 

channel is free, that in our particular case, is 0.5. 
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Figure 11 shows the probability to lose a spectrum opportunity and the probability to 

have a collision as a function of time, observing the performance of the system for 9246 

time slots (i.e. 9 blocks of 1024 elements). These results have been obtained through 103 

Monte Carlo runs, generating a00 and a11 as IID random variables uniformly distributed 

in [0,1] and fixing the threshold λ to 0.65.  

The simulation results show how the performance of a cognitive radar that adopts the 

proposed methodology are constant during the time and much better than the 

performance of the non cognitive radar that always transmits ignoring the presence of 

the primary user and than the radar that never transmits to avoid interference with the 

primary user of the channel. 
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for each block: 
evaluate A and γn(i)
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…
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Figure 9 - How to process the observed sequence. 
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5. Conclusions 

Since the availability of frequency spectrum for radar sensors continuously 

diminished and fragmented, next generation radar systems should be able to operate in 

spectrally dense environments, coexisting with other systems operating in the same 

frequency channel. For this reason, an important system requirement is the ability to 

recognize and react to the behaviour of other users radiating in the same operational 

environment that, in turn, leads to the need of new methodologies and techniques, based 

upon cognition as enabling technology. The cognitive methodology to reduce mutual 

interference between the radar and the other radiating elements is based on two main 

concepts: Spectrum Sensing, that has the goal to recognize the frequencies used by other 

systems using the same spectrum in real time, and Spectrum Sharing, that has the goal to 

limit interference from the radar to other services and vice versa. 

This paper focus on two main topics, the role that Compressed Sensing in Spectrum 

Sensing and the problem of channel parameter estimation for Spectrum Sharing. In 

particular, we demonstrate that CS techniques can provide a significant reduction in 

acquisition time, reducing the cost for high resolution Analog-to-Digital converters with 

large dynamic range and high speed signal processors. In the specific application, where 

the goal is not reconstructing the whole spectrum with high accuracy, but rather to 

decide which are the busy channels in the considered band, the results show that, when 

the SNR is sufficiently high, the error percentage on the busy/free decision can be low 

already using less than 30% of the total samples of the original signal. This mitigates the 

hardware constraints of conventional spectrum sensing techniques and allows to reduce 

the sampling rate. Moreover, this paper describes a technique to estimate the channel 
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parameters that model the behaviour of the primary user of the channel, and propose a 

cognitive method that, exploiting these estimates, enables a radar to operate in a 

spectrally dense environment. The performance of the cognitive radar is evaluated in 

terms of probability to lose a spectrum opportunity and probability to have a collision 

with the primary user of the channel. The numerical results suggest that the proposed 

cognitive algorithm lowers the mutual interference between the radar and the primary 

users. 
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