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Abstract

A key challenge in operating cognitive radios (CRs) in a self-organizing (ad hoc) network is how to adaptively
and efficiently allocate transmission powers and spectrum among CRs according to the surrounding environment.
In this paper, we present a novel joint power/channel allocation scheme that uses a distributed pricing strategy to
improve the network’s performance. In this scheme, the spectrum allocation problem is modeled as a non-cooperative
game. A price-based iterative water-filling (PIWF) algorithm is proposed, which allows users to converge to the
Nash Equilibrium (NE). This PIWF algorithm can be implemented distributively, with CRs repeatedly negotiating
their best transmission powers and spectrum. Simulation results show that the social optimality of the NE solution
is dramatically improved with our price-based strategy. Based on the orders by which CRs take actions, we study
sequentialand parallel versions of the algorithm. We show that the parallel version converges faster than the
sequential version. We then propose a MAC protocol that implements our price-based resource allocation algorithm.
The proposed MAC protocol allows multiple CR pairs to first contend through an admission phase, and then
to iteratively negotiate their transmission powers and spectrum via control-packet exchanges. Subsequently, CRs
proceed concurrently with their data transmissions. Simulations are used to study the performance of our protocol
and demonstrate its effectiveness in terms of improving the overall network throughput and reducing the average
transmission power.
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I. INTRODUCTION

The concept of @ognitive radio(CR) has recently triggered great interest within the research community
(e.g., [9], [11], and [13]). The term “cognitive radio” was first coined by Mitola [16], who used it to refer
to a reconfigurable wireless black-box that intelligently changes its communication variables in response
to network and user needs. Mitola’s definition, however, does not specify the network architecture needed
to support CR functionality. More recently, the FCC [8] suggested referring to any radio with adaptive
spectrum awareness as a CR. Specifically, a CR should be able to adapt its transmission parameters t
the surrounding environment. Several scenarios are envisioned for operating a cognitive radio network
(CRN). In this paper, we focus on the role of CRsapportunistic communicationg\ccording to this
role, CRs are secondary users that coexist with primary radios (PRs) that are licensed to operate over giver
frequency bands. PR users do not cooperate with or even provide feedback to CR users. CRs continuously
sense the spectrum and exploit its “holes” for opportunistic communications.

One of the main challenges in deploying an opportunistic CRN is how to design an efficient and adaptive
channel access scheme that supports dynamic channel selection and power/rate allocation in a distribute:
(ad hoc network) environment. An efficient design is one that tries to maximize the CRN performance
without disturbing PR transmissions. A typical measure of efficiency is the achievable sum-rate of all CR
transmissions. It is known that the problem of maximizing the sum-rate over a multi-access interference
channel subject to individual power constraints is a non-convex optimization problem [4]. Such a problem
becomes even more complicated when we allow multiple CRs to share the same channel, as one mus
now consider the CR-to-CR interference in addition to the PR-to-CR and CR-to-PR interference.

Several attempts have been made to solve the aforementioned “interference channel problem”. One well-
known resource allocation scheme, caliestative water-filling(IWF), was first proposed in [29], where
a non-cooperative game was used to model the spectrum management problem, with each user iterativel
maximizing its own rate. This per-user optimization problem is convex and leads to a water-filling solution.
For the two-user case, it was shown thatiesh Equilibrium(NE) exists and the IWF algorithm converges
to the NE under certain conditions. However, this NE is generally not Pareto optimal [22] and may be quite
inefficient in terms of the sum-rate metric [4]. This is because in a non-cooperative game, each user tries
to maximize its own utility function without considering the overall system performance. A centralized
spectrum management scheme was proposed in [4]. This scheme greatly improves the system performanc

over the IWF scheme by utilizing a centralized spectrum management center (SMC). However, such a



centralized approach cannot be applied to a distributed ad hoc CRN, where none of the users has complet
knowledge of the entire CRN to function as the SMC.

Given the above, we are motivated to design a channel/power/rate allocation scheme that overcomes the
inefficiency of the classic IWF algorithm and yet can be implemented in a distributed fashion. Specifically,
we provide incentives to CR users such that they can reach asuooialy efficientNE. A commonly used
incentive technique in game theory psicing (e.g., [5], [20], and [25]) (a thorough review is provided
in [10]). Pricing techniques have previously been implemented in various wireless networks, including
cellular networks, ad hoc networks, and peer-to-peer networks (e.g., [25], [5], [28] and [1]). In this paper,
we apply pricing techniques to a distributed CRN, and propgseca-based iterative water-fillinPIWF)
algorithm. We show that this PIWF algorithm maintains the simplicity and distributed operation of the
original IWF algorithm; yet, it achieves better bandwidth efficiency in the form of higher sum-rate. The
effectiveness of the pricing approach depends on the appropriate selection of the “pricing function,” which
is a challenging problem by itself. Although there may exist an “optimal” pricing function that allows
the NE to converge to the Pareto optimum, the search for such a function generally requires a central
controller and is hard to implement in a distributed manner. Some sub-optimal pricing functions were
proposed in the literature. For example, the authors in [5] proposed an auction-like pricing scheme for
single-channeimobile ad hoc networks (MANETS). In this scheme, the unit price (uniform across all
users) is gradually increased until the system reaches a feasible NE. A similar approach (also, for a single
channel) was used in [25], where the users of a wireless data network keep increasing their prices in a
uniform fashion until the utility of one user begins to decrease. Both of the previously mentioned pricing
schemes achieve a feasible NE and improve the system performance. However, the achieved NEs are
not guaranteed to be globally optimal, which is partially due to the fact that both of the two approaches
assume a uniform unit price for all players in the game. In our work, we usseadependenpricing
function, which we found to improve the sum-rate of the achieved NE after a few iterations. Such a
pricing function can be determined by allowing each CR user to distributively collect some neighborhood
information through the exchange of control packets.

Another challenge in applying the classic IWF algorithm [29] to CRNs is that this algorithm only
considers dotal power constraint on the transmission of each user. In a CRN, PRs impose a strict power
constraint oveeachfrequency band, so CR transmissions have to abide fioggaency-dependepower

mask. Such a mask affects the response of each CR user and thus the achieved NE. In this paper, w



incorporate such a frequency-dependent power mask into the optimization problem.

In our proposed algorithm, each user maximizes its own utility function (which includes a pricing term)
by performing a single-user price-based water-filling, while treating the interference from other CR users
at each sub-band as additive white Gaussian noise (AWGN). The same procedure iterates sequentially
eventually converging to the NE. When the number of users in the network is large, sequential updating
of transmission powers can suffer from slow convergence. Therefore, we also spahalkel version
of the PIWF algorithm (the parallel concept for the IWF algorithm was first introduced in [26]). This
parallel algorithm is an instance of the Jacobi scheme: At each iteration, CRs update their strategies
simultaneously, based on the measured interference in the previous iteration. Simulations indicate that
this parallel version converges faster than the sequential version of the PIWF algorithm.

Both the sequential and parallel PIWF algorithms require CRs to be synchronized and the system
parameters to be correctly estimated at each CR. These conditions may not be satisfied in practice. Tc
overcome this problem, a “relaxed” update scheme has been used in the literature (e.g., in [2], [15], and
[26]) and is studied in our work for completeness. For the “relaxed” version of the PIWF algorithm, each
CR is required to remember its most recent policy choices along with the choices of other users. As such,
the relaxed update scheme is more robust to inaccurate estimation and channel oscillations, but it may
lead to certain degradation in the convergence speed.

Our PIWF algorithms are then integrated into the design of a distributed medium access (MAC) protocol
for CRNs. This protocol allows CRs to dynamically select channels and adapt their transmission powers
and rates. We show that the specific implementation of the PIWF algorithm impacts the MAC protocol
design. Simulations are conducted to compare the performance of the proposed protocol against othet
adaptive protocols.

The rest of this paper is organized as follows. The system model is described in Section Il. Section
[l formulates the non-cooperative game and introduces the pricing techniques. We discuss the PIWF
algorithms in Section IV and design the corresponding MAC protocol in Section V. In Section VI, we
provide simulation results of the PIWF algorithms and compare them with the classic IWF algorithm.

Conclusions are drawn in Section VII.

I[l. SYSTEM MODEL

We consider a hybrid network that consists of several primary radio networks (PRNs) and one CRN.

The CRN consists ofV CR pairs (links). The total spectrum is composedioforthogonal frequency



channels K < N) with central frequencieg, f, ..., fx. Each PR user in a PRN may operate over one
or multiple channels. The PRs in the network are modelled as an ON/OFF source, where “ON” means
that the PR user is actively transmitting.

Each CR user may simultaneously transmit over multiple channels. Similarly, each CR user can receive
over multiple channels (from the same transmitter) at the same time. However, we require the operation
to be half-duplex, meaning that a CR user cannot receive while transmitting, and vice versa. When not
transmitting, a CR user is also capable of measuring the total noise-plus-interference (TNPI) level over
each channel. Led/;(k) denote the TNPI level measured by CR usewver channel. This quantity
includes the received PR-to-CR interference, the CR-to-CR interference, and the thermal ndde 3 et
[M;(1), M;(2),. .., M;(K)]*. This vector is used by CRto perform dynamic channel selection, power
control, and rate allocation, as described later.

Previous work on distributed resource allocation for CRNs (e.g., [27]) assumed that CR transmissions
do not interfere with each other, i.e., only one CR link can be active over a given channel in a given
neighborhood (along with the PRs). In this case, there is no spectrum overlap among neighboring CR
users. Such an approach enjoys simplicity (CSMA/CA-like design) but it limits the number of admitted
CR links. In our work, we allow multiple CR users to overlap in the allocated frequency channels. To
illustrate, Figure 1 gives a channel allocation example for a CRN Witk- 3 and N = 4. A shaded
square means that a channel is utilized by a CR link. For example, link 1 uses channels 1 and 2, while
link 4 uses only channel 1. We denote the set of utilized channels for CR &kS;. In our example,

S1 =4{1,2} and S, = {1}. The transmission power vector of CR lirlover various channels is denoted
by P, = [Pi(1), Pi(2),..., P,(K)], whereFP;(k) is the transmission power of CRon channek. If channel
k € S;, then P,(k) > 0; otherwise,P;(k) = 0.

Channels

o | | I

f f2 fs

Fig. 1: Example of channel allocation with 4 CR links in the same neighborhood.

We impose the following constraints:

Throughout this paper, vector quantities are indicated in bold font.



1) Maximum transmission power constraifihe total transmission power of a CR user over the selected
channels should not exceéd,,., i.e, Zkesi Pi(k) < P,...- Here, we assume that the total power
constraint is the same for all users. It is easy to extend the treatment to the caseRyhels
user-dependent.

2) CR-to-PR power mask constrainthe transmission power of CRon channek is constrained by
the power masl,,.sx (k). Let P ok o [Prask(1)y Prask(2), - - -, Pmast(K)] denote the power mask
vector. P,,.... IS set in a way that CR transmissions result in no disturbance to PR transmissions.
The determination oP,,. is itself an important issue, but is out of the scope of this paper. In the
following analysis, we assume thRt,,... IS given a priori.

We assume that the CRs are either static or move slowly (relative to the convergence time of the

resource assignment algorithm). This assumption is generally acceptable because our iterative algorithms
are implemented on the time scale of few milliseconds, whereas pedestrian and vehicular mobility impacts

the network topology on the time scale of seconds. In addition, we assume that all the CR nodes follow

the same operation rules and have the same system constraints.

I1l. PROBLEM FORMULATION

In a non-cooperative CRN, each CR user is interested in maximizing its own achievable rate. Such
a greedy behavior can be modeled using game theory. Game theory analyzes players’ interactions in
decision-making processes. It can be used to identify distributed optimal strategies for the players [18]
[19]. A normal game can be expressed@s- {2, P, {U;}}, whereQ? = {1,2,..., N} is a finite set of
rational players;P = P; x P, x ... x Py is the action space witl®; being the action set for player
7; and U;: P — R is the utility (payoff) function of player, which depends on the strategies of all
players. We model the channel/power allocation problem in a CRN as a non-cooperative game, in which
the players are the CR users; their actions are the transmission powers (i.e., foritssaction is given
by P, = [P(1), Pi(2),..., P(K)]); and their utility functions are associated with their actions and the
quality of the channels. Note that a CR user in the game denotes a CR link consisting of a pair of CR

nodes.

A. Utility Function

The utility function of CR useri can be considered as the reward received by this user from the

network. It depends on useis action P; and the union set of all other users’ actioRs;, where



P, = Py,....,P;,_1,Piy,...,Py]T. While the selection of the utility function is not unique, this
selection must have a physical meaning for the given application. A natural selection of the utility function
for CR link i (also used in [6], [26], [29]) is given by:

K K

(P:) ;;((» Z;g( SR

whereh;;(k) denotes the channel gain between the transmitter and the receiver ofdirgc channek,

his(k) Pi(k) | 0
i

Pi(k) + MT® (k) + N;(k)

h;i(k) denotes the channel gain between the transmitter ofjliakd the receiver of link over channel
k, MZ.(PR)(k) is the PR-to-CR interference at the receiver of CR linkver channek, and N;(k) is the
thermal noise power on channkel

Given the above utility function, users iteratively select their transmission powers to maximize their
own utility functions, and eventually converge to a NE after several iterations (under conditions that will
be discussed later). As mentioned before, because of the non-cooperative nature of the game, each Ci

user behaves selfishly. Thus, the resulting NE may be far from the Pareto optimum, defined as:
Uopt d:Ef maXPN}iZU}iUi(Pi)

.....

wherew; denotes the “weight” assigned to ugsewhich may be interpreted in different ways (e.g., priority
factor of useri).
To drive the NE towards the above Pareto optimum, we use pricing as an incentive for each CR user.

Accordingly, we define a new utility function for uséras follows:

~ K

Ui(P;) = Z%(R(k)) 3)
with

hii (k) Py(k)
S hii(R) Py (k) + M (k) + Ni(k)

(P() =~ () + o, 1+ @

wherec; (k) represents the pricing function for useon channek. As discussed in Section I, our goal is
to choose a user-dependent pricing function that can drive the CR users to converge to an efficient NE.

How to define this pricing function will be discussed in Section IlI-C.



B. Game Formulation

Given the price-based utility function in (4), each CR useteratively selects its power vectd?;
so as to maximizdJ;(P;) subject to the constraints listed in Section Il. This results in the following

non-cooperative gamg:

maximize U;(P;), Vi € {1,2,...,N}

(3

s.t.
C1: P(k)>0, Vie{l,2,...,N} and

Vke{1,2,...,K} )
C2: St Pi(k) < Poaw, Vi€ {1,2,...,N}
C3: Pi(k) < Prasi(k), Vie {1,2,... N}

andvk € {1,2,..., K}.

If Praz > D1 Pmask(k), then constraint C2 can be omitted. If there is a solution to the above game, then
it is a one that achieves a NE. Note that the above game differs from the game studied in [29] in the form
of the utility function and in the addition of the power mask constraint. Thus, the NE existence proofs
in [6] and [29] cannot be directly applied here. However, from the following proposition, we show that
a NE solution always exists for the above game.

Proposition 1: For any givenP,,,, andP,,... values, there is at least one NE for the gaghe (5).

Proof: the game in our setup can be shown to be a concave game if the following two properties

are satisfied:

1) The action spacé® is a closed and bounded convex set;

2) The utility functionU;(P;) is concave over its strategy set.
Because a concave game always admits at least one NE [24], we have the above proposition.m

Given the existence of a NE solution, we need to design an algorithm for CR users to reach this NE.
We address this issue in the forthcoming sections. However, before we do that, we first discuss the optimal

pricing function.

C. Optimal Pricing Function

To illustrate the impact of pricing on improving the efficiency of the NE, in Figure 2, we depict an

example of the Pareto optimal frontier and the NE for a two-user game. In general, the NE is not Pareto



optimal. One contribution of our work is in introducing a user-dependent linear pricing function that drives
the NE close to the Pareto optimal frontier with each player using only the neighborhood information

about the network. As explained in Section V, this information is acquired via control-packet exchanges

Pareto-optimal
frontier

Pareto improvement
region

during the channel access process.

Rate of
User 2

Rate of User 1

Fig. 2: Nash equilibrium and Pareto-optimal frontier for a 2-user game.

Proposition 2: Consider the gamé with utility function U;, i = 1,2,..., N, as defined in (3), and let
the pricing functionc;(k) be given byc; (k) = \;(k)P;(k). Then, the game has at least one NE solution
(from Proposition 1). Further, if this NE solution is Pareto optimal, then the pricing fagtéy must be

of the form:

(6)

where NBR denotes the set of neighbors of CR user
Proof: By definition, a NE is the solution to the individual utility optimization problem for each
user given all other users’ actions. In our formulation, each individual optimization problem is a convex

problem with the linear constraints C1-C3 in (5). So the Lagrangian function foriser be written as:

Ji = wizﬂi 2 Zazkp
ﬁz ZP - max Z’%k - mask(k:)}
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where«, i, 5;, and~, , are the Lagrangian multipliers (non-negative real numbers). The Karush-Kuhn-
Tucker (KKT) conditions [3] for usef are given by:

Ou(P;(k))

i —wiNi(k ik — Bi = ik =0,k
w aR(k) w ()+a,k B Yik

Oéz’kpl(k}> = O,Vk

Z-P'L(k>_Pmam SO (7)

k

Bi[ D Pi(k) = Praa] =0

k
Pz(k) - Pmask(k) S O7Vk

Yik(Pi(k) — Prask(k)) = 0,Vk

On the other hand, to solve the social optimization problem (2) with constraints C1-C3, the Lagrangian

function can be written as:

_@é [(P.(k) = Poas (k)]
_ékz:m [Pi(k) = Prask (k)]
_ wéum(km | iwéw@(zﬂ»
N i ﬁ ouPlE) — f i PAH) — P (B)]
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In this case, the KKT conditions are given by:

oui(P(k)) | ~~ . Ou(Py(k))
YR (k) +]12m Pi(k)

‘i — B — vk = 0,Vi, k
pi(k) > 0,Vi, k

Oél7kp1(k> = O, VZ, k

K (8)
> Pi(k) = Ppar <0,Vi
k=1
K
Bi[ D Pi(k) = Pas) = 0,Vi
k=1
Pi(k) — Prask(k) <0,Vi, k
Vi, k(P (k) - Pmask(k)) = 07Vi7 k
To obtain the same solution to the two sets of KKT conditions (7) and (8), we must have:
__ 1 Ou,(P;(k))
Ai(k) = wizwj O 9)
J#i
By substitutingu; (k) into (9), we have:
1 hjj (k) P; (k) hi; (k)
Ni(k) = —) w, (10)
0 = e 2 S O + (I B

If the transmitter of linki and the receiver of link are not neighbors, i.e., the transmission of lirgt
the maximum power cannot reach the receiver of linkhe channel gair;;(k) is set to zero. Thus, the
optimal pricing factor for linki only depends on its neighborhood information. We then have the result
in Proposition 2. [ |
Intuitively, a higher pricing facton;(k) will prevent useri from using a large transmission power on
channelk. In view of (6), for link i to determine its optimal pricing factor, the following procedure is
needed: If a neighboy is to transmit over channé, it needs to broadcast its transmission powgik),
the measured TIPN/;(k), and the channel gaih;;(k). The above information will be conveyed using
MAC control packets (details in Section V). In addition, the channel gajns:) can be computed by

measuring the received signal power of the MAC control packets.
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IV. | TERATIVE ALGORITHMS

From the results of the previous section, we can use the following iterative algorithm to reach a NE for
the gameG: Each CR user, say, first adjusts its linear pricing factox;(k) over all channels according
to (6), and then determines itsest responsd.e., the optimal channel/power combination based on the
measuredM;. The best response of uselis to maximize its individual utility function (4) subject to
the constraints C1-C3. The same procedure is repeated for all users in the network. If such a procedure
converges, then by definition, it has to converge to a NE of the game in (5).

Note that for uset, its utility function in (1) is monotonically increasing iR;(k) given that the other
users’ powers are fixed. So the only factor that preventsaBem choosing infinitely large transmission
powers is constraint C2. In our work, after adding the linear pricing function, the utility function (4) now
leads to a finite optimal power setting even without constraint C2.

Proposition 3: By treating the other users’ transmissions as interference, the best response f user
is given by:

P; =BR;(P_;) = [BR;(P_(1)),..., BRi(P_;(K))] (11)

where
def 1 Mz(k) Pmask(k)

BN hulk) 0

BR;(P_i(k)) (12)

where the functior{z])?, with b > a, denotes the Euclidean projection .ofonto the intervala, t], i.e.,
(2] =aif z <a, [z]b =2 if a <z <b, and[z]? = b if x > b. The parameteB is known as the water
level. It is determined by useras the minimum non-negative value that results in satisfying the total
power constraint C2.

Proof: We first solve the optimization problem without the power mask constraint C3, using the

method of Lagrange multipliers. This leads to a water-filling solution of the form:

| Mi(k),, .
) =y~ )= b2 N (13)

If P*(k) is the optimal power allocation over chanreglthen the slope of the utility function;(P;(k))
must be positive at the poin?*(k). Otherwise, a power vectdP; with a smallerP;(k) could reach a
higher utility U;(P;), with all the constraints satisfied. Thus, the utility functiafP;(k)) is monotonically
increasing between 0 ang*(k). Due to this monotonicity, if any of th&; (k) in (13) violates the upper

bound C3, then the corresponding bounded optimal solution must be the upper Bouptk) itself (a
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similar approach was also adopted in [7]). After bounding Biék) by P,....(k), the remaining power
will be further water-filled over other channels, thus reaching the result in (11).
A similar result for the IWF algorithm is provided in [26]. Although we have additional pricing function,
a similar analysis can be used to reach the same result in Proposition 3. [ |
Note that without the power mask constraint (i.B,,.sx(k) = +oo for all k) and without the pricing
function (i.e.,\;(k) = 0 for all £ and+), (11) and (12) represent the classic water-filling solution. Figure 3

graphically illustrates the difference between the traditional water-filling [29] and the price-based water-

Fixed water
level
Tx

Power

filling solution in (12).

Variable water
level
—

Water-filing ~ channels W;Zrbfﬁﬁﬁg channels

Fig. 3: Classic water-filling versus price-based water-filling.

Several approaches can be used by CR users to reach the NE according to the best-response function i
(11). CR users may make their decisions one after another or in parallel, which corresponds to a sequential
or a parallel update procedure. Next, we describe these two procedures and analyze their convergenc

properties.

A. Sequential Price-based Iterative Water Filling

In the sequential PIWF algorithm, CR users implement their best-response decisions sequentially,

according to some given order. LPé” be the power vector of usérin the ith iteration. The condition

P —p=1y
2 1
Y|

0.01). If this condition is not satisfied within a certain number of iteratiaing,.f), the algorithm will

< ¢ is used as the stopping criteria for the PIWF algorithm, wheieea small number (e.g.,

also stop. The above algorithm is akin to tBauss-Seidgbrocedure, where the players take their turns
sequentially and act on the most recent policy information obtained from other players. A pseudo-code
for the sequential PIWF algorithm is depicted in Algorithm 1.

In a two-user scenarichl“) for user 1 can be expressed as:

P{""" = BRi(BRy(P}")) “ T(P}') (14)
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Algorithm 1 Sequential PIWF
Initialize P;(k) = 0,V: andk.
Initialize iteration count = 0.
Repeat:

1. 1=1+1;

2: for i =1 to N usersdo

3 for k=1 to K channelsdo

4: Estimate the TIPN level;(k);
5: Compute the pricing factok;(k) using (6);
6: Estimate the channel gaiy; (k) using the received signal power of the control packet.
7. end for
s P =BR,P",. .. PY PV PUY);
9:  Transmit on selected channels usﬂﬁﬁ).
10: end for
. P —pU=b) )
until { > L, OF W < ¢ for all i.

where T is a vector of concatenated functions, given BR,(BR(.)). For a generalV-user game,

the expression is more complicated. For simplicity, we keep the notdtias the mapping between the
previous power vector and the current power vector. To ensure convergence to the NE for the classic IWF
algorithm, several sufficient conditions have been proposed in the literature. The convergence condition was
first provided in [29] for the two-user case and in [6] for tNeuser case. More recently, the convergence
conditions were further relaxed in [12] and [26].

Because the utility function in (4) includes a pricing term that is not present in the formulations in [12]
and [26], the convergence proofs of [12] and [26] cannot be applied here. In fact, because the pricing
factor \;(k) is recomputed in every iteration (as shown in Algorithm 1), the mapfling time-varying
over iterations. Thus the fixed-point theorem that underlies the proofs in [12] and [26] cannot be applied.
The convergence proof under a time-varying mapping function is a challenging problem and will be left
for future work. However, convergence has always been observed in our simulations. Figure 4 depicts
the convergence behavior over several iterations withk- 10 and K = 5. The figure shows the average
sum-rate improvement of the sequential PIWF over the classic IWF algorithm for 1000 runs, with the
starting sum-rate of the IWF algorithm normalized to one. The two algorithms converge at comparable
speeds, but the NE solution for the sequential PIWF algorithm is much better than the NE of the classic
IWF algorithm.

Although the convergence proof for a time-varying pricing function is difficult to establish, if the pricing

factor remains fixed over several iterations, the convergence proof in [26] is still applicable. This is because



15

w

U Ly TR SERE LEE et

[
3]
%

¥ —— IWF
! -=- Sequential PIWF

[
3]

o<

System Sum Rate (Bps/Hz)
N

=

4 8
Iterations

Fig. 4. Normalized sum-rate versus iterations (starting value for the sum-rate of the classic IWF is
normalized to one).

adding a linear pricing function with a fixed pricing factor to the utility function (1) has no impact on
the convergence proof in [26]. If we apply the analysis in [26] to our CRN formulation in Section IlI,
we have the following proposition:

Proposition 4: Suppose that the pricing function in (4) takes a linear form with a fixed pricing factor
over a few iterations. Then, the sequential update procedure converges to the unique NE if one of the

following two sets of conditions is satisfied:

ZN hyi (k)
oji\lv)
Q) R kglg?%] o (F) <LViel 2 . ...,N (15)
N
hyi(k)
(2) ilgi#kg}q?%j ) <1,Vjel,2,...,N. (16)

From (15) and (16), the convergence and the uniqueness of NE are ensured if the CRs that share the
same channel are far apart, and thus inflict weak interference on each other.
When the number of CR users in the network is large, the sequential update approach may suffer from

slow convergence speed. Therefore, we presquarallel PIWF version that is suitable for dense CRNs.

B. Parallel Price-based Iterative Water Filling

In the parallel PIWF algorithm, the CR users act in parallel, instead of sequentially. The stopping
criteria are the same as those of the sequential PIWF. The algorithm is described in Algorithm 2. This
algorithm is related to thdacobicomputational procedure, where CR users simultaneously perform price-
based water-filling in each iteration, based on the interference generated by other users in the previous

iterations. In the two-user case, the counterpart of (14) is:

P! = BR,(P{™) = BR,(BR,(P")) = T(P). (17)
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In [26], it was proved that the convergence conditions for the parallel and sequential IWF are the same.
The same proof is not applicable if the mapping functibg) is time-varying. However, if the pricing
factor of the linear pricing function remains fixed, we can apply the corresponding proof and reach the

following corollary of Proposition 4.

Algorithm 2 Parallel PIWF
Initialize P;(k) = 0,V:i andk.
Initialize iteration count = 0.

Repeat:
1 1l=1+1;
2: for i =1 to N usersdo
3.  for k=1 to K channelsdo
4 Estimate the TIPN level;(k);
5: Compute the pricing factok;(k) using (6);
6 Estimate the channel ga;(k) using the received signal power of the control packet.
7:  end for
s PY=BR,®P!V ... POV PV P
9: end for

10: for ¢ = 1 to N usersdo
11:  Transmit usingP; .
12: end for

L

. | .
until [ > L,,,. Or TEa < ¢ for all i.

Corollary 1: If the conditions in Proposition 4 are satisfied, the parallel update procedure converges
to the unique NE of the game.

Corollary 1 says that stability under the Gauss-Seidel procedure coincides with stability under the Jacobi
iteration. Furthermore, following the argument in [26], one can prove that any asynchronous computation
where the players act at random times and use the most recently available policy from other players should
converge to the NE, as long as no player remains idle for an infinite time duration. Hence, the achieved
NE based on asynchronous updates coincides with the NE achieved with parallel or sequential updates.

The parallel and sequential PIWF algorithms are distributed. They both attempt to maximize the
achievable sum-rate. Both have the same implementation complexity of the classic IWF algorithm. In
Figure 5, we can see that the parallel PIWF converges faster than the sequential PIWF, especially for
a large number of users. Whether the players act sequentially or in parallel makes a difference in the
MAC design. We will discuss the impact of parallel PIWF and sequential PIWF on the MAC design in
Section V. In this simulation, we assume that CRs are randomly located in a square area and 5 channels

are available for their transmissions.
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Fig. 5: Convergence to the NE solution in the sequential and parallel PIWF algorithms.

V. MAC PROTOCOLDESIGN

In this section, we describe a MAC protocol that allows CR users to operate efficiently in an op-
portunistic CRN. This protocol implements the distributed channel/power allocation strategies discussed
in the previous sections. It should be noted that a number of multi-channel MAC protocols have been
proposed in the context of CRNs (e.g., [14], [31], [30], and [27]). Most of them do not allow multiple CR
transmissions within the same neighborhood to overlap in frequency channels, so there is no interference
among CR users. Such a restriction simplifies the MAC design, but limits its spectrum efficiency. A
natural extension (analogous to the improvement offered by the POWMAC protocol [17] over the classic
CSMA/CA) is to allow CR users to overlap in spectrum, provided that their mutual interference does
not lead to collisions. The IWF algorithm [29] and the no-regret algorithm [21] were proposed as two
possible enabling techniques. However, the works in [29] and [21] provide only channel/power allocation
algorithms and do not offer a practical MAC design.

In this section, we incorporate our price-based channel/power allocation algorithms into an operational
MAC protocol. Since the IWF algorithm is a special case of the proposed PIWF algorithm, our MAC
protocol can be simplified to accommodate the classic IWF algorithm, thus complementing the work in

[29].

A. Assumptions

We consider a CRN with the following features:

. There exists a dedicated control channel or a coordinated control channel [30] that supports a
community of CR users. Control packets are transmitted over the control channel using a pre-assigned
power valueP.,,,;.

. Channel gains between any two terminals are symmetric.
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« The channel gain is static for the duration of several control packets and a flow of data packets.

B. Protocol Overview

Our MAC protocol uses the following three types of control packets for the handshaking between a CR
transmitter and a CR receiver: Request-to-Send (RTS), Clear-to-Send (CTS), and Decide-to-Send (DTS).
Unlike the classic CSMA/CA scheme and other multi-channel MAC protocols for CRNs, these control
packets are not used ®&xclusivelyreserve channels (i.e., prevent neighboring CRs from accessing the
reserved channels), but rather to exchange some information within the neighborhood. Such information
is used by terminals to determine their transmission parameters.

The control packets are exchanged within a certain duration, referred to ankention window
(CW). A CW can be initiated asynchronously by any CR user that has packets to transmit and that is
not aware of any active CWs in its neighborhood. Such a user is referred tarestar user Other
CR users that follow the schedule of an ongoing CW are callade usersNote that the master/slave
designation of a user is dynamic, i.e., it changes with traffic and mobility conditions. The objective of the
CW is to allow several pairs of CR nodes to repeatedly negotiate their transmission channels and powers.
As shown in Figure 6, the CW is divided into two parts. The first part, referred to aadimession
window (AW), is used by CR nodes to compete for admission to the CW and initialize their transmission
policies. The second part, referred to as titaéning window(TW), is used by the CR nodes to repeatedly
negotiate their channel/power policies (as explained later). Note that the AW can be considered as the first
iteration of the training process. CR nodes that have been successfully admitted during the CW transmit
a flow of data packets over one or multiple data channels (as determined during the CW) wititin a
window (DW). The durations for the AW and DW are changed adaptively, similar to the single-channel
POWMAC protocol [17]. As for TW, its size (in slots) is dictated by the convergence speed of the iterative
resource allocation algorithm. In general, an unnecessarily large value increases the overhead, but doe:
not necessarily improve the throughput (as shown in Figure 4). On the other hand, a small value may
give sub-optimal results. In Section VI, we study the performance of the MAC protocol for various TW

sizes.

C. Operation Details

1) Access WindowWhen a CR noded intends to establish a connection with another nétjeit

first needs to contend during the AW. If nodeis not aware of any ongoing AW in its neighborhood, it
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Fig. 6: Overview of the MAC operation with two CR transmissioas-¢ B andC — D).

initiates a new AW (i.e., it becomes a master user). Otherwise, dodentends during one of the slots
of the ongoing AW. In either case, node first backs off by a random amount of time, selected from
[Trnin, Tnas), Defore accessing the channel.

The AW consists of a number of fixed-size slots. The size of each sigt s plus the durations of the
RTS, CTS and DTS packets, plus 3 SIFS durations (SIFS denotes the short interframe spacing betweer
successive control packets). In each slot, CR nodes compete for admission following a standard CSMA
approach.

If CR B successfully receives the RTS packet from it needs to decide the initial channel/power

policy for the link A — B. This is done as follows:

. First, nodeB estimates the channel gain between itself and ndédeenoted byh ,5(0)). This is
facilitated by knowledge of the RTS’s transmission power,(;) and the received power of the RTS.
From h,45(0), CR B computesh (k) for all £ = 1,2,..., K. The determination oh (k) from
hap(0) is made possible by knowing the carrier frequencies and by assuming a certain path-loss
model. For example, under the two-ray model [23] and for a given transmission power, we have
hag(k) = hag(0) x (fo/fr)?, wheref; is the carrier frequency of the control channel.

« Next, nodeB measures the TNPMjp over all data channels. Note that for the sequential PIWF
algorithm, if there are previous CTS/DTS packets that have been received in the sand AW,
computed as the sum of the currévitiz and the predicted CR-to-CR interference, which is obtained
by assuming that the neighboring links transmit using the channels/powers specified in their CTS/DTS.

. Then, nodeB determines the pricing factorz (k) for all data channelé. For the sequential PIWF
algorithm, Ag(k) is computed using (6), where the neighborhood information is obtained from
previously received CTS/DTS packets in the same AW. For the parallel PIWF algorith(h,

is initialized to O.
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. Finally, based on the above information, noBedecides its best-response transmission policy ac-

cording to Proposition 3.

After the above procedures have been executed, soddl send a CTS, announcing its channel/power
allocation. The CTS includes/z (k) andh,p(k) for all £ € S, which are used by neighboring CRs to
update their best responses. Note that even if the set of selected chépnglempty (i.e., the computed
transmission power is zero for all channels), the link— B will still be admitted in the AW. This is
because the data transmissidn— B may later be allowed to proceed after several iterations in the TW.

If node A receives the CTS fronB, it will respond with a DTS packet, repeating the information
included in the CTS. This DTS is used to alleviate thidden terminalproblem as in [17]. The above
procedures are repeated by CR pairs in every AW slot.

2) Training Window: CR nodes that are admitted in the AW iteratively negotiate their transmission
policies in the TW, following the same order of their admission in the AW. In contrast to the AW, the TW
is accessed in a TDMA manner. It consists of a number of slots (the TW size), where each slot is used to
conduct one iteration of the channel/power allocation algorithm, using CTS and DTS packets. Note that
there is no need for the RTS during the TW, since new admissions are not allowed.

In each iteration, the receiver of a CR link updates the transmission policies based on the policies of
its neighbors. The updates are made based on either the sequential or the parallel scheme. Specifically, i
the sequential PIWF algorithm is applied, the transmission policy of each CR user is made based on the
policies of all previous users in the same iteration (obtained from CTS/DTS) and those of the other users
in the previous iteration, as described in Algorithm 1. If the parallel PIWF algorithm is applied, the policy
of each CR user is made based on the policies of other CR users in the previous iteration, as describec
in Algorithm 2. Note that the AW is regarded as the initial iteration of the training process. After each
computation, the receiver sends a CTS, announcing its transmission policy. Upon receiving the CTS, the
transmitter will send a DTS to repeat the information included in the CTS.

3) Data Window: The last negotiated transmission policies in the TW are used by the CR nodes for
data transmissions in the DW. In the DW, a flow of data packets is transmitted from each CR transmitter.
The length of the flow is selected such that the channel conditions remain static over the entire flow.

Obviously, the DW size needs to be selected according to the channel’s coherence time.
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D. Simplified Packet-based MAC Design

The above MAC design can be used for flow-based channel access, where a flow of data packets is
transmitted using converged channel/power policies agreed upon during the TW. Thus, the sum-rate of
all competing CRs are likely to be maximized if the channels remain static over the entire data flow.
However, if sum-rate optimality is not critical, we can simplify the protocol by removing the TW and
only allow for single data-packet transmission in the DW. This design then becomes packet-based, and
the convergence is now achieved after several sessions of CW and DW if channel conditions remain static
within this period.

Note that in the previous section, all CR nodes contend in the AW with equal probability. In contrast,
in the packet-based MAC design, the admitted users in the previous AW have priorities in accessing the
control channel over other CR users. Specifically, the admitted links in the previous AW will contend in
the current AW without backoff, according to their order in the previous AW, as long as they still have
packets to transmit. After these links have been admitted, other links compete for the remaining slots,
following the backoff mechanism that was discussed in the previous section. Such a design is meant to
facilitate the convergence behavior.

The channel/power policies are updated in the AW following similar procedures to the flow-based
MAC. The only difference is that the TNPI level is now estimated from the previous DW, instead of the
previous iteration in the TW. In the next section, we compare the performance of this design with that of

the flow-based MAC.

VI. PERFORMANCEEVALUATION

To evaluate the effectiveness of the proposed MAC, we conduct numerical experiments using CSIM; a
process-oriented discrete-event programming environment that is based on the C language. We simulate
a hybrid network with one PRN and one CRN. Nodes in these networks are uniformly distributed over a
square area of length 100 meters. The PRN consists of 10 PR nodes that operate in the 300 MHz band
occupying five non-overlapping 1-MHz channels. The time is divided into slots, each of length 10 ms.
In each slot, each PR attempts to transmit with a probahilifthe PR’s activity factor) and randomly
selects a channel. The transmission power of each PR is 1 Watt, and the antenna length is 5 cm.

We simulate 10 pairs of CR nodes. The maximum transmission power for a CR is 1 Watt. The AWGN

noise level is set to -70 dBm over all channels. The maximum transmission range of each CR is set to
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45 meters, so the CRN has multiple neighborhoods with hidden terminals. Each CR transmitter generates
flows according to a Poisson process with paramatdélows/second. Each flow has an exponentially
distributed duration of meai/; seconds. The traffic rate for a CR is defined)Xdg. We set the CR-

to-PR power mask to 0.5 Watt for all channels. The PR-to-CR and CR-to-CR interference are simulated
using a two-ray model [23].

We study the performance of the flow-based and packet-based PIWF-MAC protocols, and contrast them
with a flow-based IWF-MAC protocol. Since the IWF algorithm is a special case of the PIWF algorithm,
our MAC protocols are also applicable to the classic IWF algorithm. We compare the performance in
terms of the system throughput and the average power consumption.

Figure 7(a) shows the system throughput versus the traffic rate. As expected, the flow-based PIWF-
MAC protocol gives the highest throughput. The throughput improvement over IWF-MAC becomes
more significant with higher traffic rates. It is interesting to see that the simplified packet-based PIWF-
MAC protocol exhibits comparable system throughput with the flow-based PIWF-MAC protocol. Besides
achieving a higher throughput, the PIWF-MAC protocols also achieve a significant reduction in the
transmission power, as shown in Figure 7(b). This is because in the classic IWF algorithm, users greedily
maximize their own rates by sending at the maximum transmission power, while such a behavior is
tampered by the pricing technique used in PIWF.

Figure 8(a) shows the throughput versus As expected, a highew results in a higher PR-to-CR
interference, which negatively affects the system throughput. Figure 8(b) shows the corresponding average
power consumption. In all cases, the PIWF-MAC protocols consume less power than the IWF-MAC
protocol.

Finally, Figure 9(a) shows the throughput versus the TW size. Since the simplified packet-based PIWF-
MAC does not use a TW, we only compare the flow-based PIWF-MAC with the flow-based IWF-MAC.
Intuitively, a larger TW size will ensure that CR users converge to the NE. However, as was seen in
Figure 4, 2-3 iterations are normally sufficient to reach a near-optimal sum-rate. Figure 9(a) shows that
setting the TW size to 2 is enough to reach 95% of the maximum throughput. Figure 9(b) shows the

corresponding average power consumption.

VIlI. CONCLUSIONS

In this paper, we proposed a PIWF algorithm for spectrum sharing in cognitive radio networks. Our

PIWF algorithm can be implemented distributively with CRs repeatedly negotiating their transmission



23

o

—o— Flow-based PIWF-MAC — Il Flow-based PIWF-MAC

,&;80 —+- Packet-based PIWF-MAC S [ Packet-based PIWF-MAC
8 -& - Flow-based IWF-MAC S 5 [ Flow—-based IWF-MAC
=70 ‘é‘.
i z"
560 15
: 3
=
= 50 5,
w i _ - [=2]
& 40¢7 e ]
s z
30= 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

‘Traffic Rate Traffic Rate

Fig. 7: Performance under a fixed= 0.2.

o

—o— Flow-based PIWF-MAC
—+- Packet-based PIWF-MAC
A —& - Flow-based IWF-MAC

Hl Flow-based PIWF-MAC
I Packet-based PIWF-MAC
[ Flow-based IWF-MAC

~
o
o

o
o
IS

»
o
N

[

System Throughput (Mbps)
a
<}

w
o

Average Power Consumption (W)
w

o

0.2 0.3 0.4 0.5 0.2

0. 0.4 0.6
PR Activity Factor PR Activity Factor

Fig. 8: Performance under a fixed traffic rate = 0.5.

powers and spectrum. Simulation results showed that the proposed algorithm greatly improves the NE
compared with the one achieved using the IWF approach. Based on the order by which CR nodes make
their resource allocation decisions, we studied sequential and parallel versions of the PIWF algorithm.
The parallel update scheme was shown to converge faster than the sequential update scheme, especial
for a large number of users. Based on the PIWF algorithms, flow-based and packet-based MAC protocols
were designed. Our simulation results showed that the PIWF-MAC protocol achieves considerably higher

system throughput compared with the IWF-MAC, with less energy consumption.
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