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Abstract

A key challenge in operating cognitive radios (CRs) in a self-organizing (ad hoc) network is how to adaptively
and efficiently allocate transmission powers and spectrum among CRs according to the surrounding environment.
In this paper, we present a novel joint power/channel allocation scheme that uses a distributed pricing strategy to
improve the network’s performance. In this scheme, the spectrum allocation problem is modeled as a non-cooperative
game. A price-based iterative water-filling (PIWF) algorithm is proposed, which allows users to converge to the
Nash Equilibrium (NE). This PIWF algorithm can be implemented distributively, with CRs repeatedly negotiating
their best transmission powers and spectrum. Simulation results show that the social optimality of the NE solution
is dramatically improved with our price-based strategy. Based on the orders by which CRs take actions, we study
sequentialand parallel versions of the algorithm. We show that the parallel version converges faster than the
sequential version. We then propose a MAC protocol that implements our price-based resource allocation algorithm.
The proposed MAC protocol allows multiple CR pairs to first contend through an admission phase, and then
to iteratively negotiate their transmission powers and spectrum via control-packet exchanges. Subsequently, CRs
proceed concurrently with their data transmissions. Simulations are used to study the performance of our protocol
and demonstrate its effectiveness in terms of improving the overall network throughput and reducing the average
transmission power.

This work was supported by the National Science Foundation under grants CNS-0627118 and ANI-0313234, and by the Connection One
Consortium. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
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I. I NTRODUCTION

The concept of acognitive radio(CR) has recently triggered great interest within the research community

(e.g., [9], [11], and [13]). The term “cognitive radio” was first coined by Mitola [16], who used it to refer

to a reconfigurable wireless black-box that intelligently changes its communication variables in response

to network and user needs. Mitola’s definition, however, does not specify the network architecture needed

to support CR functionality. More recently, the FCC [8] suggested referring to any radio with adaptive

spectrum awareness as a CR. Specifically, a CR should be able to adapt its transmission parameters to

the surrounding environment. Several scenarios are envisioned for operating a cognitive radio network

(CRN). In this paper, we focus on the role of CRs inopportunistic communications. According to this

role, CRs are secondary users that coexist with primary radios (PRs) that are licensed to operate over given

frequency bands. PR users do not cooperate with or even provide feedback to CR users. CRs continuously

sense the spectrum and exploit its “holes” for opportunistic communications.

One of the main challenges in deploying an opportunistic CRN is how to design an efficient and adaptive

channel access scheme that supports dynamic channel selection and power/rate allocation in a distributed

(ad hoc network) environment. An efficient design is one that tries to maximize the CRN performance

without disturbing PR transmissions. A typical measure of efficiency is the achievable sum-rate of all CR

transmissions. It is known that the problem of maximizing the sum-rate over a multi-access interference

channel subject to individual power constraints is a non-convex optimization problem [4]. Such a problem

becomes even more complicated when we allow multiple CRs to share the same channel, as one must

now consider the CR-to-CR interference in addition to the PR-to-CR and CR-to-PR interference.

Several attempts have been made to solve the aforementioned “interference channel problem”. One well-

known resource allocation scheme, callediterative water-filling(IWF), was first proposed in [29], where

a non-cooperative game was used to model the spectrum management problem, with each user iteratively

maximizing its own rate. This per-user optimization problem is convex and leads to a water-filling solution.

For the two-user case, it was shown that theNash Equilibrium(NE) exists and the IWF algorithm converges

to the NE under certain conditions. However, this NE is generally not Pareto optimal [22] and may be quite

inefficient in terms of the sum-rate metric [4]. This is because in a non-cooperative game, each user tries

to maximize its own utility function without considering the overall system performance. A centralized

spectrum management scheme was proposed in [4]. This scheme greatly improves the system performance

over the IWF scheme by utilizing a centralized spectrum management center (SMC). However, such a
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centralized approach cannot be applied to a distributed ad hoc CRN, where none of the users has complete

knowledge of the entire CRN to function as the SMC.

Given the above, we are motivated to design a channel/power/rate allocation scheme that overcomes the

inefficiency of the classic IWF algorithm and yet can be implemented in a distributed fashion. Specifically,

we provide incentives to CR users such that they can reach a moresocially efficientNE. A commonly used

incentive technique in game theory ispricing (e.g., [5], [20], and [25]) (a thorough review is provided

in [10]). Pricing techniques have previously been implemented in various wireless networks, including

cellular networks, ad hoc networks, and peer-to-peer networks (e.g., [25], [5], [28] and [1]). In this paper,

we apply pricing techniques to a distributed CRN, and propose aprice-based iterative water-filling(PIWF)

algorithm. We show that this PIWF algorithm maintains the simplicity and distributed operation of the

original IWF algorithm; yet, it achieves better bandwidth efficiency in the form of higher sum-rate. The

effectiveness of the pricing approach depends on the appropriate selection of the “pricing function,” which

is a challenging problem by itself. Although there may exist an “optimal” pricing function that allows

the NE to converge to the Pareto optimum, the search for such a function generally requires a central

controller and is hard to implement in a distributed manner. Some sub-optimal pricing functions were

proposed in the literature. For example, the authors in [5] proposed an auction-like pricing scheme for

single-channelmobile ad hoc networks (MANETs). In this scheme, the unit price (uniform across all

users) is gradually increased until the system reaches a feasible NE. A similar approach (also, for a single

channel) was used in [25], where the users of a wireless data network keep increasing their prices in a

uniform fashion until the utility of one user begins to decrease. Both of the previously mentioned pricing

schemes achieve a feasible NE and improve the system performance. However, the achieved NEs are

not guaranteed to be globally optimal, which is partially due to the fact that both of the two approaches

assume a uniform unit price for all players in the game. In our work, we use auser-dependentpricing

function, which we found to improve the sum-rate of the achieved NE after a few iterations. Such a

pricing function can be determined by allowing each CR user to distributively collect some neighborhood

information through the exchange of control packets.

Another challenge in applying the classic IWF algorithm [29] to CRNs is that this algorithm only

considers atotal power constraint on the transmission of each user. In a CRN, PRs impose a strict power

constraint overeachfrequency band, so CR transmissions have to abide by afrequency-dependentpower

mask. Such a mask affects the response of each CR user and thus the achieved NE. In this paper, we
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incorporate such a frequency-dependent power mask into the optimization problem.

In our proposed algorithm, each user maximizes its own utility function (which includes a pricing term)

by performing a single-user price-based water-filling, while treating the interference from other CR users

at each sub-band as additive white Gaussian noise (AWGN). The same procedure iterates sequentially,

eventually converging to the NE. When the number of users in the network is large, sequential updating

of transmission powers can suffer from slow convergence. Therefore, we also study aparallel version

of the PIWF algorithm (the parallel concept for the IWF algorithm was first introduced in [26]). This

parallel algorithm is an instance of the Jacobi scheme: At each iteration, CRs update their strategies

simultaneously, based on the measured interference in the previous iteration. Simulations indicate that

this parallel version converges faster than the sequential version of the PIWF algorithm.

Both the sequential and parallel PIWF algorithms require CRs to be synchronized and the system

parameters to be correctly estimated at each CR. These conditions may not be satisfied in practice. To

overcome this problem, a “relaxed” update scheme has been used in the literature (e.g., in [2], [15], and

[26]) and is studied in our work for completeness. For the “relaxed” version of the PIWF algorithm, each

CR is required to remember its most recent policy choices along with the choices of other users. As such,

the relaxed update scheme is more robust to inaccurate estimation and channel oscillations, but it may

lead to certain degradation in the convergence speed.

Our PIWF algorithms are then integrated into the design of a distributed medium access (MAC) protocol

for CRNs. This protocol allows CRs to dynamically select channels and adapt their transmission powers

and rates. We show that the specific implementation of the PIWF algorithm impacts the MAC protocol

design. Simulations are conducted to compare the performance of the proposed protocol against other

adaptive protocols.

The rest of this paper is organized as follows. The system model is described in Section II. Section

III formulates the non-cooperative game and introduces the pricing techniques. We discuss the PIWF

algorithms in Section IV and design the corresponding MAC protocol in Section V. In Section VI, we

provide simulation results of the PIWF algorithms and compare them with the classic IWF algorithm.

Conclusions are drawn in Section VII.

II. SYSTEM MODEL

We consider a hybrid network that consists of several primary radio networks (PRNs) and one CRN.

The CRN consists ofN CR pairs (links). The total spectrum is composed ofK orthogonal frequency
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channels (K < N ) with central frequenciesf1, f2, . . . , fK . Each PR user in a PRN may operate over one

or multiple channels. The PRs in the network are modelled as an ON/OFF source, where “ON” means

that the PR user is actively transmitting.

Each CR user may simultaneously transmit over multiple channels. Similarly, each CR user can receive

over multiple channels (from the same transmitter) at the same time. However, we require the operation

to be half-duplex, meaning that a CR user cannot receive while transmitting, and vice versa. When not

transmitting, a CR user is also capable of measuring the total noise-plus-interference (TNPI) level over

each channel. LetMi(k) denote the TNPI level measured by CR useri over channelk. This quantity

includes the received PR-to-CR interference, the CR-to-CR interference, and the thermal noise. LetMi
def
=

[Mi(1),Mi(2), . . . , Mi(K)]1. This vector is used by CRi to perform dynamic channel selection, power

control, and rate allocation, as described later.

Previous work on distributed resource allocation for CRNs (e.g., [27]) assumed that CR transmissions

do not interfere with each other, i.e., only one CR link can be active over a given channel in a given

neighborhood (along with the PRs). In this case, there is no spectrum overlap among neighboring CR

users. Such an approach enjoys simplicity (CSMA/CA-like design) but it limits the number of admitted

CR links. In our work, we allow multiple CR users to overlap in the allocated frequency channels. To

illustrate, Figure 1 gives a channel allocation example for a CRN withK = 3 and N = 4. A shaded

square means that a channel is utilized by a CR link. For example, link 1 uses channels 1 and 2, while

link 4 uses only channel 1. We denote the set of utilized channels for CR linki asSi. In our example,

S1 = {1, 2} andS4 = {1}. The transmission power vector of CR linki over various channels is denoted

by Pi = [Pi(1), Pi(2), . . . , Pi(K)], wherePi(k) is the transmission power of CRi on channelk. If channel

k ∈ Si, thenPi(k) > 0; otherwise,Pi(k) = 0.
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Fig. 1: Example of channel allocation with 4 CR links in the same neighborhood.

We impose the following constraints:

1Throughout this paper, vector quantities are indicated in bold font.
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1) Maximum transmission power constraint: The total transmission power of a CR user over the selected

channels should not exceedPmax, i.e,
∑

k∈Si
Pi(k) ≤ Pmax. Here, we assume that the total power

constraint is the same for all users. It is easy to extend the treatment to the case wherePmax is

user-dependent.

2) CR-to-PR power mask constraint: The transmission power of CRi on channelk is constrained by

the power maskPmask(k). Let Pmask
def
= [Pmask(1), Pmask(2), . . . , Pmask(K)] denote the power mask

vector.Pmask is set in a way that CR transmissions result in no disturbance to PR transmissions.

The determination ofPmask is itself an important issue, but is out of the scope of this paper. In the

following analysis, we assume thatPmask is given a priori.

We assume that the CRs are either static or move slowly (relative to the convergence time of the

resource assignment algorithm). This assumption is generally acceptable because our iterative algorithms

are implemented on the time scale of few milliseconds, whereas pedestrian and vehicular mobility impacts

the network topology on the time scale of seconds. In addition, we assume that all the CR nodes follow

the same operation rules and have the same system constraints.

III. PROBLEM FORMULATION

In a non-cooperative CRN, each CR user is interested in maximizing its own achievable rate. Such

a greedy behavior can be modeled using game theory. Game theory analyzes players’ interactions in

decision-making processes. It can be used to identify distributed optimal strategies for the players [18]

[19]. A normal game can be expressed asG = {Ω,P , {Ui}}, whereΩ = {1, 2, . . . , N} is a finite set of

rational players;P = P1 × P2 × . . . × PN is the action space withPi being the action set for player

i; and Ui: P → R is the utility (payoff) function of playeri, which depends on the strategies of all

players. We model the channel/power allocation problem in a CRN as a non-cooperative game, in which

the players are the CR users; their actions are the transmission powers (i.e., for useri, its action is given

by Pi = [Pi(1), Pi(2), . . . , Pi(K)]); and their utility functions are associated with their actions and the

quality of the channels. Note that a CR user in the game denotes a CR link consisting of a pair of CR

nodes.

A. Utility Function

The utility function of CR useri can be considered as the reward received by this user from the

network. It depends on useri’s action Pi and the union set of all other users’ actionsP−i, where
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P−i
def
= [P1, . . . ,Pi−1,Pi+1, . . . ,PN ]T . While the selection of the utility function is not unique, this

selection must have a physical meaning for the given application. A natural selection of the utility function

for CR link i (also used in [6], [26], [29]) is given by:

Ui(Pi) =
K∑

k=1

ui(Pi(k)) =
K∑

k=1

[
log2(1 +

hii(k)Pi(k)∑
j 6=i hji(k)Pj(k) + M

(PR)
i (k) + Ni(k)

)

]
(1)

wherehii(k) denotes the channel gain between the transmitter and the receiver of linki over channelk,

hji(k) denotes the channel gain between the transmitter of linkj and the receiver of linki over channel

k, M
(PR)
i (k) is the PR-to-CR interference at the receiver of CR linki over channelk, andNi(k) is the

thermal noise power on channelk.

Given the above utility function, users iteratively select their transmission powers to maximize their

own utility functions, and eventually converge to a NE after several iterations (under conditions that will

be discussed later). As mentioned before, because of the non-cooperative nature of the game, each CR

user behaves selfishly. Thus, the resulting NE may be far from the Pareto optimum, defined as:

Uopt
def
= max

{P1,P2,...,PN}

N∑
i=1

wiUi(Pi)

= max
{P1,P2,...,PN}

N∑
i=1

wi

K∑

k=1

ui(Pi(k)) (2)

wherewi denotes the “weight” assigned to useri, which may be interpreted in different ways (e.g., priority

factor of useri).

To drive the NE towards the above Pareto optimum, we use pricing as an incentive for each CR user.

Accordingly, we define a new utility function for useri as follows:

Ũi(Pi) =
K∑

k=1

ũi(Pi(k)) (3)

with

ũi(Pi(k))
def
= −ci(k) + log2

[
1 +

hii(k)Pi(k)∑
j 6=i hji(k)Pj(k) + M

(PR)
i (k) + Ni(k)

]
(4)

whereci(k) represents the pricing function for useri on channelk. As discussed in Section I, our goal is

to choose a user-dependent pricing function that can drive the CR users to converge to an efficient NE.

How to define this pricing function will be discussed in Section III-C.
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B. Game Formulation

Given the price-based utility function in (4), each CR useri iteratively selects its power vectorPi

so as to maximizẽUi(Pi) subject to the constraints listed in Section II. This results in the following

non-cooperative gameG:

maximize
Pi

Ũi(Pi), ∀i ∈ {1, 2, . . . , N}

s.t.

C1: Pi(k) ≥ 0, ∀i ∈ {1, 2, . . . , N} and

∀k ∈ {1, 2, . . . , K}
C2:

∑K
k=1 Pi(k) ≤ Pmax, ∀i ∈ {1, 2, . . . , N}

C3: Pi(k) ≤ Pmask(k), ∀i ∈ {1, 2, . . . , N}
and∀k ∈ {1, 2, . . . , K}.

(5)

If Pmax ≥
∑

k Pmask(k), then constraint C2 can be omitted. If there is a solution to the above game, then

it is a one that achieves a NE. Note that the above game differs from the game studied in [29] in the form

of the utility function and in the addition of the power mask constraint. Thus, the NE existence proofs

in [6] and [29] cannot be directly applied here. However, from the following proposition, we show that

a NE solution always exists for the above game.

Proposition 1: For any givenPmax andPmask values, there is at least one NE for the gameG in (5).

Proof: the game in our setup can be shown to be a concave game if the following two properties

are satisfied:

1) The action spaceP is a closed and bounded convex set;

2) The utility function Ũi(Pi) is concave over its strategy set.

Because a concave game always admits at least one NE [24], we have the above proposition.

Given the existence of a NE solution, we need to design an algorithm for CR users to reach this NE.

We address this issue in the forthcoming sections. However, before we do that, we first discuss the optimal

pricing function.

C. Optimal Pricing Function

To illustrate the impact of pricing on improving the efficiency of the NE, in Figure 2, we depict an

example of the Pareto optimal frontier and the NE for a two-user game. In general, the NE is not Pareto
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optimal. One contribution of our work is in introducing a user-dependent linear pricing function that drives

the NE close to the Pareto optimal frontier with each player using only the neighborhood information

about the network. As explained in Section V, this information is acquired via control-packet exchanges

during the channel access process.

NE


Pareto-optimal

frontier


Rate of User 1


Rate of

User 2


Pareto improvement

region


Fig. 2: Nash equilibrium and Pareto-optimal frontier for a 2-user game.

Proposition 2: Consider the gameG with utility function Ũi, i = 1, 2, . . . , N , as defined in (3), and let

the pricing functionci(k) be given byci(k) = λi(k)Pi(k). Then, the game has at least one NE solution

(from Proposition 1). Further, if this NE solution is Pareto optimal, then the pricing factorλi(k) must be

of the form:

λi(k) =
1

wi

∑

j∈NBRi

wj

[ hjj(k)Pj(k)hij(k)

Mj(k)(Mj(k) + hjj(k)Pj(k))

]
(6)

where NBRi denotes the set of neighbors of CR useri.

Proof: By definition, a NE is the solution to the individual utility optimization problem for each

user given all other users’ actions. In our formulation, each individual optimization problem is a convex

problem with the linear constraints C1-C3 in (5). So the Lagrangian function for useri can be written as:

Ji = wi

∑

k

ũi(Pi(k)) +
∑

k

αi,kPi(k)

−βi

[ ∑

k

Pi(k)− Pmax

]−
∑

k

γi,k

[
Pi(k)− Pmask(k)

]

= wi

∑

k

[ui(Pi(k))− λi(k)Pi(k)] +
∑

k

αi,kPi(k)

−βi(
∑

k

Pi(k)− Pmax)−
∑

k

γi,k(Pi(k)− Pmask(k))
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whereαi,k, βi, andγi,k are the Lagrangian multipliers (non-negative real numbers). The Karush-Kuhn-

Tucker (KKT) conditions [3] for useri are given by:

wi
∂ui(Pi(k))

∂Pi(k)
− wiλi(k) + αi,k − βi − γi,k = 0, ∀k

pi(k) ≥ 0,∀k

αi,kpi(k) = 0, ∀k
∑

k

Pi(k)− Pmax ≤ 0

βi

[ ∑

k

Pi(k)− Pmax

]
= 0

Pi(k)− Pmask(k) ≤ 0,∀k

γi,k(Pi(k)− Pmask(k)) = 0, ∀k

(7)

On the other hand, to solve the social optimization problem (2) with constraints C1-C3, the Lagrangian

function can be written as:

J =
N∑

i=1

wi

K∑

k=1

ui(Pi(k)) +
N∑

i=1

K∑

k=1

αi,kPi(k)

−βi

K∑

k=1

[
(Pi(k)− Pmax(k))

]

−
N∑

i=1

K∑

k=1

γi,k

[
Pi(k)− Pmask(k)

]

= wi

K∑

k=1

ui(Pi(k)) +
N∑

j=1,j 6=i

wj

K∑

k=1

uj(Pj(k))

+
N∑

i=1

K∑

k=1

αi,kPi(k)− βi

K∑

k=1

[Pi(k)− Pmax(k)]

−
N∑

i=1

K∑

k=1

γi,k[Pi(k)− Pmask(k)]
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In this case, the KKT conditions are given by:

wi
∂ui(Pi(k))

∂Pi(k)
+

N∑

j=1,j 6=i

wj
∂uj(Pj(k))

Pi(k)

+αi,k − βi − γi,k = 0,∀i, k

pi(k) ≥ 0, ∀i, k

αi,kpi(k) = 0,∀i, k
K∑

k=1

Pi(k)− Pmax ≤ 0, ∀i

βi

[ K∑

k=1

Pi(k)− Pmax

]
= 0,∀i

Pi(k)− Pmask(k) ≤ 0, ∀i, k

γi,k(Pi(k)− Pmask(k)) = 0,∀i, k

(8)

To obtain the same solution to the two sets of KKT conditions (7) and (8), we must have:

λi(k) = − 1

wi

∑

j 6=i

wj
∂uj(Pj(k))

∂Pi(k)
. (9)

By substitutinguj(k) into (9), we have:

λi(k) =
1

wi

∑

j 6=i

wj

[ hjj(k)Pj(k)hij(k)

Mj(k)(Mj(k) + hjj(k)Pj(k))

]
. (10)

If the transmitter of linki and the receiver of linkj are not neighbors, i.e., the transmission of linki at

the maximum power cannot reach the receiver of linkj, the channel gainhij(k) is set to zero. Thus, the

optimal pricing factor for linki only depends on its neighborhood information. We then have the result

in Proposition 2.

Intuitively, a higher pricing factorλi(k) will prevent useri from using a large transmission power on

channelk. In view of (6), for link i to determine its optimal pricing factor, the following procedure is

needed: If a neighborj is to transmit over channelk, it needs to broadcast its transmission powerPj(k),

the measured TIPNMj(k), and the channel gainhjj(k). The above information will be conveyed using

MAC control packets (details in Section V). In addition, the channel gainshij(k) can be computed by

measuring the received signal power of the MAC control packets.
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IV. I TERATIVE ALGORITHMS

From the results of the previous section, we can use the following iterative algorithm to reach a NE for

the gameG: Each CR user, sayi, first adjusts its linear pricing factorλi(k) over all channels according

to (6), and then determines itsbest response, i.e., the optimal channel/power combination based on the

measuredMi. The best response of useri is to maximize its individual utility function (4) subject to

the constraints C1-C3. The same procedure is repeated for all users in the network. If such a procedure

converges, then by definition, it has to converge to a NE of the game in (5).

Note that for useri, its utility function in (1) is monotonically increasing inPi(k) given that the other

users’ powers are fixed. So the only factor that prevents useri from choosing infinitely large transmission

powers is constraint C2. In our work, after adding the linear pricing function, the utility function (4) now

leads to a finite optimal power setting even without constraint C2.

Proposition 3: By treating the other users’ transmissions as interference, the best response of useri

is given by:

P∗
i = BRi(P−i) = [BRi(P−i(1)), . . . , BRi(P−i(K))] (11)

where

BRi(P−i(k))
def
=

[
1

β + λi(k)
− Mi(k)

hii(k)

]Pmask(k)

0

(12)

where the function[x]ba, with b > a, denotes the Euclidean projection ofx onto the interval[a, b], i.e.,

[x]ba = a if x < a, [x]ba = x if a < x < b, and [x]ba = b if x > b. The parameterβ is known as the water

level. It is determined by useri as the minimum non-negative value that results in satisfying the total

power constraint C2.

Proof: We first solve the optimization problem without the power mask constraint C3, using the

method of Lagrange multipliers. This leads to a water-filling solution of the form:

P ∗
i (k) = [

1

β + λi(k)
− Mi(k)

hii(k)
]+, i = 1, 2, . . . , N. (13)

If P ∗
i (k) is the optimal power allocation over channelk, then the slope of the utility functionui(Pi(k))

must be positive at the pointP ∗
i (k). Otherwise, a power vectorPi with a smallerPi(k) could reach a

higher utility Ui(Pi), with all the constraints satisfied. Thus, the utility functionui(Pi(k)) is monotonically

increasing between 0 andP ∗
i (k). Due to this monotonicity, if any of theP ∗

i (k) in (13) violates the upper

bound C3, then the corresponding bounded optimal solution must be the upper boundPmask(k) itself (a
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similar approach was also adopted in [7]). After bounding theP ∗
i (k) by Pmask(k), the remaining power

will be further water-filled over other channels, thus reaching the result in (11).

A similar result for the IWF algorithm is provided in [26]. Although we have additional pricing function,

a similar analysis can be used to reach the same result in Proposition 3.

Note that without the power mask constraint (i.e.,Pmask(k) = +∞ for all k) and without the pricing

function (i.e.,λi(k) = 0 for all k andi), (11) and (12) represent the classic water-filling solution. Figure 3

graphically illustrates the difference between the traditional water-filling [29] and the price-based water-

filling solution in (12).

Water-filling
 channels


Fixed water

level


Tx

Power


Variable water

level


Price-based

Water-filling


channels


Tx

Power


Fig. 3: Classic water-filling versus price-based water-filling.

Several approaches can be used by CR users to reach the NE according to the best-response function in

(11). CR users may make their decisions one after another or in parallel, which corresponds to a sequential

or a parallel update procedure. Next, we describe these two procedures and analyze their convergence

properties.

A. Sequential Price-based Iterative Water Filling

In the sequential PIWF algorithm, CR users implement their best-response decisions sequentially,

according to some given order. LetP
(l)
i be the power vector of useri in the lth iteration. The condition

||P(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε is used as the stopping criteria for the PIWF algorithm, whereε is a small number (e.g.,

0.01). If this condition is not satisfied within a certain number of iterations (Lmax), the algorithm will

also stop. The above algorithm is akin to theGauss-Seidelprocedure, where the players take their turns

sequentially and act on the most recent policy information obtained from other players. A pseudo-code

for the sequential PIWF algorithm is depicted in Algorithm 1.

In a two-user scenario,P(l+1)
1 for user 1 can be expressed as:

P
(l+1)
1 = BR1(BR2(P

(l)
1 ))

def
= T(P

(l)
1 ) (14)
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Algorithm 1 Sequential PIWF
Initialize Pi(k) = 0, ∀i andk.
Initialize iteration countl = 0.
Repeat:

1: l = l + 1;
2: for i = 1 to N usersdo
3: for k = 1 to K channelsdo
4: Estimate the TIPN levelMi(k);
5: Compute the pricing factorλi(k) using (6);
6: Estimate the channel gainhii(k) using the received signal power of the control packet.
7: end for
8: P

(l)
i = BRi(P

(l)
1 , . . . ,P

(l)
i−1,P

(l−1)
i+1 , . . . ,P

(l−1)
N );

9: Transmit on selected channels usingP
(l)
i .

10: end for

Until l > Lmax or ||P(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε for all i.

where T is a vector of concatenated functions, given byBR1(BR2(.)). For a generalN -user game,

the expression is more complicated. For simplicity, we keep the notationT as the mapping between the

previous power vector and the current power vector. To ensure convergence to the NE for the classic IWF

algorithm, several sufficient conditions have been proposed in the literature. The convergence condition was

first provided in [29] for the two-user case and in [6] for theN -user case. More recently, the convergence

conditions were further relaxed in [12] and [26].

Because the utility function in (4) includes a pricing term that is not present in the formulations in [12]

and [26], the convergence proofs of [12] and [26] cannot be applied here. In fact, because the pricing

factor λi(k) is recomputed in every iteration (as shown in Algorithm 1), the mappingT is time-varying

over iterations. Thus the fixed-point theorem that underlies the proofs in [12] and [26] cannot be applied.

The convergence proof under a time-varying mapping function is a challenging problem and will be left

for future work. However, convergence has always been observed in our simulations. Figure 4 depicts

the convergence behavior over several iterations withN = 10 andK = 5. The figure shows the average

sum-rate improvement of the sequential PIWF over the classic IWF algorithm for 1000 runs, with the

starting sum-rate of the IWF algorithm normalized to one. The two algorithms converge at comparable

speeds, but the NE solution for the sequential PIWF algorithm is much better than the NE of the classic

IWF algorithm.

Although the convergence proof for a time-varying pricing function is difficult to establish, if the pricing

factor remains fixed over several iterations, the convergence proof in [26] is still applicable. This is because
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Fig. 4: Normalized sum-rate versus iterations (starting value for the sum-rate of the classic IWF is
normalized to one).

adding a linear pricing function with a fixed pricing factor to the utility function (1) has no impact on

the convergence proof in [26]. If we apply the analysis in [26] to our CRN formulation in Section III,

we have the following proposition:

Proposition 4: Suppose that the pricing function in (4) takes a linear form with a fixed pricing factor

over a few iterations. Then, the sequential update procedure converges to the unique NE if one of the

following two sets of conditions is satisfied:

(1)
N∑

j=1,j 6=i

max
k∈Si∩Sj

hji(k)

hii(k)
< 1,∀i ∈ 1, 2, . . . , N (15)

(2)
N∑

i=1,i6=j

max
k∈Si∩Sj

hji(k)

hii(k)
< 1,∀j ∈ 1, 2, . . . , N. (16)

From (15) and (16), the convergence and the uniqueness of NE are ensured if the CRs that share the

same channel are far apart, and thus inflict weak interference on each other.

When the number of CR users in the network is large, the sequential update approach may suffer from

slow convergence speed. Therefore, we present aparallel PIWF version that is suitable for dense CRNs.

B. Parallel Price-based Iterative Water Filling

In the parallel PIWF algorithm, the CR users act in parallel, instead of sequentially. The stopping

criteria are the same as those of the sequential PIWF. The algorithm is described in Algorithm 2. This

algorithm is related to theJacobicomputational procedure, where CR users simultaneously perform price-

based water-filling in each iteration, based on the interference generated by other users in the previous

iterations. In the two-user case, the counterpart of (14) is:

P
(l+2)
1 = BR1(P

(l+1)
2 ) = BR1(BR2(P

(l)
1 )) = T(P

(l)
1 ). (17)
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In [26], it was proved that the convergence conditions for the parallel and sequential IWF are the same.

The same proof is not applicable if the mapping functionT(.) is time-varying. However, if the pricing

factor of the linear pricing function remains fixed, we can apply the corresponding proof and reach the

following corollary of Proposition 4.

Algorithm 2 Parallel PIWF
Initialize Pi(k) = 0, ∀i andk.
Initialize iteration countl = 0.
Repeat:

1: l = l + 1;
2: for i = 1 to N usersdo
3: for k = 1 to K channelsdo
4: Estimate the TIPN levelMi(k);
5: Compute the pricing factorλi(k) using (6);
6: Estimate the channel gainhii(k) using the received signal power of the control packet.
7: end for
8: P

(l)
i = BRi(P

(l−1)
1 , . . . ,P

(l−1)
i−1 ,P

(l−1)
i+1 , . . . ,P

(l−1)
N );

9: end for
10: for i = 1 to N usersdo
11: Transmit usingPi

(l).
12: end for

Until l > Lmax or ||P(l)
i −P

(l−1)
i ||

||P(l−1)
i || ≤ ε for all i.

Corollary 1: If the conditions in Proposition 4 are satisfied, the parallel update procedure converges

to the unique NE of the game.

Corollary 1 says that stability under the Gauss-Seidel procedure coincides with stability under the Jacobi

iteration. Furthermore, following the argument in [26], one can prove that any asynchronous computation

where the players act at random times and use the most recently available policy from other players should

converge to the NE, as long as no player remains idle for an infinite time duration. Hence, the achieved

NE based on asynchronous updates coincides with the NE achieved with parallel or sequential updates.

The parallel and sequential PIWF algorithms are distributed. They both attempt to maximize the

achievable sum-rate. Both have the same implementation complexity of the classic IWF algorithm. In

Figure 5, we can see that the parallel PIWF converges faster than the sequential PIWF, especially for

a large number of users. Whether the players act sequentially or in parallel makes a difference in the

MAC design. We will discuss the impact of parallel PIWF and sequential PIWF on the MAC design in

Section V. In this simulation, we assume that CRs are randomly located in a square area and 5 channels

are available for their transmissions.
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V. MAC PROTOCOLDESIGN

In this section, we describe a MAC protocol that allows CR users to operate efficiently in an op-

portunistic CRN. This protocol implements the distributed channel/power allocation strategies discussed

in the previous sections. It should be noted that a number of multi-channel MAC protocols have been

proposed in the context of CRNs (e.g., [14], [31], [30], and [27]). Most of them do not allow multiple CR

transmissions within the same neighborhood to overlap in frequency channels, so there is no interference

among CR users. Such a restriction simplifies the MAC design, but limits its spectrum efficiency. A

natural extension (analogous to the improvement offered by the POWMAC protocol [17] over the classic

CSMA/CA) is to allow CR users to overlap in spectrum, provided that their mutual interference does

not lead to collisions. The IWF algorithm [29] and the no-regret algorithm [21] were proposed as two

possible enabling techniques. However, the works in [29] and [21] provide only channel/power allocation

algorithms and do not offer a practical MAC design.

In this section, we incorporate our price-based channel/power allocation algorithms into an operational

MAC protocol. Since the IWF algorithm is a special case of the proposed PIWF algorithm, our MAC

protocol can be simplified to accommodate the classic IWF algorithm, thus complementing the work in

[29].

A. Assumptions

We consider a CRN with the following features:

• There exists a dedicated control channel or a coordinated control channel [30] that supports a

community of CR users. Control packets are transmitted over the control channel using a pre-assigned

power valuePcont.

• Channel gains between any two terminals are symmetric.
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• The channel gain is static for the duration of several control packets and a flow of data packets.

B. Protocol Overview

Our MAC protocol uses the following three types of control packets for the handshaking between a CR

transmitter and a CR receiver: Request-to-Send (RTS), Clear-to-Send (CTS), and Decide-to-Send (DTS).

Unlike the classic CSMA/CA scheme and other multi-channel MAC protocols for CRNs, these control

packets are not used toexclusivelyreserve channels (i.e., prevent neighboring CRs from accessing the

reserved channels), but rather to exchange some information within the neighborhood. Such information

is used by terminals to determine their transmission parameters.

The control packets are exchanged within a certain duration, referred to as thecontention window

(CW). A CW can be initiated asynchronously by any CR user that has packets to transmit and that is

not aware of any active CWs in its neighborhood. Such a user is referred to as amaster user. Other

CR users that follow the schedule of an ongoing CW are calledslave users. Note that the master/slave

designation of a user is dynamic, i.e., it changes with traffic and mobility conditions. The objective of the

CW is to allow several pairs of CR nodes to repeatedly negotiate their transmission channels and powers.

As shown in Figure 6, the CW is divided into two parts. The first part, referred to as theadmission

window(AW), is used by CR nodes to compete for admission to the CW and initialize their transmission

policies. The second part, referred to as thetraining window(TW), is used by the CR nodes to repeatedly

negotiate their channel/power policies (as explained later). Note that the AW can be considered as the first

iteration of the training process. CR nodes that have been successfully admitted during the CW transmit

a flow of data packets over one or multiple data channels (as determined during the CW) within adata

window (DW). The durations for the AW and DW are changed adaptively, similar to the single-channel

POWMAC protocol [17]. As for TW, its size (in slots) is dictated by the convergence speed of the iterative

resource allocation algorithm. In general, an unnecessarily large value increases the overhead, but does

not necessarily improve the throughput (as shown in Figure 4). On the other hand, a small value may

give sub-optimal results. In Section VI, we study the performance of the MAC protocol for various TW

sizes.

C. Operation Details

1) Access Window:When a CR nodeA intends to establish a connection with another nodeB, it

first needs to contend during the AW. If nodeA is not aware of any ongoing AW in its neighborhood, it
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Fig. 6: Overview of the MAC operation with two CR transmissions (A → B andC → D).

initiates a new AW (i.e., it becomes a master user). Otherwise, nodeA contends during one of the slots

of the ongoing AW. In either case, nodeA first backs off by a random amount of time, selected from

[Tmin, Tmax], before accessing the channel.

The AW consists of a number of fixed-size slots. The size of each slot isTmax plus the durations of the

RTS, CTS and DTS packets, plus 3 SIFS durations (SIFS denotes the short interframe spacing between

successive control packets). In each slot, CR nodes compete for admission following a standard CSMA

approach.

If CR B successfully receives the RTS packet fromA, it needs to decide the initial channel/power

policy for the link A → B. This is done as follows:

• First, nodeB estimates the channel gain between itself and nodeA (denoted byhAB(0)). This is

facilitated by knowledge of the RTS’s transmission power (Pcont) and the received power of the RTS.

From hAB(0), CR B computeshAB(k) for all k = 1, 2, . . . , K. The determination ofhAB(k) from

hAB(0) is made possible by knowing the carrier frequencies and by assuming a certain path-loss

model. For example, under the two-ray model [23] and for a given transmission power, we have

hAB(k) = hAB(0)× (f0/fk)
2, wheref0 is the carrier frequency of the control channel.

• Next, nodeB measures the TNPIMB over all data channels. Note that for the sequential PIWF

algorithm, if there are previous CTS/DTS packets that have been received in the same AW,MB is

computed as the sum of the currentMB and the predicted CR-to-CR interference, which is obtained

by assuming that the neighboring links transmit using the channels/powers specified in their CTS/DTS.

• Then, nodeB determines the pricing factorλB(k) for all data channelsk. For the sequential PIWF

algorithm, λB(k) is computed using (6), where the neighborhood information is obtained from

previously received CTS/DTS packets in the same AW. For the parallel PIWF algorithm,λB(k)

is initialized to 0.
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• Finally, based on the above information, nodeB decides its best-response transmission policy ac-

cording to Proposition 3.

After the above procedures have been executed, nodeB will send a CTS, announcing its channel/power

allocation. The CTS includesMB(k) andhAB(k) for all k ∈ SB, which are used by neighboring CRs to

update their best responses. Note that even if the set of selected channelsSB is empty (i.e., the computed

transmission power is zero for all channels), the linkA → B will still be admitted in the AW. This is

because the data transmissionA → B may later be allowed to proceed after several iterations in the TW.

If node A receives the CTS fromB, it will respond with a DTS packet, repeating the information

included in the CTS. This DTS is used to alleviate thehidden terminalproblem as in [17]. The above

procedures are repeated by CR pairs in every AW slot.

2) Training Window: CR nodes that are admitted in the AW iteratively negotiate their transmission

policies in the TW, following the same order of their admission in the AW. In contrast to the AW, the TW

is accessed in a TDMA manner. It consists of a number of slots (the TW size), where each slot is used to

conduct one iteration of the channel/power allocation algorithm, using CTS and DTS packets. Note that

there is no need for the RTS during the TW, since new admissions are not allowed.

In each iteration, the receiver of a CR link updates the transmission policies based on the policies of

its neighbors. The updates are made based on either the sequential or the parallel scheme. Specifically, if

the sequential PIWF algorithm is applied, the transmission policy of each CR user is made based on the

policies of all previous users in the same iteration (obtained from CTS/DTS) and those of the other users

in the previous iteration, as described in Algorithm 1. If the parallel PIWF algorithm is applied, the policy

of each CR user is made based on the policies of other CR users in the previous iteration, as described

in Algorithm 2. Note that the AW is regarded as the initial iteration of the training process. After each

computation, the receiver sends a CTS, announcing its transmission policy. Upon receiving the CTS, the

transmitter will send a DTS to repeat the information included in the CTS.

3) Data Window: The last negotiated transmission policies in the TW are used by the CR nodes for

data transmissions in the DW. In the DW, a flow of data packets is transmitted from each CR transmitter.

The length of the flow is selected such that the channel conditions remain static over the entire flow.

Obviously, the DW size needs to be selected according to the channel’s coherence time.
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D. Simplified Packet-based MAC Design

The above MAC design can be used for flow-based channel access, where a flow of data packets is

transmitted using converged channel/power policies agreed upon during the TW. Thus, the sum-rate of

all competing CRs are likely to be maximized if the channels remain static over the entire data flow.

However, if sum-rate optimality is not critical, we can simplify the protocol by removing the TW and

only allow for single data-packet transmission in the DW. This design then becomes packet-based, and

the convergence is now achieved after several sessions of CW and DW if channel conditions remain static

within this period.

Note that in the previous section, all CR nodes contend in the AW with equal probability. In contrast,

in the packet-based MAC design, the admitted users in the previous AW have priorities in accessing the

control channel over other CR users. Specifically, the admitted links in the previous AW will contend in

the current AW without backoff, according to their order in the previous AW, as long as they still have

packets to transmit. After these links have been admitted, other links compete for the remaining slots,

following the backoff mechanism that was discussed in the previous section. Such a design is meant to

facilitate the convergence behavior.

The channel/power policies are updated in the AW following similar procedures to the flow-based

MAC. The only difference is that the TNPI level is now estimated from the previous DW, instead of the

previous iteration in the TW. In the next section, we compare the performance of this design with that of

the flow-based MAC.

VI. PERFORMANCEEVALUATION

To evaluate the effectiveness of the proposed MAC, we conduct numerical experiments using CSIM; a

process-oriented discrete-event programming environment that is based on the C language. We simulate

a hybrid network with one PRN and one CRN. Nodes in these networks are uniformly distributed over a

square area of length 100 meters. The PRN consists of 10 PR nodes that operate in the 300 MHz band,

occupying five non-overlapping 1-MHz channels. The time is divided into slots, each of length 10 ms.

In each slot, each PR attempts to transmit with a probabilityα (the PR’s activity factor) and randomly

selects a channel. The transmission power of each PR is 1 Watt, and the antenna length is 5 cm.

We simulate 10 pairs of CR nodes. The maximum transmission power for a CR is 1 Watt. The AWGN

noise level is set to -70 dBm over all channels. The maximum transmission range of each CR is set to
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45 meters, so the CRN has multiple neighborhoods with hidden terminals. Each CR transmitter generates

flows according to a Poisson process with parameterλ flows/second. Each flow has an exponentially

distributed duration of mean1/µ seconds. The traffic rate for a CR is defined asλ/µ. We set the CR-

to-PR power mask to 0.5 Watt for all channels. The PR-to-CR and CR-to-CR interference are simulated

using a two-ray model [23].

We study the performance of the flow-based and packet-based PIWF-MAC protocols, and contrast them

with a flow-based IWF-MAC protocol. Since the IWF algorithm is a special case of the PIWF algorithm,

our MAC protocols are also applicable to the classic IWF algorithm. We compare the performance in

terms of the system throughput and the average power consumption.

Figure 7(a) shows the system throughput versus the traffic rate. As expected, the flow-based PIWF-

MAC protocol gives the highest throughput. The throughput improvement over IWF-MAC becomes

more significant with higher traffic rates. It is interesting to see that the simplified packet-based PIWF-

MAC protocol exhibits comparable system throughput with the flow-based PIWF-MAC protocol. Besides

achieving a higher throughput, the PIWF-MAC protocols also achieve a significant reduction in the

transmission power, as shown in Figure 7(b). This is because in the classic IWF algorithm, users greedily

maximize their own rates by sending at the maximum transmission power, while such a behavior is

tampered by the pricing technique used in PIWF.

Figure 8(a) shows the throughput versusα. As expected, a higherα results in a higher PR-to-CR

interference, which negatively affects the system throughput. Figure 8(b) shows the corresponding average

power consumption. In all cases, the PIWF-MAC protocols consume less power than the IWF-MAC

protocol.

Finally, Figure 9(a) shows the throughput versus the TW size. Since the simplified packet-based PIWF-

MAC does not use a TW, we only compare the flow-based PIWF-MAC with the flow-based IWF-MAC.

Intuitively, a larger TW size will ensure that CR users converge to the NE. However, as was seen in

Figure 4, 2-3 iterations are normally sufficient to reach a near-optimal sum-rate. Figure 9(a) shows that

setting the TW size to 2 is enough to reach 95% of the maximum throughput. Figure 9(b) shows the

corresponding average power consumption.

VII. C ONCLUSIONS

In this paper, we proposed a PIWF algorithm for spectrum sharing in cognitive radio networks. Our

PIWF algorithm can be implemented distributively with CRs repeatedly negotiating their transmission
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Fig. 7: Performance under a fixedα = 0.2.
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Fig. 8: Performance under a fixed traffic rateλ/µ = 0.5.

powers and spectrum. Simulation results showed that the proposed algorithm greatly improves the NE

compared with the one achieved using the IWF approach. Based on the order by which CR nodes make

their resource allocation decisions, we studied sequential and parallel versions of the PIWF algorithm.

The parallel update scheme was shown to converge faster than the sequential update scheme, especially

for a large number of users. Based on the PIWF algorithms, flow-based and packet-based MAC protocols

were designed. Our simulation results showed that the PIWF-MAC protocol achieves considerably higher

system throughput compared with the IWF-MAC, with less energy consumption.
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