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Abstract—Cognitive radio is a promising paradigm to achieve
efficient utilization of spectrum resource by allowing the unli-
censed users (i.e., secondary users, SUs) to access the licensed
spectrum. Market-driven spectrum trading is an efficient way to
achieve dynamic spectrum accessing/sharing. In this paper, we
consider the problem of spectrum trading with single primary
spectrum owner (or primary user, PO) selling his idle spectrum
to multiple SUs. We model the trading process as a monopoly
market, in which the PO acts as monopolist who sets the qualities
and prices for the spectrum he sells, and the SUs act as consumers
who choose the spectrum with appropriate quality and price
for purchasing. We design a monopolist-dominated quality-price
contract, which is offered by the PO and contains a set of quality-
price combinations each intended for a consumer type. A contract
is feasible if it is incentive compatible (IC) and individually
rational (IR) for each SU to purchase the spectrum with the
quality-price intended for his type. We propose the necessary and
sufficient conditions for the contract to be feasible. We further
derive the optimal contract, which is feasible and maximizes
the utility of the PO, for both discrete-consumer-type model
and continuous-consumer-type model. Moreover, we analyze the
social surplus, i.e., the aggregate utility of both PO and SUs, and
we find that, depending on the distribution of consumer types,
the social surplus under the optimal contract may be less than
or close to the maximum social surplus.

Index Terms—Cognitive Radio, Spectrum Trading, Contract
Theory, Quality Discrimination

I. INTRODUCTION

C
URRENTLY, wireless communication networks suffer

from the scarcity in spectrum resource and inefficiency

in spectrum usage. Cognitive radio has been viewed as a novel

approach for improving the utilization of spectrum resource.

Cognitive radio networks are designed based on the concept

of dynamic spectrum sharing where cognitive radio users can

opportunistically share the radio spectrum. For example, in a

vertical spectrum sharing model, a primary spectrum owner

(PO) can share (or sell) his licensed spectrum with (to) the

unlicensed users (i.e., secondary users, SUs). To realize this, it

is essential to design a spectrum sharing mechanism in which

the PO has incentive to lease his spectrum to SUs and the SUs

also have incentive to employ the spectrum from the PO.

While most of the researchers emphasized the technical

aspect of spectrum sharing (e.g., spectrum sensing in physical

layer, dynamic spectrum access protocol in MAC layer, etc.),

in this paper we focus on the economic aspect of spectrum
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sharing. Specifically, we consider the issue of spectrum trading

between single PO and multiple SUs in a cognitive radio

environment, where the term “spectrum trading” refers to the

processes of selling and buying spectrum resource between PO

and SUs, and we focus on the attribute of spectrum trading

through the notion of “quality”. Unlike the existing literature,

we associate the trading goods (i.e., spectrum resource) with

an attribute: quality, that is, each spectrum resource can be

traded in different qualities. Moreover, we classify the SUs

into multiple categories (types) according to their preference

for a given spectrum quality. We refer to this as quality

discrimination spectrum trading.

We model the trading process as a monopoly market, in

which the PO acts as monopolist who sets the qualities

and prices for the spectrum he sells, and the SUs act as

consumers who choose the spectrum with appropriate quality

and price for purchasing. The aim of this paper is to design

a spectrum trading mechanism which maximizes the utility

(revenue) of PO and meanwhile enhances the satisfactions of

SUs. For this purpose, we introduce the concept of contract

in economics, a widely used mechanism in supply chain

designing in economics which provides incentives to all of the

members in the chain so that the decentralized supply chain

behaves nearly or exactly the same as the integrated one.

The main contributions of the article are as follows:

• We first consider the issue of quality discrimination for

the spectrum trading with multiple consumer types, from

which the PO can gain more revenue than traditional

spectrum trading schemes such as auction, pricing, etc.

• We introduce the concept of contract into the quality dis-

crimination spectrum trading, and design a monopolist-

dominated quality-price contract, which is offered by the

PO and contains a set of quality-price combinations each

intended for a consumer type.

• We propose the necessary and sufficient conditions for

the feasible contract, which is incentive compatible (IC)

and individually rational (IR) for each SU to purchase

the spectrum with the quality-price intended for his type.

We further derive the optimal contract which is feasible

and maximizes the revenue of the PO. We find that the

feasible contract can naturally reduce the interference

between the primary network and secondary network.

• We analyze the social surplus, i.e., the aggregate utility

of both PO and SUs, and we find that, depending on the

distribution of consumer types, the social surplus under

the optimal contract may be less than or close to the

maximum social surplus.

The rest of this paper is organized as follows. In Section

II, we review the related work. In Section III we provide the
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system model and contract formulation. In Section IV and

Section V, we propose the optimal contracts for discrete-

consumer-type model and continuous-consumer-type model,

respectively. In Section VI, we present the simulation results

and analyze the social surplus. Finally, we conclude our work

in Section VII.

II. RELATED WORK

A. Cognitive Radio and Dynamic Spectrum Access

There are several comprehensive surveys on cognitive radio

techniques [1], different spectrum sharing models [2], and

challenges and issues in designing dynamic spectrum access

networks [3], respectively. In cognitive radio networks, spec-

trum management is an important functionality that involves

dynamic spectrum accessing/sharing and pricing, with an aim

to satisfying the requirements of both primary and secondary

users. In [4], Hwang et al. examined strategic approaches

in the service providers’, manufacturers’, and policy makers’

standpoints for the successful commercialization of cognitive

radio with the dynamic spectrum management policy. In [5],

an optimization problem was formulated for spectrum access

to obtain the solution that gives the highest utility to the

cognitive radio users. In [6], a game-theoretic adaptive channel

allocation scheme was proposed for cognitive radio networks.

In [7], a two tier dynamic spectrum allocation system was

analyzed for non-strategic users who obtain spectrum from

multiple SPs. In [8], a hybrid game approach which contains

both cooperative behavior and competitive behavior was pro-

posed for the cognitive radio networks with multi-hop commu-

nication links. In [9], Grokop et al. studied spectrum sharing

between wireless devices operating under a random access

protocol. Further, Liu et al. proposed some special applications

of spectrum sensing/accessing such as localization [10][11]

and monitoring [12]. However, the above works focused on

the technical aspect of dynamic spectrum accessing/sharing,

without considering the incentive issue (e.g., pricing) and

economic aspect in spectrum sharing.

B. Spectrum Trading in Cognitive Radio Networks

Recently, many researchers paid their attention to the eco-

nomic aspect of dynamic spectrum sharing, which is also

referred to as spectrum trading. In [13], Niyato et al. discussed

the concept of spectrum trading in the context of different

spectrum sharing models, and outlined different forms of spec-

trum trading, the related research problems, and the different

solution approaches. In [14], Niyato et al. studied the spectrum

trading with multiple POs selling spectrum opportunities to

multiple SUs. The evolution and the dynamic behavior of SUs

was modeled as an evolutionary game, and the competition

among the PUs was modeled as a noncooperative game. In

spectrum trading, pricing is a major issue that determines the

value (or worth) of the spectrum to the spectrum seller and

buyer. In [15], an integrated pricing, allocating, and billing

system was proposed for cognitive radio networks. In [16],

a joint power/channel allocation scheme was proposed that

used a distributed pricing strategy to improve the network’s

performance. In [17], a non-cooperative game based pricing

scheme was proposed for uplink power control in cognitive

radio networks. Besides, market-driven auction is an effective

mechanism to allocate resources and determine trading prices.

In [18], a bandwidth auction model was proposed for the

problem of dynamic spectrum sharing. In [19], an auction

mechanism was applied to the problem of spectrum shar-

ing among users using spread spectrum signaling to access

the channel. In [20], a progressive auction mechanism was

proposed for dynamic spectrum sharing between multiple

spectrum sellers and buyers.

Another issue in spectrum trading is competition/coop-

eration among cognitive radio entities involved in spectrum

trading (i.e., spectrum sellers and buyers). In [21], Xing et

al. considered competition among multiple primary users who

sell radio spectrum to the secondary users. In [22], Ileri et

al. considered competition among multiple secondary users

who access the radio spectrum owned by the primary users

in a cognitive radio environment. In [23], Gandhi et al.

proposed a framework of spectrum trading based on an auction

mechanism for dynamic spectrum access. However, the above

works did not consider the heterogeneity in consumer (buyer)

type, and the spectrum resource was traded in the same quality

with different buyers, that is, they ignored the issue of quality

discrimination for the spectrum trading.

C. Contract in Supply Chain

Supply chain contracts have been studied extensively in

economics, operations management, and marketing science

literatures (see [24] and [25] for recent surveys). Supply

chain contract can be viewed as a mechanism to coordinate

production (either quantity or quality) and pricing, so that the

decentralized supply chain behaves nearly or exactly the same

as the integrated one. In [26], Corbet et al. used the bilateral

monopoly setting to analyze three contracts under full and

incomplete information in the setting of deterministic demand.

In [27], Ha studied optimal contracts in a more general setting

than Corbet, including nonlinear stochastic demand, at the

expense of gaining less insight into the value of information

and of more general contracts. In [28], Weng studied quantity

discounts for achieving coordination. In [29], Chen et al.

extended this to multiple customers and more general cost

structures. In this paper, we introduce the concept of contract

into cognitive radio environment, and design a quality-price

contract for the quality discrimination spectrum trading.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. PO Model

We consider the cognitive radio network including a pri-

mary network and a secondary network. The primary network

consists of a primary spectrum owner (PO) and a set of

subscribed primary users (PUs). The PO can be a base station

or an access point, and servers the subscribed PUs. The

spectrum possessed by the PO is under-utilized, that is, there

may exist some idle spectrum bands which are not used by

the PUs at a particular time. For simplicity, we refer to such

idle spectrum bands as residual bands or residual channels

(or channels for short). The secondary network consists of a

set of secondary transmitter and receiver pairs, where each

secondary transmitter always has some packets to exchange
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with the intended receiver. We refer to a pair of secondary

transmitter and receiver as a secondary link or secondary user

(SU). Therefore, the PO is willing to sell his residual channels

to the SUs for enhanced profit, and the SUs are also willing

to purchase channels for their interested services. An example

of cognitive radio network with single PO and 5 SUs can be
seen in Figure 1.

Since the PO dominates the trading process, we model the

spectrum trading as a monopoly market, in which the PO

acts as the monopolist and the SUs act as the consumers.

The monopolist sets the qualities and prices for his products

(residual channels) relatively. A set of all qualities is called

Ω and a set of all prices is called Π. Note that each quality
q ∈ Ω corresponds to a price π ∈ Π. For simplicity, we denote
the price corresponding to quality q as π(q). The consumers
decide whether to buy a channel and which qualities they are

going to buy, given the Ω and Π offered by the PO. Since

each channel can be traded in different qualities, we refer to

this as quality discrimination spectrum trading.

In our model, we define the quality of a channel as the

maximum allowable power the SUs can transmit on the

channel. In other words, if an SU purchases a channel with

quality q, the PO will assign a residual channel to the SU,1 and

the SU can transmit packets on the channel with power not

more than q. Obviously the power level cannot be negative

or infinity, i.e., Pmin ≤ q ≤ Pmax, where Pmin and Pmax

are lower-bound and upper-bound of the maximal allowable

transmitting power, respectively.

We define the cost of a channel (for the PO) as the expense

of PO when SUs occupy and employ the channel. Such an

expense consists of a fixed cost mainly including the leasing

fee of channel license, and a quality-specific cost mainly

including the performance degradation of primary service

induced by the interfering of secondary transmission.2 Thus

we can write the cost of a channel with quality q as:

C(q) = C0 + T (q) (1)

where C0 > 0 is the fixed cost and T (q) is the quality-specific
cost. It is easy to see that T (q) is non-negative and monotone
increasing on q. We further assume that the marginal quality-

specific cost Tq(q) is non-decreasing on q, that is, T (q) grows
more rapidly in high quality than it does in low quality.3 Thus

we can easily find that Cq(q) > 0 and Cqq(q) ≥ 0.
We define the utility (or revenue) of PO by selling a channel

with quality q to SUs, denoted by R(q), as the difference
between the selling price and the cost of the channel, i.e.,

R(q) = π(q) − C(q) (2)

The objective of PO is to maximize his utility. Obviously a

rational PO would not like to accept negative utility from a

channel, thus he will always set π(q) ≥ C(q), ∀q ∈ Ω.

1Besides, the PO will charge the payment π(q) from the SU.
2Such an interference may be caused by the imperfect orthogonality of

channels (e.g., CDMA-based channels), side lobes effect in frequency (e.g.,
FDMA-based channels) or time dispersion caused by multipath propagation
delays (e.g., TDMA-based channels).
3For simplicity, we write ∂f(.)/∂x as fx(.) if f(.) is continuously differ-

entiable with respect to x. Similarly, we write ∂2f(.)/∂x2 and ∂2f(.)/∂x∂y
as fxx(.) and fxy(.), respectively, and so on.

Choosing  q=1

Choosing q=0.4
SU

SU1

SU5

SU2

SU4

3=50

2=20

1=10

SU3

PU1

PU2

PO

          Qualities: ={1, 0.4}

          Prices: ={4, 2.75}
PO

Fig. 1. An example of cognitive radio network with single PO, 2 PUs and
5 SUs.

Furthermore, to facilitate the describing, we define a quality

q = Na to denote an aborted trading process, that is, the SU

will not buy any channel if he chooses the quality q = Na,

equivalently the PO will not sell channels to the SUs who

choose the quality q = Na. Obviously in this case, the SUs

do not need to pay for the channels and the PO will not suffer

from any expense, i.e., π(Na) = C(Na) = 0. Note that the
quality q = Na is impliedly contained in Ω, since not only
the PO can decide whether to sell his channels, the SUs can

also decide whether to buy channels from PO.

B. SU Model

We assume that each SU prefers higher channel capacity,

which is not only related to the channel quality (i.e., the

allowable transmitting power), but also related to the path

loss factor between secondary transmitter and receiver, and

the interference come from primary network. Specifically, for

a given transmitting power q, the channel capacity for SU i

can be given by Shannon-Hartley theorem:

Φ(q) = W log2

(

1 + q ·
Li

Ii + Ji + σ2

)

where W is the channel bandwidth, σ2 is the noise variance,

Li is the path loss factor between the transmitter and receiver

of SU i, Ii and Ji are respectively the interference come from

the transmission of PO and PUs. Without loss of generality,

we assume W = 1 and σ2 is identical for all SUs.

According to the difference in channel capacity for a given

channel quality, we classify the SUs into different categories

(types). Thus we can use the expression Li

Ii+Ji+σ2 to denote

the consumer type. Specifically, we refer to an SU i as a

type-θ SU if Li

Ii+Ji+σ2 = θ. Accordingly, for a given channel

quality q, the channel capacity for a type-θ SU can be written

as Φ(q) = log2(1 + q · θ). Obviously the consumer type is
increasing with the path loss term Li and decreasing with the

interference terms Ii and Ji. We denote the set of all consumer

types as Θ, which can be a discrete set or a continuous region.
The SU can obtain his own type by measuring the wireless

environment, while the PO cannot know the exact type of a

particular SU, that is, the consumer type is private information

for each SU. Nevertheless, we assume the PO has some

statistical information about the consumer types, e.g., the

probability distribution of consumer type.

We define the valuation of a type-θ SU for a channel with

quality q, denoted by V (θ, q), as the benefit by employing
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the channel, which can be formulated as a strictly monotone

increasing function on channel capacity. Without loss of

generality, we define V (θ, q) as a linear function on capacity,
i.e.,

V (θ, q) � w log2 (1 + q · θ) (3)

where w > 0 is the equivalent valuation per unit channel

capacity contributes to the overall valuation, which is a pre-

defined parameter and identical for all SUs. For simplicity, we

assume w = 1 in the rest of the paper. Note that Eq. (3) is
only available as q ∈ [Pmin, Pmax]. In the case of q = Na,

we define V (θ,Na) = 0. Furthermore, we define the following
preference order on quality: for ∀q ∈ [Pmin, Pmax], we have
q > Na. Obviously such a definition coincides with the nature

of quality, i.e., C(q) > C(Na) and V (θ, q) > V (θ,Na).
It is easy to see that Vq(θ, q) > 0 and Vθ(θ, q) > 0 for

all ∀q > Na, that is, every SU prefers higher channel quality,

and for a given quality, a higher type SU has greater valuation

than a lower one. We can further see that Vqq(θ, q) < 0, that
is, V (θ, q) grows more slowly in a higher quality.
We define the utility of a type-θ SU by purchasing a channel

with quality q, denoted by U(θ, q), as the difference between
his valuation for the channel and the price of the channel, i.e.,

U(θ, q) = V (θ, q) − π(q) (4)

We assume that each SU is selfish and rational, whose

objective is always to maximize his utility, thus the optimal

strategy for a type-θ SU can be written as:

B(θ) = arg max
q∈Ω

U(θ, q) (5)

Note that B(θ) = Na denotes that the optimal strategy for a

type-θ SU is to purchase nothing.

Figure 1 presents an example of cognitive radio network

with single PO, 2 PUs and 5 SUs. As we assume Li and Ji

are approximately the same for all SUs, the type of SU i is

determined solely by the interference come from the PO, i.e.,

Ii, which is mainly related to the distance between the SU and

PO. We assume that the SUs within the same circular ring have

nearly the same Ii, thus we can divide the SUs into 3 types:

θ1, θ2 and θ3, where SU1 is in type-θ1, SU2 is in type-θ2

and SU3∼SU5 are in type-θ3. The qualities the PO selected

are Ω = {1, 0.4}, and the relative prices are Π = {4, 2.75}.
Provided that θ1 = 10, θ2 = 20 and θ3 = 50, the type-θ3

SUs would like to purchase the channel with quality q = 1
since U(θ3, 1) = log2(1 + 50) − 4 > U(θ3, 0.4) = log2(1 +
20)−2.75, the type-θ2 SUs would like to purchase the channel

with quality q = 0.4 since U(θ2, 1) = log2(1 + 20) − 4 <

U(θ2, 0.5) = log2(1+8)−2.75, and the type-θL SUs will not

purchase anything since U(θ1, q) < 0 for both q ∈ Ω, that is,
we have B(θ3) = 1, B(θ2) = 0.4 and B(θ1) = Na.

C. Social surplus

We define the social surplus generated by PO’s selling of

a channel with quality q to a type-θ SU, denoted by S(θ, q),
as the aggregate utilities of both PO and SU, i.e.,

S(θ, q) � R(q) + U(θ, q) = V (θ, q) − C(q) (6)

where the price π(q) in both utilities cancels each other out.

q( L)* q( H)*

V( H,q)

V( L,q)

C(q)

Quality - q

S( L)*

S( H)*

V
a

lu
a

ti
o

n
 a

n
d

 C
o

st

Fig. 2. An illustration of q(θ)∗ and S(θ)∗ for 2 consumer types.

Note that Sqq(θ, q) < 0 since Vqq(θ, q) < 0 and Cqq(q) ≥
0. Then, assuming the interior solutions, q(θ)∗, the social op-
timal quality for type θ, can be obtained by solving Vq(θ, q)−
Cq(q) = 0. Accordingly, the maximum social surplus for each
type θ ∈ Θ can be written as S(θ)∗ = S(θ, q(θ)∗).
It is obvious that, for different consumer types, their social

optimal qualities are different, so are their maximum social

surplus. More precisely, the q(θ)∗ and S(θ)∗ are both mono-
tone increasing with respect to θ. In other words, it is socially

desirable to offer a higher quality to the SUs with higher

type. Figure 2 presents an illustration of the social optimal

qualities and maximum social surplus for 2 consumer types

θH and θL with θH > θL, from which we can easily find that

q(θH)∗ > q(θL)∗ and S(θH)∗ > S(θL)∗.
However, in an open market, the social optimal qualities

may not be adopted by both PO and SUs. In detail, the PO

and SUs are selfish and rational, whose objectives are always

to maximize their own utilities, without considering the social

surplus. Nevertheless, we propose the social optimal quality

and maximum social surplus since it provides an upper bound

of the aggregate utility of PO and SUs.

D. Contracts Formulation

As mentioned previously, the monopolist’s problem is to

choose a set of qualities and a price for each quality, i.e., Ω
and Π. Since only one quality will be chosen by each type of
SUs, effectively the PO will be assigning a quality q(θ) and
a price π (q(θ)) to each consumer type θ ∈ Θ. For simplicity,
we write π (q(θ)) as π(θ) since q(θ) is a single value function.
We refer to such a set of quality-price combinations as quality-

price contract, denoted by C = {(q(θ), π(θ)) | ∀θ ∈ Θ}.
A feasible contract is a set of quality-price combinations

such that for every type θ ∈ Θ, a type-θ consumer prefers the
product with quality q(θ) at price π(θ) to any product with
other quality and to not purchasing at all. In details, for the

contract to be feasible in the open market, it must be incentive

compatible (IC), that is, each SU finds it in his own interest

to buy the product assigned his type. Formally, we can write

the IC constraint as:

V (θ, q(θ)) − π(θ) ≥ V (θ, q(θ′)) − π(θ′), ∀θ′ �= θ (7)

for all type θ ∈ Θ.
Furthermore, as mentioned previously, a quality-price com-

bination (Na, 0) is impliedly contained in any contract. An
SU will choose (Na, 0) if his utility is negative under
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(q(θ), π(θ)).4 We refer to this property as individual rationality
(IR). Obviously, a feasible contract must be individual rational.

Formally, we can write the IR constraint as:

V (θ, q(θ)) − π(θ) ≥ V (θ,Na) − π(Na) = 0 (8)

for all type θ ∈ Θ.
In a word, a feasible contract must satisfy the IC and IR con-

straints, and any contract satisfying the IC and IR constraints

must be feasible. For a feasible contract {(q(θ), π(θ))}, the
overall utility of the PO can be written as:

R =
∑

θ∈Θ

Nθ

(

π(θ) − C(q(θ))
)

(9)

where Nθ is the number of type-θ SUs. Note that Eq. (9)

assumes the PO has a sufficient number of residual channels,

i.e., greater than the number of SUs
∑

θ∈Θ Nθ .

The optimal contract for the PO, denoted by {(q̂(θ), π̂(θ))},
is defined as a feasible contract which maximizes his utility.

Formally, we can write the optimal contract as follows:

{(q̂(θ), π̂(θ))} = arg max
{q(θ)}
{π(θ)}

∑

θ∈Θ

Nθ

(

π(θ) − C(q(θ))
)

(10)

subject to the IC and IR constraints in Eqs. (7) and (8).

So far, we have provided the contract formulation and the

definition of optimal contract. We will address the following

essential questions in the rest of this paper: (i) how to derive

the optimal contract defined in Eq. (10) and (ii) whether this

solution maximizes the social surplus.

IV. OPTIMAL CONTRACT IN DISCRETE-CONSUMER-TYPE

MODEL

In discrete-consumer-type model, there is a finite number

of consumer types, T , with indices θ1, θ2, ..., θT . Without loss

of generality, we assume that θ1 < θ2 < ... < θT . For

simplicity, we rewrite Nθt
, the number of type-θt consumers,

as Nt. Similarly, we rewrite q(θt) and π(θt), the quality and
price assigned to type-θt SUs, as qt and πt, respectively.

Suppose the PO has a sufficient number of channels, the

optimal contract defined in Eq. (10) can be rewritten as:

{(q̂t, π̂t)} = argmax
{qt}
{πt}

T
∑

t=1

Nt

(

πt − C(qt)
)

(11)

subject to the IC and IR constraints in Eqs. (7) and (8).

We first present an essential property for SU’s valuation:

for a given quality increment, the valuation increment for a

higher type SU is greater than that for a lower one. We refer

to this as increasing preference property (IP). Formally, we

can write this property as the following proposition.

Proposition 1 – (IP property): For any consumer types θ >

θ′ and product qualities q > q′, the following condition holds:

V (θ, q) − V (θ, q′) > V (θ′, q) − V (θ′, q′) (12)

Proof. In the case of q′ = Na, the statement is obvious

because V (θ,Na) = 0, V (θ′,Na) = 0 and Vθ(θ, q) > 0 for all

4Note that if the utility of a type-θ SU is negative under (q(θ), π(θ)),
his utilities under all quality-price combinations other than (Na, 0) are also
negative according to the IC constraint in Eq. (7).

q > Na. To prove the statement in the case of q > q′ > Na, we

use the Spence-Mirrlees condition or single crossing property

[30]. It is easy to see that V (θ, q) in Eq. (3) satisfies the
Spence-Mirrlees condition, i.e., Vθq(θ, q) > 0. By employing
the fundamental theorem of calculus to write the difference of

a function in terms of an integral of its derivative, we have:

V (θ, q) − V (θ, q′) − V (θ′, q) + V (θ′, q′)

=

∫ q

q′

Vq(θ, y)dy −

∫ q

q′

Vq(θ
′, y)dy

=

∫ θ

θ′

(
∫ q

q′

Vθq(x, y)dy

)

dx > 0

The last line follows because q > q′, θ > θ′, and the quantity

being integrated (the integrand) is positive. Q.E.D.

In what following, we will provide the necessary and

sufficient conditions for a contract to be feasible, then we

derive the best prices for a feasible contract with fixed quality

assignment, and finally we derive the best quality assignment

for the optimal contract.

A. Feasibility of Contract

We present the first necessary condition for a contract to be

feasible in the following lemma.

Lemma 1: For any feasible contract C = {(qt, πt)}, the
following condition holds: qi > qj if and only if πi > πj .

Proof. We prove this lemma using the IC constraint in (7).

→: In this direction we will prove: if qi > qj , then πi > πj .

For type-θj SUs, the following IC constraint must be satisfied:

V (θj , qj) − V (θj , qi) ≥ πj − πi

from which we can find that if qi > qj , then πj − πi ≤
V (θj , qj) − V (θj , qi) < 0, i.e., πi > πj .

←: Now we prove: if πi > πj , then qi > qj . Similarly, for

type-θi SUs, the following IC constraint must be satisfied:

V (θi, qi) − V (θi, qj) ≥ πi − πj

from which we can find that if πi > πj , then V (θi, qi) −
V (θi, qj) > 0, which implies qi > qj since V (θ, q) is a strictly
monotone increasing function on q. Q.E.D.

The above lemma provides an important property for a

feasible contract: a higher quality must correspond to a higher

price. From Lemma 1, we can also find that if there exist

qualities with the same value, the corresponding prices are

also the same, and vice versa. Formally, we show this property

as the following corollary.

Corollary: For any feasible contract C = {(qt, πt)}, the
following condition holds: qi = qj if and only if πi = πj .

The second necessary condition for a contract to be feasible

is shown in Lemma 2.

Lemma 2: For any feasible contract C = {(qt, πt)}, the
following condition holds: if θi > θj , then qi ≥ qj .

Proof.We prove the lemma by contradiction. Assume to the

contrary that there exist θi > θj and qi < qj . Through simple

transforming on the IP property in Eq. (12), we have:

V (θi, qj) + V (θj , qi) > V (θj , qj) + V (θi, qi)
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Additionally, a feasible contract must satisfy the IC constraints

for both consumer types θi and θj , i.e.,
{

V (θi, qi) − πi ≥ V (θi, qj) − πj for type-θi SUs

V (θj , qj) − πj ≥ V (θj , qi) − πi for type-θj SUs

Combining the above two equations, we have:

V (θi, qi) + V (θj , qj) ≥ V (θi, qj) + V (θj , qi)

which violates the IP property. Q.E.D.

Lemma 2 provides another important property for a feasible

contract: the quality assigned to a higher type SU must be

greater than that to a lower one. Reviewing the definition of

consumer type, i.e., Li

Ii+Ji+σ2 , the SUs close to the PO or

PUs will suffer from a large interference from the PO or PUs

(i.e., large Ii or Ji), and accordingly lead to a small type.

According to the symmetry property in radio propagation, the

transmission of these SUs will also cause large interference

in the PO or PUs. In a feasible contract, these SUs will be

assigned to low qualities, that is, they will be allowed to

transmit in low power. Thus the feasible contract can naturally

reduce the interference between the primary network and

secondary network.

From the above two lemmas, we can find that a feasible

contract has the following structure (or necessary conditions):

q1 ≤ q2 ≤ ... ≤ qT , and π1 ≤ π2 ≤ ... ≤ πT (13)

with qi = qi+1 if and only if πi = πi+1.

The above lemmas present the necessary conditions for a

feasible contract. The sufficient conditions for a contract to be

feasible are shown in the following lemma.

Lemma 3: For any contract C = {(qt, πt)}, it is feasible if
the following conditions hold:

• Na ≤ q1 ≤ q2 ≤ ... ≤ qT ≤ Pmax,

• 0 ≤ π1 ≤ V (θ1, q1), and
• for all k = 2, 3, ..., T ,

πk−1 + A ≤ πk ≤ πk−1 + B (14)

where A = V (θk−1, qk) − V (θk−1, qk−1) and B =
V (θk, qk) − V (θk, qk−1).

Proof. We prove the lemma by mathematical induction. We

denote C (n) as a subset of C which contains the first n

quality-price combinations in C , i.e., C (n) = {(qt, πt) | t =
1, ..., n}. Let C (n) be a contract for the network which

contains the first n consumer types of the original network.

We first verify that C (1) is feasible. Since there is only one
consumer type, the condition for a contract to be feasible is

only the IR constraint in Eq. (8). Obviously V (θ1, q1)−π1 ≥
0 = V (θ1,Na) − π(Na), thus C (1) is a feasible contract.
We then show that if C (k) is a feasible contract, C (k + 1)

is also feasible. To achieve this, we need to prove that (I) for

the new type θk+1, the IC and IR constraints are satisfied, i.e.,
{

V (θk+1, qk+1) − πk+1 ≥ V (θk+1, qi) − πi, ∀i = 1, ..., k

V (θk+1, qk+1) − πk+1 ≥ V (θk+1,Na) − π(Na) = 0
(15)

and (II) for the existing types θ1, ..., θk, the IC constraints are

still satisfied in the presence of type θk+1, i.e.,

V (θi, qi) − πi ≥ V (θi, qk+1) − πk+1, ∀i = 1, ..., k (16)

(Proof of I) Now we prove Eq. (15), i.e., the IC and IR

constraints for the new type θk+1. Since C (k) is feasible, the
IC constraint for type θk must be satisfied, i.e.,

V (θk, qi) − πi ≤ V (θk, qk) − πk, ∀i = 1, ..., k

Besides, using the right inequality in Eq. (14), we have:

πk+1 ≤ πk + V (θk+1, qk+1) − V (θk+1, qk)

Combining the above two equations, we have:

V (θk, qi)−πi+πk+1 ≤ V (θk, qk)+V (θk+1, qk+1)−V (θk+1, qk)

for all i = 1, ..., k. Through simple transforming, we can write

the above equation as follows:

V (θk+1, qk+1)−πk+1 ≥ V (θk, qi)−V (θk, qk)+V (θk+1, qk)−πi

(17)

for all i = 1, ..., k. Note that θk+1 > θk and qk ≥ qi, ∀i =
1, ..., k, and using IP property, we have:

V (θk+1, qk) − V (θk+1, qi) ≥ V (θk, qk) − V (θk, qi)

Substituting the above equation into Eq. (17), we can prove

the IC constraint for the new type θk+1, i.e.,

V (θk+1, qk+1) − πk+1 ≥ V (θk+1, qi) − πi, ∀i = 1, ..., k

Further, we can easily prove the IR constraint for type θk+1,

as we notice that V (θk+1, qi) − πi ≥ V (θi, qi) − πi ≥ 0,
∀i ≤ k, since the IR constraints for all type-θi are satisfied.

(Proof of II) Here we prove Eq. (16), i.e., the IC constraints

for the existing types θi, ∀i = 1, ..., k, in the presence of type

θk+1. Using the left inequality in Eq. (14), we have:

πk + V (θk, qk+1) − V (θk, qk) ≤ πk+1

Besides, since C (k) is feasible, the IC constraints for type θi,

∀i = 1, ..., k, must be satisfied, i.e.,

V (θi, qk) − πk ≤ V (θi, qi) − πi, ∀i = 1, ..., k

Combining the above two equations, we have:

V (θi, qk) + V (θk, qk+1)− V (θk, qk) ≤ V (θi, qi)− πi + πk+1

for all i = 1, ..., k. Through simple transforming, we can write

the above equation as follows:

V (θi, qi)− πi ≥ V (θi, qk) + V (θk, qk+1)−V (θk, qk)− πk+1

(18)

for all i = 1, ..., k. Note that θk ≥ θi and qk+1 ≥ qk, ∀i =
1, ..., k, and using IP property, we have:

V (θk, qk+1) − V (θk, qk) ≥ V (θi, qk+1) − V (θi, qk)

Substituting the above equation into Eq. (18), we can prove

the IC constraints for the existing type θi, ∀i = 1, ..., k, i.e.,

V (θi, qi) − πi ≥ V (θi, qk+1) − πk+1, ∀i = 1, ..., k

Up to present, we have proved that (i) C (1) is feasible, and
(ii) if C (k) is feasible, then C (k + 1) is feasible. It follows
that the C = C (T ) is feasible. Q.E.D.

It is easy to see that the sufficient conditions in Lemma

3 are also the necessary conditions for a feasible contract.

Specifically, the necessity of the first condition in Lemma 3

can be proved by Lemma 2, and the necessity of the last
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Fig. 3. An illustration of the feasible price range characterized by Lemma
3.

two conditions in Lemma 3 can be straightforwardly proved

by the IR and IC constraints. In details, according to the IR

constraint for type θ1, i.e., V (θ1, q1) − π1 ≥ 0, we can prove
the second condition in Lemma 3. According to the IC con-

straints for types θk−1 and θk, i.e., V (θk−1, qk−1) − πk−1 ≥
V (θk−1, qk)− πk and V (θk, qk)− πk ≥ V (θk, qk−1)− πk−1,

we can prove the third condition in Lemma 3.

We can also see that the conditions in Lemma 3 satisfies

the necessary conditions in Eq. (13). Specifically, it is obvious

that πk ≥ πk−1 because A ≥ 0 since qk ≥ qk−1. Further,

if qk = qk−1, then πk−1 ≤ πk ≤ πk−1 since A = B =
0, which implies that πk = πk−1; and if πk = πk−1, then

A ≤ 0 and 0 ≤ B, which implies that qk ≤ qk−1 and qk ≥
qk−1, it follows that qk = qk−1. In fact, the conditions in

Lemma 3 provide stricter and tighter necessary conditions for

the feasible contract.

Figure 3 presents an illustration of the feasible price range

for type θk+1 characterized by Lemma 3. On one hand, to

make the type θk prefer quality qk to qk+1, the utility of type

θk on quality qk+1 must be smaller than that on quality qk, i.e.,

V (θk, qk+1) − πk+1 ≤ x1 = V (θk, qk) − πk, which implies

that πk+1 ≥ πk + A where A = V (θk, qk+1) − V (θk, qk).
On the other hand, to make the type θk+1 prefer qk+1 to

qk, the utility of type θk+1 on quality qk+1 must be greater

than that on quality qk, i.e., V (θk+1, qk+1) − πk+1 ≥ x2 =
V (θk+1, qk) − πk, which implies that πk+1 ≤ πk + B where

B = V (θk+1, qk+1) − V (θk+1, qk).

B. Optimality of Contract

To derive the optimal contract, we first derive the best prices

in a fixed feasible quality assignment, then we derive the best

quality assignment for the optimal contract. For simplicity,

we refer to a quality assignment {qt} as a feasible quality
assignment, if it satisfies the constraints q1 ≤ q2 ≤ ... ≤ qT .

We denote R∗
{qt}

as the maximum utility the PO can achieve

in a given feasible quality assignment {qt}. Obviously, R
∗
{qt}

can be obtained as follows:

R∗
{qt}

= max
{πt}

T
∑

t=1

Nt

(

πt − C(qt)
)

(19)

subject to the price constraints in Lemma 3.
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Fig. 4. An illustration of the best price assignment characterized by Lemma
4.

Lemma 4: Let C = {(qt, πt)} be a feasible contract with
fixed qualities q1 ≤ q2 ≤ ... ≤ qT . Then the unique best price

assignment for Eq. (19), denoted by {π̂t}, is given by:

π̂k = π̂k−1 + V (θk, qk) − V (θk, qk−1) (20)

for all k = 2, 3, ..., T , and π̂1 = V (θ1, q1).

Proof. Obviously the prices in Eq. (20) form a feasible price

assignment, that is, they satisfy the conditions in Lemma 3.

We first show that the prices given by Eq. (20) maximize

the utility of the PO. Note that, in the case of fixed quality

assignment, we can achieve the maximum utility through

maximizing the sum of prices, i.e.,
∑T

t=1 Ntπt, since the sum

of cost, i.e.,
∑T

t=1 NtC(qt), is constant. Assume that there is

a price assignment {π̃t} such that
∑T

t=1 Ntπ̃t >
∑T

t=1 Ntπ̂t.

It is easy to see that there is at least one price π̃k > π̂k. To

make the contract be feasible, the following constraint on {π̃t}
must be satisfied according to Lemma 3:

π̃k ≤ π̃k−1 + V (θk, qk) − V (θk, qk−1)

Combining the above equation with Eq. (20), we have:

π̃k−1 > π̂k − V (θk, qk) + V (θk, qk−1) = π̂k−1

Continuing the above process, we can finally obtain that π̃1 >

π̂1 = V (θ1, q1), which violates the IR constraint for type θ1.

Therefore, there does not exist any feasible price assignment

{π̃t} such that
∑T

t=1 Ntπ̃t >
∑T

t=1 Ntπ̂t, which implies that

the utility is maximized under the price assignment {π̂t}.

Then we show that {π̂t} is the unique best price assignment.
Assume to the contract that there exists a feasible price

assignment {π̃t} �= {π̂t} such that
∑T

t=1 Ntπ̃t =
∑T

t=1 Ntπ̂t.

Obviously there is at least one price π̃k �= π̂k. Without loss of

generality, we assume that π̃k < π̂k. It is easy to see that there

must exist another price π̃j > π̂j . Using the same method, we

can obtain that π̃1 > π̂1 = V (θ1, q1). Therefore, there does
not exist any feasible price assignment {π̃t} �= {π̂t} such that
∑T

t=1 Ntπ̃t =
∑T

t=1 Ntπ̂t, which implies that the best price

assignment {π̂t} given by Eq. (20) is unique. Q.E.D.

Using the notations ∆1 = 0 and ∆k = V (θk, qk) −
V (θk, qk−1), ∀k = 2, ..., T , we can simply write the best
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prices provided by Lemma 4 as follows:

π̂k = V (θ1, q1) +
k

∑

i=1

∆i, ∀k = 1, ..., T (21)

Figure 4 presents an illustration of the best price assignment

characterized by Lemma 4. Note that we cut off the valuation

curve of type θ4 due to space limitations. We can find from the

figure that π̂1 = V0 = V (θ1, q1), π̂2 = π̂1+∆2 = V (θ1, q1)+
∆2, π̂3 = π̂2 + ∆3 = V (θ1, q1) + ∆2 + ∆3, and so on.

Lemma 4 suggests that, for any fixed feasible qualities, the

best price assignment given by Eq. (20) or (21) is unique.

Therefore, the maximum utility of the PO, denoted by R∗,

can be carried out with the converse induction, i.e.,

R∗ = max
{qt}

R∗
{qt}

(22)

subject to q1 ≤ q2 ≤ ... ≤ qT . Note that the constraints

q1 ≤ q2 ≤ ... ≤ qT are necessary to ensure the feasibility of

the contract.

Substituting Eq. (21) for the prices in Eq. (19), we have:

R∗
{qt}

=

T
∑

t=1

Nt

(

V (θ1, q1) +

t
∑

i=1

∆i − C(qt)

)

(23)

Re-arranging the above equation by putting the terms related

to the same quality variable together, we can equivalently write

R∗
{qt}

as follows:

R∗
{qt}

=

T
∑

t=1

(

NtV (θt, qt) − NtC(qt) + Λt

T
∑

i=t+1

Ni

)

(24)

where Λk = V (θk, qk) − V (θk+1, qk), ∀k < T , and ΛT = 0.
For simplicity, we use the notation Gt = NtV (θt, qt) −

NtC(qt) + Λt

∑T

i=t+1 Ni, thus we can write Eq. (24) as

R∗
{qt}

=
∑T

t=1 Gt. It is worth noting that Gt is only related to

qt, i.e., the quality assigned to type θt, and independent of the

qualities assigned to other types. Therefore, the best quality

assignment for Eq. (22), denoted by {q̂t}, can be computed
by separately maximizing each of Gt, ∀t = 1, 2, ..., T .

We denote q̃t as the quality which maximizes Gt, i.e.,

q̃t = argmax
qt

Gt (25)

for all t = 1, 2, ..., T . Obviously, q̃t can be found at the

boundary points (Na and Pmax) or at the critical points, i.e.,

the qualities satisfying dGt

dqt
= 0 and d2Gt

dq2

t

≤ 0, according to

Fermat’s theorem for stationary points. Figure 5 presents an

illustration of the best quality for Gt, where G′
t denotes the

first derivative of Gt, i.e.,
dGt

dqt

. From Figure 5, we can find

that, q̃2, the best quality for G2, is at its critical point p2,

while q̃3 is at the right boundary point Pmax since the critical

point for G3 goes beyond the available quality range. Besides,

q̃1 is at the left boundary point Na, since G1(Na) = 0 and
G1(q1) < 0 for all q1 ∈ [Pmin, Pmax].
It is obvious that {q̃t} is exactly the solution for Eq. (22),

i.e., {q̂t} = {q̃t}, if it is a feasible quality assignment. Thus
we have the following proposition.

Proposition 2: With uniformly distribution of consumer

types, i.e., N1 = N2 = ... = NT and θ2 − θ1 = θ3 − θ2 =

0

Pmax

G1

Quality - q

Gt

G2

G3

G3'G2'

G1'

p2 p3

q1= ,    q2=p2,    q3=Pmax

Pmin

Fig. 5. An illustration of the best quality for Gt.

... = θT − θT−1, the best quality assignment {q̂t} = {q̃t}
where q̃t = arg maxqt

Gt.

The proposition can be easily proved as we notice that, in

the case of uniformly distribution of consumer types, {q̃t}
is exactly in the increasing order. However, in the case of

general distribution of consumer types, {q̃t} may not be in the
increasing order, that is, it may be infeasible. For example, for

a type θk with few consumers, i.e., small Nk, the value of Gk

is greatly determined by Λk, thus the best quality for Gk will

tend to be small since Λk is decreasing with the quality.

We denote a sub-sequence of {qt}, say {qi, qi+1, ..., qj},
as an infeasible sub-sequence, if qi ≥ qi+1 ≥ ... ≥ qj

and qi > qj . For example, in a quality assignment {qt} =
{1, 3, 3, 2, 6, 5}, there are two infeasible sub-sequences, i.e.,
{q2, q3, q4} and {q5, q6}. Obviously, for any infeasible quality
assignment {qt}, there is at least one infeasible sub-sequence.
It is necessary to design a mechanism to deal with the

infeasible sub-sequences of {q̃t}. The following proposition
is essential for designing such a mechanism.

Proposition 3: Let X1(x) and X2(x) be concave functions
on x. If x̃1 ≥ x̃2 where x̃1 = argmaxx1

X1(x1) and x̃2 =
arg maxx2

X2(x2), then x̂1 = x̂2 where

{x̂1, x̂2} = arg max
x1,x2

2
∑

i=1

Xi(xi), s.t. x1 ≤ x2 (26)

Proof. The statement is obvious if x̃1 = x̃2, thus we focus

on the case of x̃1 > x̃2, as shown in Figure 6.

We can prove the statement if we show that, for arbitrary

x1 < x2, we can find an x′ such that
∑2

i=1 Xi(x
′) >

∑2
i=1 Xi(xi). There are two cases. If x1 < x̃2, e.g., x1 = a,

the circle in Figure 6, we have
∑2

i=1 Xi(xi) <
∑2

i=1 Xi(x̃2),
i.e., x′ = x̃2, since X1(x1) < X1(x̃2) and X2(x2) ≤ X2(x̃2).
If x1 ≥ x̃2, e.g., x1 = b, the square in Figure 6, we

have
∑2

i=1 Xi(xi) <
∑2

i=1 Xi(x1), i.e., x′ = x1, since

X2(x2) < X2(x1) for all x2 > x1 ≥ x̃2. Q.E.D.

Proposition 3 can be extended to a more general form: if

x̃1 ≥ x̃2 ≥ ... ≥ x̃K where x̃i = argmaxxi
Xi(xi), then x̂1 =

x̂2 = ... = x̂K where {x̂k} = arg max{xk}

∑K
k=1 Xk(xk)

subject to x1 ≤ x2 ≤ ... ≤ xK . Further, the optimal solution

x̂i can be easily obtained by maximizing
∑K

k=1 Xk(x), i.e.,

x̂i = arg maxx

∑K

k=1 Xk(x).
By means of Proposition 3, we design a dynamic algorithm

to make the infeasible sub-sequences in any quality assignment
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Fig. 6. An illustration of X1(x) and X2(x) in Proposition 3.

to be feasible. The algorithm starts with {q̃t} and iteratively
replaces the infeasible sub-sequence of {q̃t} by any feasible
sub-sequence. The detail algorithm is shown as follows:5

1) initiate q̂t = q̃t = argmaxqt
Gt, ∀t = 1, 2, ..., T

2) while {q̂t} is not feasible, do:

• find an infeasible sub-sequence {q̂i, q̂i+1, ..., q̂j}

• set q̂k = arg maxq

∑j
t=i Gt(q), ∀k = i, i + 1, ..., j

To provide the computational complexity of the above

dynamic algorithm, we use notations µt = q̂t+1 − q̂t, t =
1, 2, ..., T −1. Obviously that (i) if µi ≤ 0, µi+1 ≤ 0, ..., µj ≤
0 with at least one strict inequality, then {q̂i, q̂i+1, ..., q̂j+1} is
an infeasible sub-sequence, and (ii) {q̂t} is feasible if and only
if µt ≥ 0, ∀t = 1, 2, ..., T−1. We can find that in each iteration
of the algorithm, at least one negative µt is set to be zero. Note

that the zero µt will hold at zero in the future iteration. Thus

the maximum iteration number is T − 1. Further, the main
computational burden in each iteration is to solve the single-

variable optimization problem q̂k = arg maxq

∑j

t=i Gt(q),
which can be easily achieved by binary searching.

Figure 7 illustrates the dynamic algorithm in a network with

6 consumer types. Sub-figure (a) is the quality assignment

at the initiating stage, i.e., q̂t = q̃t = argmaxqt
Gt, ∀t =

1, 2, ..., 6. Obviously there are two infeasible sub-sequences
{q̂1, q̂2} and {q̂4, q̂5}. Sub-figure (b) presents the updated
quality assignment by replacing the infeasible sub-sequence

{q̂1, q̂2} with q′ = arg maxq

∑2
t=1 Gt(q). Similarly, sub

figure-(c) presents the updated quality assignment by replacing

{q̂4, q̂5} with q′ = arg maxq

∑5
t=4 Gt(q). Note that there is

a new infeasible sub-sequence {q̂3, q̂4, q̂5} after the stage in
(c). Finally, sub-figure (d) present the best quality assignment

by replacing {q̂3, q̂4, q̂5} with q′ = argmaxq

∑5
t=3 Gt(q). We

can see that µ1 is set to be zero in the process of Sub-figure

(b), µ4 is set to be zero in the process of Sub-figure (c), and

µ3 is set to zero in the process of Sub-figure (d).

Based on the above lemmas and propositions, we have the

following theorem:

Theorem 1: Contract C = {(q̂t, π̂t)} is optimal, if {q̂t}
is the outcome of the above dynamic algorithm and {π̂t} is
given by Lemma 4.

5Note that Gt is concave in the case of large qt, since ∂2Λt/∂q2
t tends to

be zero if qt is large, and ∂2(V (θt, qt)−C(qt))/∂q2
t = Sqq(θt, qt) which

is always small than zero.

1 2 3 4 5 6 1 2 3 4 5 6

qt qt

1 2 3 4 5 6

qt

1 2 3 4 5 6

qt

(a) (b)

(c) (d)

Fig. 7. Illustrating the process of the dynamic algorithm.

C. Practical Implementation Issues

In above discussion, we assume the spectrum for sale is

unlimited, that is, the PO has a sufficient number of idle

channels for sale, i.e.,M ≥
∑T

t=1 Nt, whereM is the number

of idle channels and
∑T

t=1 Nt is the number of SUs. In a

practical cognitive radio network, however, it is more realistic

to assume that the spectrum for sale is limited, that is, the

number of idle channels may be less than the number of SUs,

i.e., M <
∑T

t=1 Nt, in particular for the network with a large

number of SUs. We refer to this as limited spectrum trading.

Note that in limited spectrum trading, there must be some SUs

who can not acquire channels since each channel can only be

sold to one SU, thus the overall utility of the PO is not given

by Eq. (9) any longer.

We first analyze the utility the PO can achieve from a type-

θt SU in an optimal contract C = {(q̂t, π̂t)}. Substituting the
quality-price for type-θt, i.e., (q̂t, π̂t), into Eq. (2), we have:

R(q̂t) = π̂t − C(q̂t) (27)

where π̂t is the best price assignment given by Eq. (21).

The difference between the utilities the PO achieved from

a type-θt SU and a type-θt+1 SU can be written as:

R(q̂t+1) − R(q̂t) = ∆t+1 − C(q̂t+1) + C(q̂t)

= V (θt+1, q̂t+1) − V (θt+1, q̂t) − C(q̂t+1) + C(q̂t)

= S(θt+1, q̂t+1) − S(θt+1, q̂t)

(28)

The following proposition is essential for analyzing the

above utility difference.

Proposition 4: For any optimal contract C = {(q̂t, π̂t)},
the following conditions hold: q̂t ≤ q∗t , where q∗t = q(θt)

∗ =
arg maxq S(θt, q) is the social optimal quality which maxi-
mizes the social surplus S(θt, q).
Proof. It is obvious that Gt = NtS(θt, qt) + Λt

∑T

i=t+1 Ni

and ∂Gt

∂qt

|qt=q∗

t
< 0, since ∂Λt

∂qt

|qt=q∗

t
< 0 and

∂S(θt,qt)
∂qt

|qt=q∗

t
= 0. Thus there must be a quality qt = q∗t − ε

such that Gt(θt, qt) > Gt(θt, q
∗
t ) where ε is an arbitrary small

positive number. Q.E.D.

From Proposition 4 we can see that q̂t ≤ q̂t+1 ≤ q∗t+1.

Substituting above equation into Eq. (28) and noticing that



852 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 2011

S(θt+1, q) is increasing with q when q ≤ q∗t+1, we can

obtain R(q̂t+1) ≥ R(q̂t). In other words, the PO can achieve

higher utility from a higher type SU than a lower one in an

optimal contract. Thus in limited spectrum trading, the PO can

maximize his utility by selectively selling the channels to the

SUs with high type. This is just the basic idea for designing

the optimal contract in limited spectrum trading.

We refer to type θt0 as critical type if the following

conditions hold:
∑T

t=t0
Nt ≥ M and

∑T
t=t0+1 Nt < M .

Obviously the PO will sell the channels to the SUs upon the

critical type, or equivalently the PO will set quality q = Na

for the SUs below critical type. Thus the optimal contract

C = {(q̂t, π̂t)} in limited spectrum trading can be written as:
{

(q̂t, π̂t) = (Na, 0), ∀t < t0

(q̂t, π̂t) = (q̂′t, π̂′
t), ∀t ≥ t0

(29)

where (q̂′t, π̂
′
t), ∀t ≥ t0, are the optimal quality and price

assignment for the critical network which consists of M

SUs with highest types in the original network. Obviously

in critical network, the set of consumer type is Θ =
{θt0 , θt0+1, ..., θT }, and the number of SUs with each type θt

is N ′
t , where N ′

t0
= M −

∑T
t=t0+1 Nt and N ′

t = Nt, ∀t > t0.

The optimal quality and price assignment (i.e., optimal con-

tract) for critical network, i.e., C
′ = {(q̂′t, π̂

′
t) | ∀t ≥ t0},

can be easily derived according to the dynamic algorithm in

Section IV-B.

V. OPTIMAL CONTRACT IN

CONTINUOUS-CONSUMER-TYPE MODEL

In this section, we analyze a more general model, the

continuous-consumer-type model, in which there are a contin-

uum of consumers. The consumer type, θ, is distributed with

a probability distribution f(θ) and a continuous cumulative
distribution F (θ) on the interval Θ = [θs, θe]. Similar to the
discrete model, we first consider the case that the PO has a

sufficient number of channels. Thus the (expected) utility of

the PO can be written as:

R =

∫ θe

θs

(

π(θ) − C(q(θ))
)

f(θ)dθ (30)

Similarly, for the contract to be feasible, it must also satisfy

both IC and IR constraints for all consumer types. The optimal

contract defined in (10) can be rewritten as:

{(q(θ), π(θ))} = arg max
{q(θ)}
{π(θ)}

∫ θe

θs

(

π(θ) − C(q(θ))
)

f(θ)dθ

(31)

subject to the IC and IR constraints.

The continuous model can be viewed as a convergence of

the discrete model in the dense of consumer types. In fact, as

we assume the consumer types in discrete model become very

dense, i.e., θi+1 − θi → 0, the discrete model will converge
to a continuous model.

Obviously, the necessary conditions for the feasible contract

in discrete model, i.e., Lemma 1 and 2, are also adapted

to the continuous model. Thus we can derive the necessary

conditions in continuous model from those in discrete model.

Assume that q(θ) and π(θ) are continuous and differentiable

in Θ, the necessary conditions for a contract to be feasible in
the continuous model are shown in following corollaries.

Corollary 1: For any feasible contract C , the following

condition holds: qθ(x) > 0 if and only if πθ(x) > 0, ∀x ∈ Θ.

Proof. Note that qθ(x) = limσ→0
q(x+σ)−q(x)

σ
and πθ(x) =

limσ→0
π(x+σ)−π(x)

σ
. According to Lemma 1, we have q(x +

σ) > q(x) if and only if π(x + σ) > π(x). It follows that
qθ(x) > 0 if and only if πθ(x) > 0, ∀x ∈ Θ. Q.E.D.

Corollary 2: For any feasible contract C , the following

condition holds: qθ(x) ≥ 0, ∀x ∈ Θ.

Proof. The statement is obvious since q(θ1) ≥ q(θ2) for any
θ1 > θ2, according to Lemma 2. Q.E.D.

From Corollary 1 and Corollary 2, we can easily find that

a feasible contract in continuous model has the following

structure (or necessary conditions):

qθ(x) ≥ 0, and πθ(x) ≥ 0, ∀x ∈ Θ (32)

with qθ(x) = 0 if and only if πθ(x) = 0.

The sufficient conditions for a contract to be feasible in

continuous model can also be derived from those in discrete

model. We show the sufficient conditions in Corollary 3.

Corollary 3: For any contract C = {(q(θ), π(θ))}, it is
feasible if the following conditions hold:

• qθ(x) ≥ 0
• 0 ≤ π(θs) ≤ V (θs, q(θs)), and
• πθ(x) = Vq(x, q(x)) · qθ(x), ∀x ∈ Θ. 6

Proof. The first two conditions can be easily derived from

those in discrete model, i.e., the first two conditions in Lemma

4. Thus we will focus on the proof of the third condition.

As mentioned previously, we can view the continuous model

as a discrete model with infinite dense consumer types, i.e.,

θi+1 = θi + σ where σ → 0. Substituting the θk and θk−1 in

Eq. (14) with x and x−σ, we can rewrite Eq. (14) as follows:

π(x − σ) + A ≤ π(x) ≤ π(x − σ) + B (33)

where A = V (x − σ, q(x)) − V (x − σ, q(x − σ)) and B =
V (x, q(x)) − V (x, q(x − σ)).

From the right inequality of Eq. (33), we have:

πθ(x) = lim
σ→0

π(x) − π(x − σ)

σ

≤ lim
σ→0

V (x, q(x)) − V (x, q(x − σ))

σ

= Vq(x, q(x)) · qθ(x)

(34)

Again, from the left inequality of Eq. (33), we have:

πθ(x) ≥ Vq(x − σ, q(x)) · qθ(x)

= Vq(x, q(x)) · qθ(x)
(35)

The last line follows because σ → 0. Combining Eqs. (34) and
(35), we have πθ(x) = Vq(x, q(x)) · qθ(x), ∀x ∈ Θ. Q.E.D.

Corollary 3 presents the feasible pricing region indirectly.

We can further derive the explicit price region. Using integral

6Note that Vq(x, q(x)) = ∂V (θ,q)
∂q

|θ=x,q=q(x), qθ(x) = ∂q(θ)
∂θ

|θ=x.
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calculus, we have:

π(x) =

∫ x

θs

Vq(θ, q(θ)) · qθ(θ)dθ + c

=

∫ x

θs

dV (θ, q(θ))

dθ
dθ −

∫ x

θs

Vθ(θ, q(θ))dθ + c

= V (x, q(x)) − V (θs, q(θs)) −

∫ x

θs

q(θ)

1 + θq(θ)
dθ + c

(36)

where c is the integral constant. According to the first condi-

tion in Corollary 3, we have 0 ≤ c ≤ V (θs, q(θs)).
The best prices for a feasible contract with fixed quality

assignment are shown in the following corollary.

Corollary 4: Let C be a feasible contract with fixed quality

assignment q(θ). Then the unique best price assignment for
Eq. (30), denoted by π̂(θ), are given by:

π̂(x) = V (x, q(x)) −

∫ x

θs

q(θ)

1 + θq(θ)
dθ (37)

In fact, as we substitute the integral constant c in Eq. (36)

with the its maximum allowable value, i.e., V (θs, q(θs)), we
can obtain the best price assignment Eq. (37). For example,

if q(θ) = θ, the best price assignment is π̂(θ) = 1
2 log(1 +

θ2) + 1
2 log(1 + θ2

s). It is easy to validate that, for arbitrary
θ ∈ Θ, the IC and IR constraints hold, i.e., V (θ, q(θ))−π̂(θ) ≥
V (θ, q(θ′)) − π̂(θ′) and V (θ, q(θ)) − π̂(θ) ≥ 0, ∀θ′ �= θ.

Substituting Eq. (37) for the prices in Eq. (30), we can de-

rive the maximum utility of PO in a fixed quality assignment:

R∗
{q(θ)} =

∫ θe

θs

(

π̂(θ) − C(q(θ))
)

f(θ)dθ (38)

where π̂(θ) is given by Eq. (37).
Using integration by parts, we have:

∫ θe

θs

(

∫ θ

θs

q(x)

1 + xq(x)
dx

)

f(θ)dθ

= F (θ)

∫ θ

θs

q(x)

1 + xq(x)
dx

∣

∣

∣

∣

∣

θe

θs

−

∫ θe

θs

F (θ)
q(θ)

1 + θq(θ)
dθ

=

∫ θe

θs

(1 − F (θ)) ·
q(θ)

1 + θq(θ)
dθ

(39)

The last line follows because F (θs) = 0 and F (θe) = 1. Thus
we can rewrite Eq. (38) as follows:

R∗
{q(θ)} =

∫ θe

θs

(

V (θ, q(θ)) − C(q(θ)) −
1 − F (θ)

f(θ)

q(θ)

1 + θq(θ)

)

f(θ)dθ

(40)

It is notable that Eqs. (40) and (24) have the similar

form. In fact, in a discrete model with infinite dense con-

sumer types, the term Nt converges to f(θt),
∑t

i=1 Ni and
∑T

i=t+1 Ni converges to F (θt) and 1 − F (θt), respectively.

Besides, Λt converges to − q(θ)
1+θq(θ) since V (θt, qt) converges

to
∫ θt

θs

q(θ)
1+θq(θ)dθ and V (θt, qt) − V (θt+1, qt) converges to

−dV (θ, q(θ)). Therefore, we can design the similar algorithm
to computed the best quality assignment. Formally, we present

the detail algorithm as follows:

1) initiate q̂(θ) = argmaxq G(θ, q), ∀θ ∈ Θ
2) while q̂(θ) is not feasible, do:

• find a infeasible region [a, b] ⊆ Θ

• set q̂(θ) = arg maxq

∫ b

a
G(θ, q)dθ, ∀θ ∈ [a, b]

where G(θ, q) is the integrand in Eq. (40), and an infeasible
region is defined as a subset of Θ, say [a, b], such that qθ(θ) ≤
0, ∀θ ∈ [a, b], and q(a) > q(b).
Now we consider the case that the spectrum for sale is lim-

ited, i.e., limited spectrum trading in the continue-consumer-

type model. Similar to that in discrete model, the PO can

maximize his utility by selectively selling the channels to the

SUs upon the critical type. Here the critical type is defined as a

consumer type θt0 such that 1−F (θt0) = M ′ whereM ′ = M
N

is the normalized number of channels and N is the number of

SUs. Then the optimal contract in limited spectrum trading in

continue model can be derived by means of the similar method

in discrete model, i.e., Eq. (29).

VI. SIMULATION RESULTS

We implement the proposed quality-price contract in a

discrete-consumer-type model which contains T = 25 SU

types. The set of SU types is Θ = {1, 2, ..., 25} and each
SU’s type is distributed with discrete probability distribution

z(θt) on the set Θ. The cost function of PO is defined as

C(q) = C0 + a · qb where C0 = 0.01, a = 2 and b = 1.2.
The lower-bound and upper-bound of the maximum allowable

power are Pmin = 0.01 and Pmax = 1, respectively.
We study the optimal contracts in 3 system scenarios which

differ from each other in the distribution of consumer types.

In case (a), the larger consumer type has higher proportion

(probability) than the smaller type, while in case (c) it is just

the opposite. In case (b), all consumer types are uniformly

distributed on the set Θ. Without loss of generality, we assume
that in case (a) z(θt) = 1

D
θt, (b) z(θt) = 1

D
θT−t+1, and (c)

z(θt) = 1
T
, where D =

∑T
t=1 θt.

Figure 8 presents the quality assignments and price as-

signments in the optimal contracts. The stellate curves, i.e.,

q(θ)∗ and π(θ)∗, denote the social optimal quality assignment
which maximizes the social surplus, and the related best price

assignment given by Lemma 4, respectively, i.e., q(θt)
∗ =

arg maxq S(θt, q) and π(θt)
∗ = V (θ1, q(θ1)

∗) +
∑t

i=1 ∆i.

Note that the social optimal quality and price do not depend on

the distribution of consumer types. The dotted curves denote

the optimal quality assignments and the best price assignments

in the optimal contracts for all scenarios (a), (b) and (c).

Note the hollow circles denote an aborted trading process,

i.e., quality q = Na (or price π = 0).
From Figure 8, we find that the quality assignment in

optimal contract is always less than the social optimal quality

assignment, which coincides with the conclusion in Proposi-

tion 4. From economic aspect, this can be explain as follows.

For the propose of revenue maximizing, the PO will reduce the

qualities for the lower types SUs, so as to reduce the interest

of higher type SUs on these qualities, and accordingly raise

the price for the higher type SUs. For example, in case (b),

by reducing the qualities of type θ10, the PO can assign a

lower quality to type θ11 and meanwhile charge a much higher

price from type θ11, comparing to the solution for the social



854 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 2011

5 10 15 20 25
0

0.2

0.4

0.6

0.8

Consumer Type − θ

5 10 15 20 25
0

1

2

3

4

Consumer Type − θ

Quality Assignment

Price Assignment

q(θ)
*

(c)
(b) (a)

π(θ)
*

(c)

(b)
(a)

Fig. 8. The quality assignments and price assignments in the optimal
contracts.

surplus maximization. Further, we find that if the number (or

probability) of lower types SUs become smaller, e.g., case (a),

the PO tends to reduce more qualities on the low types SUs

and charge higher prices from the higher types SUs.

Figure 9 presents the social surplus and the revenues of

the PO in the optimal contracts. In this bar chart, So and

Ro denote the social optimal surplus, which can be obtained

from {q(θ)∗}, and the revenue of the PO in the social optimal
quality assignment {q(θ)∗} and price assignment {π(θ)∗},
respectively, and Sc and Rc denote the social surplus and the

revenue of the PO under the optimal contracts. From Figure 9,

we can find that a self-interested PO has no incentive to offer

the social optimal quality-price assignment since the revenue

Ro is much less than Rc. The PO gains more revenue from the

optimal contract, at the expense of social surplus decreasing

caused by the dropping out (or qualities reducing) of low types

SUs. In a practical system with limited trading spectrum, by

dropping out the low type SUs, the selfish behavior of the PO

will decrease the social surplus temporarily, but it may leads

to a higher expected social surplus in a long-term, since the

PO can assign the saving spectrum to the potential higher type

SUs in the future.

Furthermore, we investigate the optimal contract in

continuous-consumer-typemodel, which shows similar results.

We also investigate the detail process of the dynamic algo-

rithm, especially in the case of infeasible quality assignment.

Due to space limitations, we do not present the detail results.

VII. CONCLUSION

In this paper,we study the spectrum trading with single

PO and multiple SUs and model the trading process as a

monopoly market, in which the PO acts as monopolist and

the SUs act as consumers. We design a monopolist-dominated

quality-price contract, which is offered by the PO and consists

of a set of quality-price combinations each intended for
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Fig. 9. The social surplus and the revenues of the PO in the optimal contracts.

a consumer type. We propose the necessary and sufficient

conditions for the contract to be feasible. We further derive

the optimal contract for both discrete-consumer-type model

and continuous-consumers-type model. We analyze the social

surplus, i.e., the aggregate utility of both PO and SUs, and we

find that, depending on the distribution of consumer types, the

social surplus under the optimal contract may be less than or

close to the maximum social surplus.
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