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Specular Null Polarization Theory:

Applications to Radar Meteorology
John C. Hubbert and V. N. Bringi

(2)

(3)

The bilinear polarization transfer function that relates incident

and scattered polarization ratios in the LRH is (see Appendix

A)

(4)

(5)

(6)

(7)

s-LRH Ev'
X = ES

H'

and for the RAe

E S

Xs _R A C = ----.l::.
EN'

The two polarization ratios are related by

Xs-L R H = _Xs-R A C .

where * signifies complex conjugation and r = (1+XX*)-o.5.
As shown in [5] the phase term e = e- j tan-

1(tan
1> tan E)

is necessary to maintain a constant phase difference between

the elliptic basis polarization vectors and is easily derived

from the geometric form for U. The ¢ and E represent the

tilt and ellipticity angles, respectively. From (2) optimum

polarizations are derived [1], [4]. Optimum polarizations are

those transmit polarization states that produce power extrema

in either the receive copolar or cross-polar power [4]. Optimum

polarizations may also be developed starting with the equation

that directly relates the incident and scattered polarization

ratios in a local right handed coordinate system convention

(LRH) which is shown in Fig. 2. The LRH is typically used in

optic polarimetry [6], [7] and is also referred to as the forward

scattering alignment convention (FSA) by Ulaby and van Zyl

[2]. From Figs. 1 and 2 it is seen that for the backscatter

direction Ev' = Ev and EEl' = -EN' Accordingly, there
are two possible polarization ratios for backscatter depending

on the coordinate system convention adopted. For the LRH

s_LRH 8V H + Xi8vv
X = -8H H - Xi8H V '

Equation (7) can be used as a common starting point to

develop and compare the optimum polarizations of radar,

optic and specular null polarization theories (SNPT) as was

done by Hubbert [5]. The optimum polarizations in traditional

radar polarimetry, henceforth called Kennaugh's polarization

theory (KPT), called cross-polar nulls are the equivalent of

the eigenpolarizations in optic polarimetry. We note however,

that the optic eigenpolarizations are not the same polarization
states as the KPT cross-polar nulls. In other words, for the

same coherent scatterer different transmit polarizations will

produce nulls in the "cross-polar" powers as is defined in optic

polarimetry, KPT and SNPT. Using (7) the eigenpolarizations

I. INTRODUCTION

T
HE starting point for the development of radar polarime

try is the radar voltage equation [1]:

V =h~Er

=h~SEi

= h~Sht (1)

where E", the electric field incident on the radar, h t , the

transmit polarization vector of the radar, and h,; the receive

polarization vector of the radar, are all described in the same

coordinate system (i.e., the definition of the horizontal and

vertical unit vectors remains the same for both forward and

backward propagation directions) which is shown in Fig. 1

for monostatic radar. This is referred to as the radar alignment

convention (RAC) or backscatter alignment convention (BSA)

by Ulaby and van Zyl [2]. The superscript T in (1) denotes

transpose, E i is the incident (or transmitted) electric field and

S is the 2 x 2 radar (or Sinclair) scattering matrix. Additionally,

the radar reception polarization vector is defined as that

polarization that the. radar transmits so that for monostatic

radar h; = h t . From (1) it is easy to derive the change of

basis transformation [1], [3], [4]

S =UTSU

= [811 812
]

8 21 8 22

where U is the field transformation matrix and is defined as

[
e - e*x*]u=r

ex e*

Abstract-Specular null polarization theory (SNPT) has been
recently introduced for the case of coherent scattering where a
2 x 2 scattering matrix is sufficient to describe the scattering
process. In this paper, SNPT is extended to the case of incoherent
scattering. Optimum polarization states are derived and the
results are discussed in relation to the Classic radar optimum
polarizations. In traditional radar polarimetry, modeling of the
radar receive/transmit network is included in the radar voltage
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ers. Modeling of ensembles of precipitation particles is used to
illustrate the results of the analysis.
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Fig. I. The radar alignment convention (RAC) for the monostatic case as
used in classic radar polarimetry.

(10)

(11)

SHY] [1]
Syy X

v = r [1]t [SHH
X SYH

where t denotes Hermitian adjoint and g denotes the polariza

tion vector of the radar either as a receiver or a transmitter in

the RAe. We emphasize that (11) is not meant to model fixed

polarization mono static radar; however, a polarization agile

radar such as POLDIRAD at DLR (the German Aerospace

Agency) at Oberphaffenhofen, Germany can be programmed

to obey (11). The transmit and receive polarization states

of this radar can be set independently to arbitrary elliptic

polarization states. Equation (11) is termed the "specular

voltage equation." From (10) the change of basis formula for

SNPT is found as

or more compactly

copolar reception state defined as X in the RAC, it follows that

the voltage received in the H-V (horizontal and vertical) basis

in this so defined "copolar" channel may be expressed as [5]

SCATTERNG
ax:RJNATE

SYSTEM , _V' i
H~

Z'

1RANSMIT

a:x:RJINATE
SYSTEM

vV'

RECEVE
an:lDINATE
SYSTEM

Fig. 2. The LRH used to describe the transmit polarization state, the
backscattered wave, and the receive polarization state. H' = -H,

V' = V, Z' = -Z. (12)

(8)

(9)

where S is the SNPT scattering matrix. The SNPT scattering

matrix is identical to the KPT scattering matrix for linear

polarizations only since for linear polarizations X is real and

therefore V-I = V T
. For completeness we also give the three

eigenvalue statements: for optic polarimetry (using the LRH)

Note the complex conjugation that appears on the right hand

side of the KPT eigenvalue statement (14) which is a direct

result of modeling the receive radar network.

The three fields, optic polarimetry, radar polarimetry, and

SNPT, may also be compared via the "voltage equations"

associated with each. For a comparison of voltage equations,

see Appendix B.

Hubbert [5] has developed SNPT for the case of coherent

scattering. In this paper SNPT is extented to incoherent

scattering through the use of an ensemble averaged covari

ance matrix. Optimum polarizations are derived and they are

compared to the optimum polarizations that are derived using

traditional radar polarimetry. For a detailed description of the

existing theory for deriving optimum polarizations via the

covariance matrix see [10]-[12]. Optimum polarizations are

those incident polarization states which minimize or maximize

copolar power or cross-polar power. Tragl et al. [11] express

the copolar and cross-polar power functions in real Hermitian

quadratic forms. This allows the optimum polarizations to be

(13)

(15)

(14)

Sx = AX

Sx = AX*

and for SNPT (using the RAC)

Sx= AX.

for KPT (using the RAC)

or in the RAC

as defined in optic polarimetry are found by setting Xs
_
L R H =

Xi = X and solving for X as is done in [7]. This is equivalent

to defining X as the optic copolar reception polarization

state. If one wishes to find the "eigenpolarizations" of KPT,

one sets Xi = X and Xs
_
L R H = -X* and solves for X.

This is equivalent to defining the -X* as the radar copolar

reception polarization state. The reader is reminded that the

optimum reception state, i.e., that reception polarization state

that maximizes copolar power return, for a radar that transmits

X polarization is Xs- R A C = X* when using the RAC. If the

LRH is employed the polarization ratio becomes Xs-L R H =

-X*. Thus we see that the complex conjugation that appears in

both Xs- R A C and Xs-L R H is a result of KPT where the receive

network of the radar is modeled together with the scatterer

[3], [8], [9].

Obviously, Xs-L R H and Xi can be arbitrarily defined. Hub

bert [5] proposed the choice Xi = X and Xs-L R H = -X

which is equivalent to defining -X as the copolar reception

polarization state. Physically this means that

E{; _ Ev'
Ek ElI,

E i E S

---..x::. ---..x::.
Ek ER-

It is now apparent why the SNPT choice of "copolar" po

larization state is advantageous. For forward scattering a

polarization state is an eigenpolarization if Xis = Xi where

the superscript is denotes forward scattering. It seems natural

then to require (9) (i.e., Xs_R A C = Xi) for backscatter eigen

polarizations using the RAe. Using this definition and solving

(7) for X yields the "eigenpolarizations" for SNPT. With the



(17)

(16)
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calculated via the eigenvalues of a 3 x 3 real symmetric matrix

for cross-polar extrema or via the Lagrange multiplier method

for the copolar extrema. This same approach is followed here

for SNPT. First, the nonreciprocal case is solved and then the

simplification SHY = SYH is introduced. Next, ensembles of

precipitation particles are modeled and covariance matrices are

constructed using the transition (T-) matrix method [13]. The

covariance matrices of typical precipitation particles are used

to illustrate the results of the developed theory. Specifically,

we demonstrate how modeling of the radar in KPT affects

polarization responses and optimum polarizations and show

that SNPT eliminates these effects thus allowing for a better

characterization of scatterers.

II. RADAR MODELING AND POLARIMETRIC SIGNATURES

With the advent of polarimetric agile radars, interest in

polarimetric signatures, optimum polarizations and elliptical

polarization basis has increased [14]-[17]. When analyzing the

chacteristics of scatterers it is important to understand how

modeling the radar in KPT effects the various polarization

signatures, i.e., it is of interest to identify and separate those

polarization features that can be attributed to the scatterer(s)

from those caused by the modeling of the radar. With this in
mind SNPT was formulated.

The copolar reception polarization state for SNPT is defined

so that the return from a specular scatterer, such as a spherical

raindrop, will always be completely received by the copolar

channel. A specular scatterer is described in the H-V basis by

the identity KPT scattering matrix

S = [~ ~l
The utility of SNPT can be seen by exarmnmg various

polarization response plots. A polarization response plot shows

a radar measureable as a function of incident tilt and ellipticity

angle [2], [4]. For example, the SNPT copolar and cross

polar power polarization responses of a specular scatterer

are flat planes at unity and zero, respectively. Compare this

to the corresponding copolar power polarization responses

for KPT and optic polarimetry which vary between unity

and zero (see [2], [5]). Therefore, deviations in the SNPT

polarization responses from these two reference planes are

directly attributable to those features of the scatterer which

are different from a specular scatterer. Because of this, we

say that a specular reflector becomes the reference scatterer

for SNPT.

We next illustrate the effects of modeling the

radar on copolar differential phase defined as

t5~(</J, E) arg{S22(</J, E)Sil(</J, En for KPT and ass ....
t5co(</J, E) = arg{S22(</J, E)Sil(</J, En for SNPT. In [5] the
copolar differential phase polarization response is shown for

a scatterer modeled in the RAC in the H-V basis as

S =8

= [~ ~].
This can be thought of as modeling a small oblate raindrop

that is in the Rayleigh scattering regime: the scatterer is

861

much smaller than the wavelength and therefore not only is

the copolar differential phase zero, but also there is zero

phase shift upon backscatter for both vertical and horizontal

incident polarizations. Physically, it does not matter what

elliptical polarization is transmitted, the backscattered wave

suffers no phase shift due to the particle at backscatter.

Therefore, the copolar differential phase should be zero for

all polarization bases. However, Fig. 13 in [5] shows that

t5~ (</J, E) for a scatterer modeled by (17) is in fact not

identically zero. This superfluous nonzero differential phase is

not due to the scatterer but rather due to the nature of the KPT

basis transformation. In contrast, t5~o (</J, E) for this scatterer is

always zero in any polarization basis as shown in [5].

For further insight into the reason that this superfluous

differential phase occurs, consider 45° linear incident polar

ization which can be decomposed into identical H and V

electric field components. When a 45° linear polarized wave

is specularly reflected, the H and V components remain the

same as the incident H and V components in the RAC,

i.e., (9) is true, and the return is completely received by

the KPT copolar channel. Let a differential phase shift now

occur between the incident H and V components. Again the

reflected H and V wave components remain the same as

the incident H and V components, i.e., (9) remains true.

However, the reflected wave will now be divided between the
KPT copolar and cross-polar channels until the differential

phase between the incident H and V components is 90°

whereby the reflected wave will be completely received by

the KPT cross-polar channel. It is the modeling of the radar

receive network that results in the particular definition of

copolar used in KPT that causes the transference of power

from copolar to cross-polar as the ellipticity angle of the

incident wave goes from zero to 90° (i.e., from llinear 45°

to circular). Coupled to the transference of power process

is the occurence of the superfluous {j~(</J, E). One could
argue that an incident right circularly polarized wave actually

does become left hand circular upon specular reflection and

therefore the reflected wave polarization is in fact orthogonal

to the incident polarization state. However, we feel that for

the study of scatterers it is more appropriate and insightful

to focus on the nature of the reflected field components, i.e.,

(9) is fundamental in defining copolar and eigenpolarizations.

Note that optic polarimetrists could analogously argue that an

incident 45° linear polarized wave that is specularly reflected

actually does become -45° linear polarized and therefore the

reflected wave polarization state is orthogonal to the incident

wave polarization state. Hence, the reflected wave should be

directed into the cross-polar channel but is instead is called

copolar in KPT! Again, SNPT circumvents these issues by

considering (9) fundamental in defining the copolar reception

state and eigenpolarizations and doing so eliminates the effects

of modeling the radar and of reversal of propagation direction

on the polarization signatures of scatterers.

III. COVARIANCE MATRIX FOR SNPT

Following [10] and [11], a covariance matrix can be used

to describe incoherent scattering for SNPT. To construct the
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covariance matrix the outer product of the feature vector

is taken which gives the covariance matrix in the H-V

basis (19) as shown at the bottom of the page where (-)

denotes ensemble averages. Note that the covariance matrix

is Hermitian. Initially reciprocity is not invoked in order to

maintain generality. Transformation of the covariance matrix

to other polarization bases is accomplished by a unitary

similarity transformation

(28)

(27)

Thus optimum polarizations depend on interchannel covari

ances. For comparison, the conditions for optimum polariza

tions as given by [11] for KPT are listed next: for cross-polar

optimum polarizations

(20)

where and for copolar optimum polarizations

(36)

(35)

(34)

(31)

(32)

(33)

(30)

(29)

-R24

Rh
R 22

-R12

511 (~:) =522 (X)

522 (~:) = 511 (x)

512 (~:) = - 521(X)

521 (~: ) = - 51 2 (X)

R 11 (~:) =p~ (~:)
=Pc~(X)

=R44(X)

R 22 ( ~:) =P: ( ~ : )

=P:(X)

= R33(X)

where -1/X* is the orthogonal polarization to X. Using

(30)-(33) in (20) it can be shown that

from which the orthogonal power relations are found as

B. Reciprocal Relations

It can be shown that

(26)

(24)

(23)

(25)

xx* ]r?x
*2 * . (21)

(2 X
1

and for cross-polar optimum polarizations

aR22-a- = r[R24 - R 21]
X*

= r[(5215;2! - (5215rl!]
=0

where

Tn(X) = aTa (X) T-1(X).
X*

The conditions for copolar optimum polarizations are

aR11
-'a- = r[R21+ Rd

X*

= r[(5215rl! + (5115r2!]

=0
aR44-a- = - r[R24 + R43]

X*

= - r[(5215;2! + (5225r2!]
=0

The individual members of the specular covariance matrix in

(20) are represented as Rab' a, b = 1,2,3,4.

aa:E(x) = Tn(X) :E(X) - :E(X)Tn(X) (22)
X*

A. Conditions for Optimum Polarizations

Following [11], the optimum polarizations can be found in

terms of the covariance functions themselves by taking the

derivative of the covariance matrix with respect to X* and

equating to zero. The derivative can be calculated as

(SHHSYH!
(ISVHI

2!
(SHVSYH!
(SVVSYH!

(SHHSHV!
(SVHSHV!
(ISHVI 2!

(SVVSHV!

(19)
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C. Copolar Optimum Polarizations

Optimum polarizations can be found using real linear al

gebra. The copolar power function, Rll (X) can be expressed

as

(37)

W 22 = (ISHHI
2) + (ISvvI2) + (ISHVI

2) + (ISVHI2)

+ 2~{ (SHVSYH)} + 2~{ (SHHSyV)}

W23 = 'S{ SvHS;Iv }

W 33 = (ISHHI
2) + (ISvvI2) + (ISHVI

2) + (ISVHI2)

+ 2~{(SHHSyV)} - 2~{(SHVSYH)} (46)

where

In order to find the optimum polarizations, the complex vector

(38) is transformed to a real vector by

(48)

W ll =2((ISHHI
2) + (I Sv v I

2
))

W I 2 =2~{(SHHS;Iv) - (SvvS;Iv)}

W I 3 =0

W22 = (ISHHI
2) + (ISvvI2) + 4(ISHVI

2)

+ 2~{ (SHHSyV)}

W 23 =0

W 33 = (ISHHI
2) + (ISvvI2) + 2~{ (SHHSyV)}

and (47), shown at the bottom of the page. Optimum po

larizations can be found using Lagrange multipliers [18]. A

sixth-order polynomial will result and thus, there are six

possible optimum polarizations for the general case where

SHY # SVH. The Lagrange multiplier method used here is
similiar to that offered by [19] and [20].

Reciprocity is now invoked, i.e., SHY = SVH which

simplifies Wand w:

(38)

(39)

(40)

(41)

~ -~]
1 O'

j 0

o
o
1

-j

where 2- 1
/

2 Q is unitary and Q is defined as

so that

Then Y(X) takes the form

s" (X) = r 2
[1 + XX* 1 - XX* 2~{X} 2'S{X}]

where W is real and symmetric, and v is the real vector

~ and 'S specify the real and imaginary parts, respectively.

Since the first member of the vector y is unity, this allows the

copolar power function to be written in the inhomogeneous

Hermitian quadratic form

(50)

and (49), shown at the bottom of the page. The method of
Lagrange multipliers can be applied to (43) which results in

the following set of linear equations:

with the constraint imposed by (45) where ,\ is the Lagrange

multiplier. Because of the zero entries in (48) and (49), the

solution is simplified. The linear equation in (50) involving

the imaginary part of X, V3, is

(42)

(43)

s"Y = 2.

(44) (51)

and imposes the constraint

yT y = 1. (45)

The members of Wand ware

Wll =2((ISHHI
2) + (ISvvI2))

W 12 = ~{(SHHS;Iv) + (SHHSYH) - (SvvS;Iv)

- (SVVSYH)}

W I 3 = - 'S{(SHHSYH) - (SHHS;Iv) + (SvvS;Iv)

- (SVVSYH)}

where VI, v2, and V3 are the individual members of Y. Thus,

either V3 = 0, i.e., the 'S{X} = 0, or ,\ = W33 . For nonlinear

optimum polarizations to exist ,\ = W 33 . Using this value

for the Lagrange mutiplier, the remaining system of equations

may be solved analytically for VI and V2. However, the con

straint (45) must be checked for a valid nonlinear polarization

solution to exist. The remaining optimum polarizations are

found by setting V3 = 0 and solving the resulting reduced

set of linear equations with the constraint vi + v~ = 1. A
fourth order polynomial in ,\ will result and thus there are

four possible linear optimum polarizations. In comparison,

(47)

(49)
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there are six possible KPT copolar optimum polarizations all

of which can be elliptical [11].

D. Cross-Polar Optimum Polarizations

The cross-polar power function, R22(X), can be expressed

as

(59)

(60)

(61)

VI (Bll - >.) +V2B12 = 0

v IBI 2 + v2(B22 - >.) = 0

2V3(B33 - >.) + b3 = 0

of linear equations is found to be

with the constraint imposed by (45) where b3 is the third

member of the vector b. One solution to this set of equations

is VI = V2 = 0, V3 = 1 which corresponds to circular

polarizations. Thus, circular polarizations are always optimum

polarizations. The other solutions are found from the Lagrange

multipliers satisfying(53)

(52)

X]·
2

-X

where

The cross-polar power can be expressed III terms of the

inhomogeneous Hermitian quadratic form
and then v is found from

(62)

The X can be found from v via (44). Thus, besides circular

polarization, there are possibly two other optimum polariza

tions (and their orthogonal complements) which will be linear

if b3 is zero. This is an important condition to recognize: the

cross-polar power minimum polarization state will be linear if:

IV. MODELING PRECIPITATION PARTICLES

The optimum polarizations for ensembles of scatterers are

now calculated from simulated covariance matrices. The model

used is described in [21] which employs the transition (T -)

matrix method to calculate the 2 x 2 scattering matrix and then

integrates over the specified size and orientation distributions.

(64)

(65)

(63)
b3

V3 = - ----:-c=------,--,-
2(B33 - >.)

2 (1 - V~)(Bll - >.)2
V

2 = Bf2 + (Bll - >')2

vi = 1 - V~ - v~.

for reciprocal scattering. This condition does not apply to

KPT. In KPT there are also three orthogonal pairs of optimum

polarizations but they are, in general, elliptical. The polariza

tion state for which the cross-polar power attains an absolute

minimum is referred to as the characteristic polarization state.

We finally note that the equations developed above are based

on the SNPT change of basis (12) which is for backscatter;

however, since this change of basis expression is identical to

the change of basis equation for forward scattering

§ = V-I [ S k ~ S k ~ ] V (67)
Sis Sis ,

VH VV

except that the entries of S are now forward scattering ampli

tudes, the above equations are applicable to other forward and

bistatic scattering problems as well.

(54)

Because of the zero entries, the extrema problem is simplified.

Upon applying the method of Lagrange multipliers, the system

Bi: =0.5[(ISHVI
2) + (ISVHI

2)]

B I 2 = 0.25~{ (SVVSYH) - (SHHSYH)

- (SHHSf'rV)+ (SvvSf'rv)}

B I 3 =0.258'{(SvvSf'rv) - (SHHSf'rv)

- (SVVSYH) + (SHHSYH)}

B 22 = 0.25[(ISHHI
2) + (ISvvI2) + (ISHVI

2)

+ (ISVHI2) - 2R{(SHV SYH) + (SHHSyV)}]

B 23 = 0.58'{ (SHVSYH)}

B 33 = 0.25[(ISHHI
2) + (ISvvI

2) + (ISHVI
2) + (ISVHI

2)

+ 2~{ (SHVSYH) - (SHHSyV)}] (55)

and (56), shown at the bottom of the page. The extrema of

(54) can again be found by applying the method of Lagrange

multipliers. There will be in general six optimum polarizations

for the nonreciprocal case. Invoking reciprocity where SHY =

SVH, (55) and (56) simplify to

Bi: = (ISHVI
2)

B I 2 =0.5R{(SvvSf'rv) - (SHHSf'rV)}

B I 3 =0

B 22 = 0.25[(ISHHI
2) + (ISvvI

2)
- 2~{ (SHHSyv)}]

B 23 =0

B 33 = 0.25[(ISHHI
2

) + (ISvvI
2) + 4(ISHVI

2)

- 2R{(SHHSyv)}] (57)

b
T

= [0 0 8'{(SHHSI'Iv) + (SHVSVV))]' (58)

where B is real and symmetric and v is given by (44). By

expanding (52) and (54) and equating coefficients, Band b

are found to be

(56)
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TABLE I
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (69)

OPTIMUM POLARIZATIONS

(70)
IReol

Pea = _--'c------'-----,-,-

(p/J,Px )1/2'

where Reo = (S22S11) (or Reo = (822811) for SNPT),
is an important microphysical indicator of the melting level

and of mixed precipitation types [24], [25]. The co-to-cross

covariance is defined as R{f = SnSh for KPT and as
s ....

u; = SllS~1 for SNPT.

There are two KPT copolar power minima located at ¢ =
-84.60,

E = -38.4
0 and ¢ = 84.6

0,
E = 38.4

0. Neither

of these KPT copolar minima polarization states are copolar

optimum polarizations for SNPT as can be seen by comparing

the KPT and SNPT copolar power plots. All of the KPT

polarization response plots show minima or maxima in the

vicinity of the KPT copolar power minima polarization states.

These minima and maxima are caused by the' radar receive

network modeled in the KPT basis transformation as discussed

previously. Since the minima and maxima for ZtfR(¢' E) and

D~ (¢, E) are located at the copolar power minima, one could

be mislead into believing that a greater sensitivity to these

parameters might be achieved by making measurements in

these or the surrounding elliptical polarization bases. The

problem with such a scheme is seen by examining the KPT

Peo plot which decreases in value around the copolar power

minima and in fact p~ (¢, E) does go to zero at the KPT

copolar power minima. As Pea (¢, E) decreases, the fluctuations

in Deo(¢ , E) and ZOR(¢, E) increase very rapidly due to

Rayleigh fading [26]. This effect substantially reduces the

accuracy to which Deo(¢ , E) and ZOR(¢, E) can be estimated

with dual polarization radars.

Since the conditions for optimum polarizations depend on

co-to-cross channel covariances, it is insightful to examine

the magnitude of R x show in Fig. 4. The magnitude of

the KPT R x appears to approach zero at seven locations

(three are hidden). In accordance with (28), IR{f1 has only

four nulls whoses locations are given by the KPT copolar

optimum polarizations in Table I. Another null does occur at

¢ = -900,
E = 00 but this represents the same polarization

as ¢ = 90 0,
E = 00. There are no minima in IR~ I at the

ellipitical polarization states and these KPT IRxI minima at

elliptical polarizations exist due to the modeling of the radar

receive network in the KPT basis transformation. As a result,

KPT theory yields more copolar optimum polarizations than

does SNPT for this class of scatterers. We finally note that

that maximum and minimum SNPT Deo(¢ , E) and ZOR(¢, E)
occur at the characteristic polarization state or its orthogonal

complement polarization state and that the SNPT Peo (¢, E) is

always greater than 0.96.

The polarization response plots for this ensemble of scat

terers are now compared for KPT and SNPT. Fig. 3 compares

the copolar power (Z), copolar differential reflectivity (ZOR)

and copolar differential phase (Dca) polarization responses

while Fig. 4 compares the copolar correlation coefficient (Pea)

and the magnitude of the co-to-cross covariance (IRxl). The

KPT polarization responses are found in the left panels while

the corresponding SNPT polarization responses are found

to the right. The generalized copolar correlation coefficient,

calculated as

(69)

v'2(SHHSi'IV)

2(ISHvI2)

v'2(Svv Si'Iv)

KPT SNPT
tilt ellip. tilt ellip.

max. 0° 0° 0° 0°
COPOL saddle 90° 0° - -

min. 1 -84.6° -38.4° - -
min. 2 84.6° 38.4° 90° 0°
max. _45° 43.7° 0° 45°

XPOL saddle 45° 1.3° 45° 0°
min. 0° 0° 0° 0°

The wavelength is 5.5 em. The model was modified so that

arbitrary mean canting angles for ensembles of particles could

be included. This was accomplished by using the Fisher

distribution [22], [23] which is equivalent to a two dimensional

Gaussian distribution that has been mapped to a sphere. For

details of the Fisher distribution, see Appendix C.

An exponential size distribution of equilibrium shaped

raindrops (oblate spheriods) is modeled as N(D)

No exp {-3.67(D / Do)} where D is the diameter of an

equi-volumetric spherical raindrop and Do is the median

diameter. The parameters for the exponential distribution are:

No = 8000 mm"! m-3
, Do = 2.56 mm, D rn in = 0.5 mm,

D rn ax = 7 mm. A mean canting angle in the polarization plane

(plane perpendicular to the radar line of sight) and a canting

angle variance is specified using the Fisher distribution. The

Fisher distribution parameters are 7J = ¢' = 0 and K, = 100
- -r-]

where () and ¢ represent the mean canting angle in a spherical

coordinate system with () being the elevation angle and ¢' the

azimuth. The incident wave is directed along the negative x

axis (see [21] for details). Thus for this orientation distribution

the mean canting angle is zero (minor axis vertical) and the

standard deviation as calculated by (C5) is approximately

8.70
• Because of reciprocity the covariance matrix used here

will have the form [l0]

[

(ISHHI2)

Eo = v'2(SHvSl'm)

(SvvSl'm)

The covariance matrix for the ensemble then is

[

1.0 0.0 0.6183e-j5.o4° ]

Eo = 0.0 0.0036 0.0

0.6183ej5.o4° 0.0 0.4119

where the matrix has been normalized by (ISHHI2) with

10 log [(ISHHI2)] 57.7 dBZ which is conventional

radar reflectivity. The electric fields are modeled with the

ejwte-jkr time-space convention and therefore Dca is defined

as arg {(SVVSi'IH)}' From the covariance matrix (69),

(SHH SHv) = (Svv Si'Iv) = 0 which satisfies the conditions
(24)-(29) which means that H and V are optimum copolar

and cross-polar polarizations for both KPT and SNPT. All

of the optimum polarizations are listed in Table I (orthogonal

complements of the cross-polar optimum polarizations are

not listed). The characteristic polarization, the cross-polar

minimum, is horizontal.
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Fig. 3. Polarization response plots as functions of transmit tilt (q,) and ellipticity (E) angles for the ensemble of raindrops described by (69). Left column

is due to KPT and the right column is due to SNPT. From top to bottom: Copolar power, copolar differential power and copolar differential phase.
Differential reflectivity is in decibel scale.

The effects of a nonzero mean canting angle is illustrated

next by using the same size distribution of raindrops as

described by (69) and letting (j = 20° and (j,' = 90° in

the Fisher distribution. This gives a mean tilt angle of 20°

from vertical in the plane of polarization. For polarization

definitions, a positive tilt angle is measured counterclockwise

from the horizontal axis. Thus, the corresponding tilt angle is

- 20° for polarization definitions. The covariance matrix is

where the matrix

10 log [(ISHHI 2 )1 =

are given in Table II. Common optimum polarizations for

K.PT and SNPT are the copolar maximum and cross-polar

minimum which are both linear at -20°. This is the

characteristic polarization state. Also, the SNPT copolar

minimum corresponds with the copolar KPT saddle point. For

SNPT the cross-polar maximum occurs (and always does) for

circular polarizations but for KPT, the cross-polar maximum

is at a tilt angle of 25.0° and ellipticity angle of 43.7°. There

are also two copolar minimums for KPT which are again not

optimum polarizations in SNPT and are attributed to the radar

receive network modeled in KPT. Note that the condition for

SNPT linear characteristic polarization state, (66), is satisfied

by the matrix in (71).

Next, the same particle size distribution is given a mean

canting angle outside the polarization plane by letting (j = 20°

0.1813ej-171.4°

0.0431
0.1l66e-j166.6°

0.6955ej-3.76° ]

0.1l66ej1666°

0.5068

(71)

is normalized by (ISHHI 2
) with

57.3 dBZ. The optimum polarizations

[

1.0
0.1813ej171.4°

0.6955ej3.76°
:Eo =
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Fig. 4. Polarization response plots as functions of transmit tilt (</» and ellipticity (E) angles for the ensemble of raindrops described by (69). Left column is

due to KPT and the right column is due to SNPT. Top panels: Copolar correlation coefficient. Bottom panels: cross covariance.

TABLE II
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (71)

OPTIMUM POLARIZATIONS

TABLE III
THE OPTIMUM POLARIZATIONS FOR THE ENSEMBLE OF

SCATTERERS DESCRIBED BY THE COVARIANCE MATRIX IN (72)

OPTIMUM POLARIZATIONS

KPT SNPT
tilt ellip. tilt ellip.

max. _20° 0° ·20° 0°

COPOL saddle 70.0° 0.0° - -
min. 1 64.5° 38.5° - -
min. 2 75.5° -38.5° 70° 0°

max. 25.0° 43.7° 0° 45°

XPOL saddle 25.0° 1.3° 25° 0°

min. _20° 0° _20° 0°

KPT SNPT
tilt ellip. tilt ellip.

max. -15.6° 0.0° -15.6° 0°

COPOL saddle 74.4° 0.0° - -

min. 1 79.7° 38.8° - -

min. 2 69.2° 38.8° 74.4° 0°

max. 29.4° 43.9° 0° 45°

XPOL saddle 29.4° -1.1° 29.4° 0°

min. -15.6 ° 0° -15.6° 0°

and (fi' = 50°. The covariance matrix is before the the SNPT cross-polar saddle point is located 45° in

tilt angle away from the tilt angle of the cross-polar minimum.

The numerical method used here failed to locate the KPT

copolar minimum polarizations even though double precision

(32-b representation) was used. In order to find the correct

values for the Lagrange multipliers, a simple search method

was implemented by incrementing X (the Lagrange multiplier)

until a value was found that gave lv = 1. The value

of the Lagrange multipliers are: 1) 0.04432415474 and 2)

0.04432415661. As can be seen it is only after the eighth

decimal place that the two numbers differ. These numbers were

confirmed by calculating the vector v and the resulting tilt and

ellipticity angles and then comparing them to those obtained

by using a simple search method to find the minimum of the

0.1371e-j171.8°

0.026
0.0857e-j166.9°[

1.0
0.1371ej171.8°

0.6804ej3.84°
:Eo =

0.6804e-j3.84° ]
0.0857ej166.9°

0.4873

(72)

where the matrix is normalized by (ISHHI 2
) with

10 log [(ISHHI 2
) ] = 57.4 dBZ. The optimum polarizations are

given in Table III. Common optimum polarizations for KPT

and SNPT are again the cop alar maximum and cross-polar

minimum which are both linear -15.6°. This angle can be

obtained by projecting the mean canting angle onto the plane

of polarization and is termed the apparent mean canting

angle. The other common optimum polarizations are the KPT

copolar saddle point and the SNPT copolar minimum. As
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A. Mixed Precipitation

Next, wet hail particles are added to the above described

ensemble of rain particles in order to simulate a rainlhail

mixture. Wet hail is modeled as oblate spheroids with an axis

ratio of 0.75 and with the dielectric constant of water at 0°

centigrade. The raindrops are given a mean canting angle of

- 20° in the plane of polarization. The hailstones are assumed

to follow an exponential size distribution of the form [27]

where No = 115A3.63, A is in units of mm- 1, No is in

mm"! m:", and D is in mm. The distribution was truncated

at 0.5 em and 4.0 cm. The mean tilt angle, e, is 90° (i.e., the

major axis is vertical) with a standard deviation of 20° and

¢/ is distributed uniform in the interval 0-2x. Thus, the hail

particles alone exhibit negative ZDR (in the H-V basis) and the

ZDR value is -0.85 dB. The reflectivity, 10 log ((ISHH 1

2
) ) ,

of the hail alone was made equal to the reflectivity of the

rain component. Combining the hail with the rain yields the

following covariance matrix:

copolar power function. These KPT copolar power minima,

which can be difficult to find numerically, only exist because

of the receive network modeled in KPT and do not exist in

SNPT.

It was found that for all mean canting angles and variances

of canting angle simulated, the tilt angle of the characteristic

polarization state yielded the apparent mean canting angle,

and that the accompanying ellipticity angle was zero for

both SNPT and KPT. Several other particle types were also

modeled, e.g., oblate ice and two layer (i.e., water coated ice),

and again for various mean canting angles and variances of

canting angles the cross-polar minimum power polarization

states were always linear and indeed from the covariance

matrices it was observed that in each case 'S{SHHSHv} =
-'S{SHVSyv}'

-10 ~ ~
~

-20

".. -30

'"'t:I-- -40

~
-50....:I

~ -60

Eo-< -70

....:I
>-< -80
Eo-<

-10 -5 0 10

RELATIVE HAIL REFLEC. ( dBZ)

angle of the cross-polar minimum polarization state for KPT

and SNPT is -18.8° which is very close to the -20.0° mean

canting angle given to the raindrops. This result shows that

even with significant amounts of hail, the algorithm was able

to resolve the apparent mean canting angle of the rain particles.

If the number density of the hail particles is increased, thus

increasing the hail reflectivity, the estimated mean canting

angle will err further from - 20° and likewise, if the hail

density is decreased, better estimates of the mean canting

angle of the raindrops can be expected. In other words, the

estimated mean canting angle will be a reflectivity weighted

average of the hail and rain mean canting angles. To illustrate

this, the above ensembles of raindrops and hail particles are

now mixed for various relative reflectivity values. Shown in

Fig. 5 are the calculated mean tilt angles for the characteristic

polarization basis and the copolar maximum polarization basis

for both KPT and SNPT. For low relative hail reflectivities

both the characteristic tilt angles and the copolar maximum

tilt angles give good estimates of the mean canting angle

of the raindrops. As the relative hail reflectivity increases,

the characteristic tilt angle continues to give a reasonable

estimate of the mean canting angle of the raindrops up to

approximately 5 dBZ relative hail reflectivity. However, the

copolar tilt angle decreases rapidly toward -90° which is

the mean canting angle of the hail particles. For this case

the tilt angle of the characteristic polarization state is a

better estimator of the mean canting angle of the raindrops.
Fig. 6 shows the accompanying ellipticity angles for the KPT

characteristic polarization state (Curve A) and the copolar

maximum polarization state (Curve B). For all values of

relative hail reflectivity the ellipticity angles are small being

less than 10. The ellipticity angles for SNPT are not shown

since they are zero.

If the hail particles are distributed uniform random in both

e and ¢/ (i.e., no preferential alignment) then much larger

relative hail reflectivities will not affect the estimated mean

canting angle of the raindrops using either the tilt angle

from the characteristic polarization state or copolar maximum

polarization state. When relative hail reflectivities as high as

Fig. 5. The tilt angles for the characteristic polarization state and the copolar
maximum polarization state as a function of the relative horizontal reflectivity
of the hail, e.g., for 0 dBZ the rain and hail ensembles have equal reflectivities.
Curve A: KPT characteristic tilt. Curve B: SNPT characteristic tilt. Curve
C: KPT copalar maximum tilt. Curve D: SNPT copolar maximum tilt.

(73)

0.0907e-jl71.4°

0.025
0.0583e-j1666°

N(D) = Noe- A D

[

1.0
~o = 0.0907ej171.4°

0.8934e-j039°

0.8934ejO.39° ]
0.0583ej166.6°

0.8619

(74)

which is normalized by (ISHHI 2
) with 10Iog((ISHHI 2

) )

60.3 dBZ. The optimum polarizations are are given in

Table IV. For this covariance matrix 'S{SHHSHv}

-'S{SHVSyv} and therefore the SNPT cross-polar minimum

is linear; however, the cross-polar minimum for KPT is slightly

elliptical with the angle of ellipticity being -0.3°. Also, the

copolar maximum polarization state no longer match the cross

polar minimum polarization state for either KPT or SNPT as

was true for single distribution of particle type (i.e., only rain

or hail or graupel etc.). The nonzero ellipticity angles for KPT

are a result of modeling both the radar receive network as

well as the rainlhail mixture in KPT. The nonmatching of the

copolar maximum polarization state and cross-polar minimum

polarization state is related to the mixing of different particle

types with different orientation distributions thus creating a

nonsymmetric orientation distribution of particles. The tilt
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Fig. 6. The ellipticity angles for the characteristic polarization state and the
copolar maximum polarization state as a function of the relative horizontal

reflectivity of the hail, e.g., for 0 dBZ the rain and hail ensembles have equal

reflectivities. Curve A: ellipticity angle of KPT characteristic polarization
state. Curve B: ellipticity angle of KPT copolar power maximum polarization
state. The equivalent SNPT ellipticity angles are always zero.

TABLE IV

THE OPTIMUM POLARIZATIONS FOR THE RAINIHAIL MIXTURE. THE ENSEMBLE

OF RAINDROPS IS DESCRIBED BY THE COVARIANCE MATRIX IN (69) BUT WITH A

MEAN CANTING ANGLE OF - 20° IN THE PLANE OF POLARIZATION

OPTIMUM POLARIZATIONS

KPT SNPT
tilt ellip. tilt ellip.

max. -25.6° -0.24° -25.6° 0° .

COPOL saddle 57.2° 0.23° - -
min. 1 64.2° -42.8° - -
min. 2 58.3° 43.3° 57.2° 0°

max. -8.58° 44.7° 0° 45°

XPOL saddle 26.2° -0.11° 26.2° 0°

min. -18.8 ° -0.30° -18.8° 0°

35 dBZ are used, the estimated canting angle is within a

half of a degree of the actual raindrop mean canting angle

of - 20
0

• To explain this, note that ensembles of particles

which have a uniform orientation distribution have co-to-cross

covariances that are are zero and therefore the co-to-cross

covariances of the mixture are a function of the raindrops

only. As another application, it is well known that small ice

crystals can be oriented by in-cloud electric fields (giving a

nonzero mean canting angle) while the larger snow particles

are not and thus the larger particles are uniformly random

distributed. Even if the large snow particles contribute 35

dBZ more relative reflectivity than the oriented ice crystals,

it still should be possible to recover the mean canting angle

of the ice crystals provided that an accurate measurement of

the cross-polar signal can be made.

B. Separation of Shape and Orientation

In order to separate particle shape effects from the effects of

orientation (i.e., spread of canting angle distribution) a tech
nique suggested by [28] is used. They showed that the ratio of

the maximum to minimum LDR value for linear polarizations

is nearly independent of shape effects and depends primarily

on orientation effects. The general linear depolarization ratio

is defined here as LDRx = 10 log [ISxy/SxxI2] where X

and Y are any two orthogonal polarization states. Accordingly,

Fig. 7. LDRH - LDR45 as a function of the standard deviation of the
canting angle distribution (J. Curves A, B, C correspond to drop size

distributions truncated at 3, 5.5, and 7 mm, respectively.

LDRH and LDR45 represent the linear depolarization ratio in

the H-V and ±45 linear polarization bases. LDR45 can be

obtained from ~ in (20) by letting X = 1.

Again, raindrops are modeled as before with exponential

size distribution and a Fisher spatial distribution with a co

variance matrix as given by (69). The upper limit of the

drop size distribution is varied between 3-7 mm to simulate

a variety of mean shapes which will vary the ZOR of the

ensemble. Shown in Fig. 7 is the difference LDRH - LDR45

as a function of the standard deviation of the canting angle

distribution a, Curves A, B, C correspond to the maximum

drop size diameters of 3, 5.5, and 7 mm, respectively. As can

be seen the curves lie very close to one another even though

ZOR varies as much as 2.6 dB for a given value of a as

is shown by Fig. 8. If the particles have uniform orientation

distribution them LDRH - LDR45 = 0 and ZOR = O. Since

LDRH - LDR45 is nearly independent of ZOR, a reasonable

estimate of the standard deviation of the canting angle can be

made assuming that the particles follow a Fisher orientation

distribution. If the particles have a mean canting angle other

than horizontal, then the above polarimetric transformation can

be applied so that the covariance matrix is expressed in its

characteristic polarization basis. The mean axis ratio can be

estimated from ZOR in this basis.

C. Symmetry and Optimum Polarizations

It has been established [29] that for single scatterers possess

ing a line of symmetry (perpendicular to the line of sight) there

exists a linear polarization state such that the cross-polar power

is zero. Interestingly, this is equivalent to the condition (66)

for coherent scattering and can be easily seen by examining

the expression for the KPT cross-polar nulls for coherent

reciprocal scattering, shown as (75), at the bottom of the next

page. As can been seen the numerator is always real and if
(66) is true then the denominator is also real. Thus Xxnull

is real and the polarization state is linear. Condition (66) can

also be derived from the expression for the cross-polar null

polarization states for SNPT. But for an ensemble of particles,

(66) only applies to the cross-polar power extrema for SNPT

and is not a sufficient condition for cross-polar power extrema
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Fig. 8. ZDR as a function of the standard deviation of the canting angle dis
tribution (J". Curves A, B, C correspond to drop size distributions truncated

at 3, 5.5, and 7 mm, respectively.

V. CONCLUSION

In traditional radar polarimetry (KPT), both the scatterer and

the transmit/receive network of the radar are modeled in the the

change of basis formulation (2). Specifically, it is the modeling

of the receive network of the radar that is responsible for the

for KPT. The above example of a mixture of hail and rain

particles illustrated this fact. It is intuitively satisfying that the

condition for linear cross-polar nulls for coherent scattering

is identical to the condition for linear cross-polar extrema for

incoherent scattering.

Our modeling studies show that if the particle orientation

distribution is symmetric about some plane then the character

istic polarization basis (or cross-polar null polarization state)

is linear and the tilt angle of the characteristic polarization

state is the apparent mean canting angle of the ensemble of

particles for both KPT and SNPT. If two particle ensembles

with different orientation distributions are combined such that

the composite ensemble is no longer symmetric, then the

characteristic polarization state in KPT becomes elliptical

although only slightly for the case examined in this paper.

In contrast, the characteristic polarization state was linear for

SNPT. We note that the characteristic polarization state in

SNPT will always be linear for any ensemble that is composed

of symmetric particles. We have observed that for any of the

particles that are modeled by the T-matrix method, which must

be rotationally symmetric, condition (66) is always satisfied.

Since the covariance matrix is constructed by a weighted

incoherent addition of the individual particles, condition (66)

will also necessarily be satisfied for the ensemble regardless of

the symmetry of the orientation distribution. A possible indi

cator of nonsymmetric orientation distribution is the degree of

similarity of the SNPT copolar power maximum polarization

state and characteristic polarization state.

complex conjugation in the eigenvalue statement (14) and the

transpose instead of inverse in (2). This modeling of the radar

receive network affects optimum polarizations and polarization

responses. For example if the copolar differential quantities

ZDR (differential reflectivity) or Dca (differential phase) are

plotted as a function of incident tilt and ellipticity angles,

large minima and maxima values result in the areas around

the KPT copolar power minima (e.g., see Fig. 3). Specular null

polarization theory (SNPT), which uses (9) for the definition

of eigenpolarization, shows that these minima and maxima are

a result of modeling the radar receive network in KPT.

SNPT does not include modeling of the radar receive

network and as a consequence separates those characteristics

that are due to the nature of the scatterer. This separation

is accomplished by using a specular scatterer (for example,

a spherical raindrop) as a reference scatterer. This means that

that polarization state which results when a plane wave is spec

ularly reflected is defined as the copolar reception polarization

state. The resulting mathematics when expressed in the RAC

takes a standard form: the eigenvalue s t a t ~ m e n t is Sx = AX

and the change of basis transformation is S = V-ISV. This

paper has extented this theory to incoherent scattering using

a covariance matrix approach and the optimum polarizations

were derived. The results for the reciprocal case show that

there is only one value for the Lagrange multiplier that

corresponds to a SNPT copolar elliptical optimum polarization

and this optimum polarization can be found analytically. The

remaining four SNPT optimum polarizations are always linear

and are found numerically via the Lagrange multiplier method.

This is in contrast to traditional radar polarimetry theory

which yields six optimum copolar polarizations which may be

either linear or elliptical. Our modeling studies for ensembles

of spheroids indicate that there are only two linear SNPT

copolar optimum polarizations, a maximum and a minimum,

while there are four KPT copolar optimum polarizations, a

maximum, two minima and a saddle point. The two additional

KPT optimum polarizations, which are KPT copolar minima,

are attributed to modeling the radar receive network. As in

KPT there are three SNPT optimum cross-polar polariza

tions along with their orthogonal counterparts. However, in

SNPT one cross-polar optimum polarization is always circular.

The remaining two optimum polarizations will be linear if

8'{(SHHSHV)} = -8'{ (SHVSyV)}' (66), which is not true

for KPT. It is intuitively satisfying that the condition for cross

polar linear optimum polarization for incoherent scattering

is the same condition as for coherent scattering in SNPT.

The zero entries in the Hermitian quadritic forms for copolar

and cross-polar power for SNPT reduce the complexity of

calculating optimum polarizations for SNPT in comparison to

KPT.

Ensembles of particles were modeled using the transition

(T-) matrix as was done by [21]. Their method was extended

353015 20 25
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where S are the members of the optic (Jones) scattering matrix

and are related to the radar (Sinclair) scattering matrix by

which is valid for relating the H-V components of the two

matrices only. Using this relationship, the matrix S will be

written as

where t denotes Hermitian adjoint (transpose conjugate). The

difference between the three equations can be understood by

examining the definition of the reception polarization vectors

f, h, and g. In optic polarimetry f denotes a unit polarization

(AI)

(A2)

(Bl)

(B2)

(B3)

~ H V ] [Ef ]
Svv Ev

optic polarimetry

radar polarimetry

SNPT

. [-1s= o

V =ftEL RH

V =h~ERAC

V =gtERAC

4) Calculate the relevant radar parameters e.g.,

ZDR, Deo , Peo in this basis. These parameters can

be used to infer the mean shape, Mie scattering effects

and particle mixtures.

5) Transform the covariance matrix to the linear basis

which is 45° from the characteristic polarization basis

and calculate LDR in that basis. Difference this LDR

with the LDR in the characteristic polarization basis to

obtain an estimate of the canting angle spread.

Finally, we note that SNPT is equivalent to treating the

complex backscattering amplitudes as if they were complex

forward scattering amplitudes and then analyzing the backscat

ter problem as a forward scattering problem with the additional

restriction that SHY = SVH. Therefore, SNPT presented here

for the case where SHY -::J SVH may also be applied to general

forward or bistatic scattering problems.

S = [-SHH -SHV] (A3)
SVH Svv'

Substituting (A3) into (AI) gives

[EHs f] = [-SHH -SHV] [Ek] (A4)
EVf SVH Svv Et·

Using this matrix equation it is simple to solve for the bilinear

polarization transfer function (7).

ApPENDIX A

DERIVATION OF POLARIZATION TRANSFER FUNCTION

To obtain the equation that relates incident and scattered

polarization ratios in the LRH, we begin with the optic

scattering matrix equation in the H-V (horizontal and vertical)

basis

ApPENDIX B

COMPARISON OF VOLTAGE EQUATIONS

We compare the three voltage equations and show how the

three different change of polarization basis formulas result.

to allow for arbitrary mean canting angles which was accom

plished by using a Fisher distribution [23] to model the particle

orientation distribution. When a single class of particles, such

as raindrops, was modeled with a Fisher distribution, the

tilt angle from the cross-polar power minimum polarization

(the characteristic polarization state or basis) was the mean

canting angle if the ensemble mean canting angle was in the

plane of polarization; otherwise the tilt angle from the cross

polar power minimum polarization was the apparent mean

canting angle which is that angle that results when the mean

canting angle of the ensemble is projected on to the plane

of polarization. If two particle ensembles, such as raindrops

and hailstones, have different orientation distributions, then the

tilt angle from the cross-polar power minimum polarization

will be, in general, a weighted average of the mean canting

angle from each particle ensemble. If, however, one particle

ensemble is distributed uniformly random in space while the

other possesses a mean canting angle, then it is possible to

detect the mean canting angle even if the reflectivity of the

randomly oriented particles exceeds the reflectivity of the

oriented particles by 30-35 dBZ. For the mixture of hail

and rain example given in this paper, the tilt angle from

the cross-polar power minimum polarization was a better

estimator of the mean canting angle of the raindrops than the

tilt angle from the copolar maximum polarization. Since for

ensembles of spheroids (66) is always true, the SNPT cross

polar minimum polarization state will always be linear for

this class of scatterers. This is not necessarily true for KPT

as the hail/rain ensemble illustrated. For all of the various

mixtures of spheroids we have modeled, the SNPT copolar

optimum polarizations were always linear, i.e., constraint

(45) was never satisfied when the Lagrange multiplier A =

W 33 . Therefore, we believe that for ensembles composed of

rotationally symmetric particles, the SNPT copolar optimum

polarization are always linear. Our modeling results also

suggest that for ensemble of spheriods there exist only two

SNPT copolar optimum polarizations both of which are linear

while there are four KPT copolar optimum polarizations

of which two are typically elliptical. We believe that the

two additional KPT copolar optimum polarizations and the

ellipticity angles of the optimum polarizations exist only due

to the modeling of the radar receive network in the KPT

equations.

Our modeling results also showed that it is possible to sepa

rate orientation effects from shape effects as was suggested by

[28]. This is done by calculating LDR (linear depolarization

ratio) in the characteristic polarization basis and also in the

linear basis 45° in tilt angle from the characteristic polarization

basis. The difference of these two LDR's is a good estimator

of the spread of the canting angle distribution.

For meteorological applications, we then suggest the fol

lowing steps.

1) Accurately measure the backscatter covariance matrix

in the H-V basis.

2) Calculate the characteristic polarization state from which

the mean canting angle is estimated.

3) Transform the covariance matrix to the characteristic

polarization basis.
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where h denotes the field incident on the scatterer. From

(B4)-(B6) the change of basis formulas can be derived. Note

that even though different coordinate conventions are used,

all polarization vectors transform acording to the same rule:

f = ur, h; = Vh~, g = Ug/, and h = Vh' where f

denotes a new polarization basis, [see (3) for a definition of

V.] Substituting these into (B4), (B5), and (B6) gives the

change of basis formulas S' = V-ISV, S' = VTSV, and

S' = V-ISV, respectively.

reception vector defined in a LRH. Since the incoming wave

is also defined in the same coordinate system, i.e., LRH, a

standard complex inner product rule is employed to find the

received voltage. In radar polarimetry h actually denotes the

transmit polarization state of the receiving radar in the RAe.

One must realize that if a radar transmits X polarization than

it receives X* when the RAC is used. This is why hT is used

instead of h"l in the radar voltage equation and this is how

modeling the radar is included in the radar voltage equation.

In SNPT g denotes a unit polarization reception vector defined

in the RAe. Since the incoming wave is also defined in the

RAC, again a standard complex inner product rule is used to

calculate the voltage.

The above voltage equations can be expanded to include

the scattering matrices:

v = ftSh

V =h~Sh

V=gtSh

optic polarimetry

radar polarimetry

SNPT
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Fig. 9. Values of K for the fisher distribution versus solid angle e with in
which lie 68.27% of the canting angles of the particles.

where Bis the solid angle within which 68.27% of the particles

lie. If K; ?: 3 (values of B less than :::::::52°), (C4) simplifies and

K, can be directly approximated by

1.1479
K, ::::::: 1 _ cos e' (CS)

In other words, if one wishes to restrict 68.27% of the canting

angles of the particles to within a solid angle of 52° or less,

then K, may be found directly with (C5); otherwise (C4) should

be used. Shown in Fig. 9 is a plot of (C4) with Bon the vertical

axis and the base ten logarithm of K, on the horizontal axis.
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