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Abstract

We present a novel method to separate specular reflec-

tion from a single image. Separating an image into diffuse

and specular components is an ill-posed problem due to

lack of observations. Existing methods rely on a specular-

free image to detect and estimate specularity, which how-

ever may confuse diffuse pixels with the same hue but a dif-

ferent saturation value as specular pixels. Our method is

based on a novel observation that for most natural images

the dark channel can provide an approximate specular-free

image. We also propose a maximum a posteriori formu-

lation which robustly recovers the specular reflection and

chromaticity despite of the hue-saturation ambiguity. We

demonstrate the effectiveness of the proposed algorithm on

real and synthetic examples. Experimental results show

that our method significantly outperforms the state-of-the-

art methods in separating specular reflection.

1. Introduction

The observed color of an image is formed from the spec-

tral energy distributions of the light reflected by the surface

reflectance, and the intensity of the color is determined by

the imaging geometry. This imaging process can also be ex-

plained in terms of the diffuse and specular reflections ac-

cording to their physical properties. Diffuse reflection can

be assumed to be associated only with the relative angle

between the light direction and the surface normal among

the imaging geometry regardless of the viewing direction,

while specular reflection is dependent on the viewing di-

rection. As shown in Figure 1(a), natural objects tend to

have the diffuse property as well as the specular property

on the reflection model. However, the behavior of the spec-

ular reflection often leads to problems in many computer

vision applications such as stereo matching, segmentation,

and recognition. Most of the applications simply consider

the observed image as a diffuse reflection model, regarding

the specular reflection as outliers.

One of the notable works in separating specular reflec-

tion from a single image is studied by Tan and Ikeuchi [18].

(a) (b)

(c) (d)

Figure 1. Specular separation. (a) Input image. (b) Our result.

(c) Dark channel. (d) Result of [18]. Our result correctly distin-

guishes between diffuse and specular reflections, while the pre-

vious method inadequately recognizes the background region as

specular reflection. Note that dark channel is similar to the spec-

ular component recovered by the previous method in many cases

of natural images. Please refer to the electronic version for better

visualization of all results in this paper.

Their method shows a satisfactory result, however it fails in

the presence of the colors which have the same hue compo-

nent with different saturation one. This hue-saturation am-

biguity has been an issue in the recent studies of the single

image-based specular reflection separation. To address the

limit of the previous approaches, we introduce the statistics

that a diffuse pixel of natural images in general has very

low intensity in at least one color channel, motivated by

the dark channel prior [4]. As shown in Figure 1(c), the

dark channel of an image provides a pseudo specular re-

flection result, which is similar to the previous result shown

in Figure 1(d). In this paper, we also propose a maximum

a posteriori (MAP) approach that incorporates priors in the
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reflection model, resulting in more stable separation of the

specular reflection shown in Figure 1(b).

2. Related Work

Separating object reflectance into diffuse and specular

components is one of the fundamental problems in the com-

puter vision and graphics areas, which is made difficult by

the subtle nature of the physics involved. Since the dichro-

matic reflection model [14] which represents the complex

reflecting properties of a surface as a linear combination of

the diffuse and specular components was introduced, this

model has been adopted in modern approaches for color

understanding. Based on the neutral interface reflection as-

sumption [6, 3], the dichromatic model can be further sim-

plified in a way that the spectral energy distribution of the

specular component is approximated being identical to the

one of incident light which is often regarded as pure white

or estimated by [19].

To distinguish between diffuse and specular reflections

from an observed image, most of approaches basically

take into account the color information with the underly-

ing dichromatic reflection model except for the hardware as-

sisted method [20] which utilized a polarization reflectance

model using Fresnel reflectance. Nayar et al. [12] improved

this polarization-based method by incorporating color infor-

mation that is the neighboring diffuse colors.

Some efforts have been made in separating the reflec-

tions with multiple images. Advantages of using the multi-

view constraint come from the different physical properties

of diffuse and specular reflections on the relation between

lighting and viewing directions with respect to a surface

normal. Sato and Ikeuchi [13] analyzed color signatures

estimated from many images taken under a moving light

source to compute specular reflection. Lin and Shum [9]

took a couple of images with different light positions in or-

der to obtain photometric images and estimate the intensi-

ties of the reflection components. The use of a pair of stereo

images was also introduced by Lin et al. [8], where specu-

lar pixels are detected by color histogram and stereo corre-

spondence is then employed to compute the corresponding

diffuse components in other views. These approaches show

satisfactory results in separating specular reflection, yet it is

not always applicable in general cases due to the require-

ment of multiple images.

Besides the multiple images-based approaches, there

have been a number of literatures separating the reflections

from a single image. These approaches can be catego-

rized in three ways. First, Klinker et al. [5] and Bajscy et

al. [2] identified specular and diffuse reflections on the ba-

sis of color segmentation. As the second category, Tan et

al. [16] successfully separated highlight reflections by us-

ing repeated textures. The third category is the analysis on

different color spaces. Mallick et al. [11] proposed an SUV

color space which is composed of S and UV channels repre-

senting specular and diffuse components respectively. They

extended the use of this color space to highlight removal

by eroding S channel in [10]. Tan et al. [18, 17] demon-

strated the effective algorithm in the chromaticity intensity

space, which exploits a pseudo specular-free image to detect

the diffuse pixels and iteratively propagates the maximum

chromaticity of the diffuse component to adjacent neigh-

borhoods. This approach was improved by Yang et al. [22]

who developed a fast bilateral filtering [21] approach for the

purpose of refining maximum chromaticity with neighbor-

ing pixels in real-time.

In this paper, we present an approach that incorporates

an effective pseudo specular-free image and priors for the

separation of the specular reflection out of a single image.

We show that the dark channel as an alternative pseudo

specular-free image has merits against the previous one. In

addition, our approach introduces priors on the specular re-

flection as well as the diffuse chromaticity in the dichro-

matic reflection model, whereas most of the previous meth-

ods only measure the fidelity to the reflection model. This

naturally leads our formulation to a MAP problem.

3. Reflection Model

Dichromatic reflection model [14] has been widely used

for understanding reflection properties of a scene taken by

a color image. We model an image as a linear combination

of diffuse and specular reflections according to the dichro-

matic model. Denoting the diffuse and specular reflections

by Id(x) and Is(x) respectively, the observed image I(x) is

simply expressed as:

I(x) = Id(x) + Is(x). (1)

In our model, we represent the chromaticity of a color with

the intensity normalized color vector:

Ĩ(x) =
I(x)

∑

c∈{r,g,b} Ic(x)
, (2)

where Ic(x) is one of the color channels. Let Λ(x) and

Γ(x) represent the chromaticities of the diffuse and spec-

ular components respectively. Then Equation (1) can be

equivalently written as:

I(x) = md(x)Λ(x) +ms(x)Γ(x), (3)

where md and ms are the diffuse and specular reflection

coefficients respectively, which depend on imaging geom-

etry. We note that the diffuse chromaticity implies the in-

herent color of the surface while the specular chromaticity

implies that of the illumination. Here, the specular chro-

maticity can be assumed to be uniform for a given image

such that Γr(x) = Γg(x) = Γb(x) = 1/3. Without loss
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Figure 2. Geometric interpretation of our pseudo specular-free im-

age and dark channel in the dichromatic reflection model. (a) Syn-

thetic input image. (b) Pseudo specular-free image. (c) Dark chan-

nel. (d) Color distributions of (a) in the RGB space and (b) on the

RG-plane.

of generality, this can be achieved by normalizing the illu-

mination chromaticity estimated from [19] as preprocessing

step.

Our goal is to estimate the specular reflection coefficient

ms(x) from the observed single image I(x) so that the

specular component Is(x) can be recovered, multiplied by

the uniform specular chromaticity Γ, i.e., Is(x) = ms(x)Γ.

In our formulation, we represent the dichromatic reflection

model in the RG chromaticity space:

Ĩ(x) = α(x)Λ(x) + (1− α(x))Γ, (4)

where α = md/(md + ms). Note that the specular re-

flection coefficient can be easily recovered from ms =
(1−α)(md+ms), where md+ms =

∑

c∈{r,g,b}(mdΛc+

msΓc) =
∑

c∈{r,g,b} Ic. Therefore, we have the likelihood

of the specular reflection separation as:

ED(α,Λ) =
∑

x

(

Ĩ(x)− (α(x)Λ(x) + (1− α(x))Γ)
)2

.

(5)

This data fidelity term is ill-posed with respect to α. The ob-

served image only provides a partial constraint for the spec-

ular reflection coefficient as there are many counterparts of

the diffuse reflection term resulting in the same observed

image. This under-constrained problem can be resolved by

specifying the diffuse chromaticity Λ.

4. Dark Channel and Pseudo Specular-Free

Image

To begin with, we shortly discuss typical algorithms and

their limitations in determining the diffuse chromaticity Λ.

(a) (b) (c) (d)

Figure 3. Comparison of pseudo specular-free images. (a) Input

image. (b) Diffuse reflection of (a). (c) Our result. (d) Result

of [18]. Our result is more closed to (b). In particular, the left

parts of the hemispheres in (b) and (c) are identical.

Previous works [18, 22] utilize the pseudo specular-free im-

age to detect the diffuse pixels and estimate the diffuse chro-

maticity, which is generated by shifting the maximum chro-

maticity of each pixel. However, these approaches are prob-

lematic especially when there exist pure diffuse reflections

having the same hue but different saturation value since they

are all detected as specular reflections.

To address this issue and improve the general perfor-

mance, we introduce a simple but effective pseudo specular-

free image followed by an efficient optimization framework.

Motivated by [4], we exploits the dark channel to derive a

new pseudo specular-free image. Based on our observation

that a diffuse pixel is likely to have very low intensity in

at least one color channel for most of natural images, we

consider the dark channel as the rough estimate of the spec-

ular reflection for the input image. Thus, we obtain our

pseudo specular-free image I
pseudo(x) by subtracting the

dark channel Idark(x) from all color channels:

Ipseudoc (x) = Ic(x)− Idark, (6)

Idark(x) = min
c∈{r,g,b}

Ic(x). (7)

Here, the dark channel is taken from the lowest intensity

value among RGB channels at each pixel. As illustrated

in Figure 2(d), this process is equivalent to project each

pixel of the input image to one of the RG-, RB-, and, GB-

planes along the illumination direction. In particular, the

pseudo specular-free pixel (yellow dot) is obtained by pro-

jecting the pixel (green dot) of the input image to RG-plane

along the illumination direction Γ. We note that this pseudo

specular-free pixel has the incorrect diffuse coefficient m′
d

and chromaticity Λ
′ compared to the correct diffuse reflec-

tion component (red dot). We take the pseudo specular-free

image and dark channel as the initial estimates of the diffuse

and specular reflections respectively and then find the cor-

rect one by the optimization which will be explained later

in detail.

This scheme has a couple of benefits against the previous

approach [18]. As shown in Figure 3, our pseudo specular-

free image provides the direct estimate for the diffuse reflec-

tion. For instance, the left parts of the hemispheres in Fig-

ure 3 (b) and (c) are shown to be exactly identical to each
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(a) (b) (c) (d) (e)

Figure 9. Qualitative comparison. (a) Input image. (b) and (c) Diffuse and specular reflections of our result. (d) Result of [18]. (e) Result

of [22].

performance. The proposed method achieves more robust

results in the presence of two distinct diffuse colors having

the same hue but different saturation value, and qualitatively

outperforms the state-of-the-art methods for most of natural

images.

As discussed in the real examples, color boundaries are

unfortunately found as specular pixels in some results. In

the future work, we plan to reduce this artifact by improving

the robustness of the clustering algorithm for the noise and

highly textured surfaces.
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