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We recently published work demon-
strating that ROS (reactive oxygen

species) generated by the dual oxidase,
Ce-Duox1/BLI-3, in response to infec-
tion in Caenorhabditis elegans activates
the transcription factor SKN-1, initiating
a protective response. Moreover, we
showed that the crucial innate immune
pathway, p38 MAPK signaling, was
responsible for relaying the activating
signal. In this commentary, we speculate
on the signaling pathway upstream of Ce-
Duox1/BLI-3 that triggers its activity.
Specifically, we hypothesize that a
G-protein signaling pathway comprising
Gaq - PLCβ - TPA-1 - DKF-2 activates
Ce-Duox1/BLI-3. Our rationale is based
on work showing that these components
are connected to p38 MAPK signaling
and innate immunity in the worm, and
investigations in other organisms demon-
strating that some of these components
are involved in dual oxidase activation.

Coordinated regulation of immunity is not
only crucial for fighting invading patho-
gens, but also vital for safeguarding host
tissues from injury due to excessive
reactions. Unchecked immune responses
can lead to tissue damage, disease and
sometimes death of the host. An example
of an immune response that can poten-
tially harm host tissue is the purposeful
generation of reactive oxygen species
(ROS) by NADPH oxidase enzymes.

The first characterized NADPH oxidase
was the phagocytic gp91phox/Nox2. It
produces ROS in the phagolysozomes of
neutrophils and other immune cells,
contributing to the destruction of invading
microbes.1,2 The robust consumption of

molecular oxygen and the generation of
superoxide anions by this enzyme was
termed the oxidative burst. Six other
homologs of Nox2 (Nox1, Nox3, Nox4,
Nox5, Duox1 and Duox2) were subse-
quently identified in the human genome
and found to be expressed in a wide range
of tissues, giving rise to the Nox/Duox
(NADPH oxidase/dual oxidase) family of
proteins. All members of this family of
proteins retain a catalytic C-terminal
domain comprising NADPH and FAD
binding sites and two, membrane-bound
heme moieties. In addition to the
C-terminal catalytic domain, calcium
binding EF hand motifs are found in
dual oxidases and Nox5. Dual oxidases
also possess an N-terminal heme-contain-
ing peroxidase domain. Nox and Duox
enzymes occur in plants, algae, fungi,
amoeba, nematodes, echinoderms,
urochordates, insects, fish, reptiles, birds
and mammals, but are absent in
prokaryotes.1 Therefore, a variety of sys-
tems can be used to study these proteins.

The genome of C. elegans contains two
genes that encode for dual oxidases, Ce-
Duox1/BLI-3 and Ce-Duox2, but lacks
genes encoding for Nox enzymes.3

However, Ce-Duox2 may be a pseudo-
gene because it does not appear to be
expressed, and a deletion mutant has no
phenotype.4,5 In initial studies, a func-
tional role for Ce-Duox1/BLI-3 in the
biogenesis of the cuticle was described, and
it was localized to the hypodermis.3 Ce-
Duox1/BLI-3 was postulated to generate
hydrogen peroxide by the C-terminal
catalytic domain for use by the N-terminal
perioxidase domain. Specifically, the model
proposes that the peroxidase domain uses
hydrogen peroxide as an electron donor to
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generate radical tyrosine molecules that
react with one another, creating protein
crosslinks that stabilize and strengthen
the cuticle. Consistent with this model,
loss of Ce-Duox1/BLI-3 results in blistering
and bubbling of the cuticle.3

Another role for Ce-Duox1/BLI-3,
which others and we have established,
is the protective generation of ROS in
the intestine in response to infection.4,6

Though overall this response was beneficial,
there was evidence that the elevated levels
of host-generated ROS caused cellular
damage.7,8 We speculated that to maintain
redox homeostasis during infection, the
worm might simultaneously engage oxida-
tive stress response programs, such as the
phase II detoxification response, to scavenge
free radicals and other reactive molecules
using glutathione.9 Phase II detoxification
of xenobiotic and chemically induced
oxidative stress in C. elegans has been
extensively studied and shown to be
regulated by SKN-1, which is distantly
related to the human Nuclear factor
erythroid related factor (Nrf).10-12 In mice,
Nrf2 mediated regulation of redox status
was shown to modulate immune responses
during inflammation.13 However, a role
for SKN-1 in responding to infection in
the worm had not been demonstrated.
Additionally, a link between ROS produced
by NOX/DUOX enzymes and the activa-
tion of the Nrf2/SKN-1 family of trans-
cription factors had not been established
in any organism.

In van der Hoeven et al., we demon-
strated, using a variety of techniques, that
SKN-1 is activated in the intestine of the
worm in response to the human pathogens
Enterococcus faecalis and Pseudomonas
aeruginosa.9 For example, we observed
increased transcription of several SKN-1
dependent genes, such as gcs-1, gst-4, gst-5,
gst-7 and gst-10, by qRT-PCR and
promoter fusions to gfp, in some cases.
Moreover, we established that ROS pro-
duced by Ce-Duox1/BLI-3 activates
SKN-1 through the p38 MAPK signaling
pathway, similarly to that previously
shown for chemically induced oxidative
stress.14 The p38 MAPK signaling path-
way is central to C. elegans innate immune
response and is comprised of the Toll/IL-1
receptor domain protein, TIR-1, the
MAPKKK, NSY-1, the MAPKK, SEK-1,

and the MAPK, PMK-1.15,16 Our analysis
of the p38 MAPK pathway revealed that
components NSY-1, SEK-1 and PMK-1
are required for activation of SKN-1, while
TIR-1, which is essential in responding to
pathogens, is not required.9 Finally and
most importantly, we showed that SKN-1
positively impacts survival during infection.
Loss of skn-1 decreased resistance to the
pathogens, whereas overexpression resulted
in enhanced survival. Overall, SKN-1 is
activated via signaling through the p38
MAPK pathway in response to the oxida-
tive burst generated by Ce-Duox1/BLI-3
during infection of the worm intestine.9

Currently, we are focused on under-
standing how Ce-Duox1/BLI-3 is trig-
gered to produce ROS in response to
pathogen. Interestingly, the p38 MAPK
pathway was shown to upregulate DUOX
gene expression in Drosophila.17 However
by western analysis, we see no increase in
Ce-Duox1/BLI-3 protein levels in
infected, as compared with uninfected,
C. elegans (Garsin lab, unpublished data),
leading us to speculate that activation of
Ce-Duox1/BLI-3 happens post-transla-
tionally. Genetic evidence in Drosophila
has shown the Gaq-phospholipase Cβ
(PLCβ) pathway utilizes secondary
messengers, Inositol triphosphate (Ins
(1,4,5)P3) and Ca2+, to regulate DUOX
activity.18 It was proposed that a microbe-
derived ligand triggers a G-protein coupled
receptor, leading to the release of Gaq,
which subsequently activates PLCβ to
hydrolyze phosphatidylinositol 4,5-
bisphosphate (PtdIns(4,5)P2) into inositol
1,4,5-trisphosphate (Ins(1,4,5)P3) and dia-
cylglycerol (DAG). Next, Ins(1,4,5)P3
binds to the Ins(1,4,5)P3 receptor (Ins
(1,4,5)P3R), located on the endoplasmic
reticulum (ER) membrane, causing the
induction and release of intracellular
calcium. The released calcium is thought
to bind to the EF hands, modulating the
activity of DUOX.17,18 In another study
using mammalian cell lines derived from
the intestinal epithelium, Duox activity
was shown to be dependent on intra-
cellular calcium levels and to be regulated
by protein kinase C and protein kinase
A.19 DAG released by the hydrolysis of
PtdIns(4,5)P2 binds to protein kinase C,
while protein kinase A is activated by the
binding of cAMP synthesized by adenyl

cyclase. The study highlights that phos-
phorylation of Duox at specific serine
residues enhances its sensitivity to calcium,
further modulating its activity.19 Boots
et al. demonstrated activation of Duox1 in
immortalized human bronchial epithelial
(HBE1) cells by extracellular ATP and
purinergic receptor stimulation.20 Based
on this information, we postulate that
these components also may regulate Ce-
Duox1/BLI-3.

Though no evidence currently supports
a role for the above-mentioned compo-
nents in ROS generation in the worm,
many do appear to affect susceptibility to
pathogen, as would be predicted if they
did regulate Ce-Duox1/BLI-3. For
example, work by Kawli et al. showed
that Gaq (EGL-30) and PLCβ (EGL-8),
in C. elegans, regulated both pathogen
immune responses and oxidative stress
responses through the p38 MAPK path-
way.21 DAG, released by PLCβ hydrolysis
of membrane lipids, also regulates p38
MAPK activity in the intestine. DAG can
additionally interact with C1 domain
containing proteins TPA-1 (protein kinase
Cd) and DKF2 (protein kinase D2),
which are expressed in the C. elegans
intestine.22-24 Interestingly, the TPA-1 -
DKF2 module induces the production of
immune effectors and the oxidative stress
response, via the p38 MAPK pathway.
Furthermore, worms lacking DFK-2 and
TPA-1 were hypersensitive to killing by
pathogenic bacteria.23 Taken together,
there is good evidence that the Gaq -
PLCβ - TPA-1 - DKF-2 pathway activates
the p38 MAPK pathway by DAG signal-
ing. Considering that we have established
ROS generated by Ce-Duox1 works
through the p38 MAPK pathway to
activate the SKN-1-dependent oxidative
stress response, it is plausible that a Gaq -
PLCβ - TPA-1 - DKF-2 pathway could
regulate Ce-Duox1/BLI-3 activity in the
worm, and that the ROS generated by
BLI-3 acts as a signaling molecule to link
the upstream G-protein signaling pathway
to the downstream p38 MAPK signaling
module (Fig. 1). Validating this hypothesis
would enable us to explore the possibility
of identifying G-protein coupled receptors
that regulate this response by screening
for differences in pathogen-triggered ROS
production.
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In conclusion, we have established
a connection between ROS produced
by Ce-Duox1/BLI-3 and the activation
of the oxidative stress transcription
factor SKN-1, in a p38 MAPK dependent

manner, during C. elegans infection. The
next challenge is to identify the regula-
tory network that controls Ce-Duox1/
BLI-3 activity in response to pathogen
invasion.
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