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Abstract

This paper presents an in-depth case study in high-
performance asynchronous adder design. A recent method,
called “ specul ative completion” , is used. This method uses
single-rail bundled datapathshbut also allows early comple-
tion. Five new dynamic designs are presented for Brent-
Kung and Carry-Bypass adders. Furthermore, two new
architectures are introduced, which target (i) small number
addition,and (ii) hybrid operation. Initial SPICEsimulation
and statistical analysis show performance improvements up
to 19% on random inputs and 14% on actual programs for
32-bit adders, and up to 29% on random inputs for 64-bit
adders, over comparable synchronous designs.

1 Introduction

Asynchronous design is enjoying a resurgence, with a
many recent technical and practical advances[1]. In princi-
ple, asynchronous systems promise several advantages over
synchronous systems: (i) low power, since an asynchronous
component computes only when necessary; (ii) high perfor-
mance, since global clock distribution and synchronization
can beavoided; and (iii) scalability and ease of design, since
there are no global timing constraints.

The promise of high-performance datapathsis especially
attractive. In principle, anumber of components have data-
dependent behavior: fast operation on certain inputs, and
slower operation on other inputs. Therefore, following the
RISC philosophy of “making the common case fast”, asyn-
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chronous datapaths have the potential to outperform syn-
chronous designs on average inputs.

In practice, though, this potential isoften difficult to real-
ize. Existing methodsfor asynchronousdatapath design can
incur significant performance overhead, undercutting the
potential benefits. The goa of this paper isto design high-
performance asynchronous datapath components, which are
faster than synchronous designs and yet have low area over-
head.

A number of approaches have been proposed to design
asynchronous datapath components. Most fall into one of
two categories, depending on how compl etionisdetermined:
bundled data and compl etion detection.

A bundled data design uses a worst-case model delay,
designed to exceed the longest path through the subsys-
tem [6, 1]. Thisdelay may be an inverter chain or arepli-
cated portion of the critical path. This method has been
widely used [4, 3, 2, 5]. The main advantage is that a
standard synchronous (i .e., non-hazard-free) single-rail im-
plementation may be used, so implementations are easy to
design, and have low power and limited area. However, the
key disadvantage is that completion is fixed to worst-case
computation, regardless of actual datainputs.

A compl etion detection method [1, 7] detects when com-
putation is actually completed. The datapath is typicaly
implemented in dual-rail, where each bit is mapped to a
pair of wires, which encode both the value and validity of
thedata. Different encoding schemes have been used, such
as4-phase RZ and 2-phase LEDR (see[1]), and the methods
have been applied to a number of designs[8, 7]. In princi-
ple, this approach has the advantage that the datapath itself
indicates when computation is actually completed. The key
disadvantage, in many applications, is that a completion
detection network is usually required, adding severd gate

LUnlike synchronousdesign, though, delay margins may be somewhat
tighter, since timing constraints are localized.



delays between completion and its detection. Furthermore,
the increased wiring and switching activity often result in
much greater area and power consumption. An aternative
scheme, current-sensing completion detection, avoids the
detection network [9], but requires specia current sensors
and still requires a number of gate delays of overhead.

In recent work [12], we introduced a new method for
designing asynchronous datapath components, called spec-
ulative completion. The method has many advantages of
the bundled data approach, such as the use of a single-rail
synchronousdatapath. Unlikebundled data, though, several
different matched delaysare used: aworst-case model delay,
and one or more speculative delays. Therefore, a compo-
nent can operate at several possible speeds. A speculative
delay alowsearly completion, andisdisabled for worst-case
data. However, unlike compl etion detection methods, early
completion detection occurs in paralel with the datapath
computation, not after computation is complete. Therefore,
completion overhead is minimal.

As an initial case study, we presented a design for an
asynchronous Brent-Kung adder [12]. This study was quite
limited: only one gate-level design was presented. In ad-
dition, though careful gate-level analysis was included, we
included no SPICE simulations. Our focus was only on
static CMOS design, and one particular component of our
design (“modified sum generation”) was complex.

The contribution of this paper is a detailed case study
of the design of high-performance asynchronous adders,
using speculative completion. The focus is on dynamic
implementations. Detailed SPICE simulationsare provided
for 5 designs, including both Brent-Kung and Carry-Bypass
adders.

Wefirst show that the use of dynamic logic can simplify
the design of speculative adders. Both 2-speed and 3-speed
designs are presented, for 32- and 64-bit addition.

We then introduce two new variant architectures. The
first is designed to handle addition of small numbers, and
alows very early completion. Small-number additionisan
important special case, which arisesin two common proces-
sor applications. (i) sign-extended addition, and (ii) non-
random input distributions. Sign-extension of an operand
commonly occursin processors during branch target address
calculation (for conditiona branches) and effective address
calculation (for memory datatransfers). Non-random input
distributions occur when running code sequences for actual
programs. Inthiscase, operands may be statistically skewed
towards small numbers. We introduce the architecture, and
apply it to Brent-Kung adders.

The second architecture is a hybrid design, which com-
bines speculative completion (for early cases) with comple-
tion sensing (for other cases). The goa isto avoid comple-
tion sensing overhead for early cases, but obtain the benefit
of variable completion sensing for slower cases. We intro-

duce the hybrid architecture, and apply it to a carry-bypass
adder.

Finadly, SPICE analysis and detailed experimental per-
formance evaluations of the adders are presented, assuming
both random and non-random input distributions. Non-
random input distributions were obtained from an ARM
simulator, evaluated over a small set of programs (eg.,
espresso) and benchmarks (e.g., dhrystone). Initia results
indicate performance improvements ranging up to 19% on
random inputs, and 14% on experimenta inputs, for 32-bit
addition, and 29% on random inputs for 64-bit addition,
over comparable synchronous adders.

The case studies in this paper are meant to demonstrate
the viability of this approach for high-performance design.
It is important to note that speculative completion is not
limited to Brent-Kung or Carry-Bypass adders. It can be
applied to other adders, as well as multipliers and other
components which exhibit data-dependent operation.

2 Background: Speculative Completion

This section reviews the basic speculative completion
architecture, as presented in [12].

2.1 Basic Architecture

A standard single-rail bundled datapath is shown in Fig-
ure 1(a). The function block can be implemented using
synchronous (i.e., non-hazard-free) single-rail logic. A sin-
glemodel delayisused, withinput req and output ack. This
delay receives aregquest, req, when datainputsarevalid, and
will producean ack only after thefunction outputsare valid.
This matched delay must be slower than the function block
under al physical conditionsand all datainputs.

Figure 1(b) shows the basic architecture of our specula
tivecompl etion datapath. Therearethreekey features. First,
we use multiple model delays: one for worst-case and the
remaining ones for speculative completion. These specula-
tive delays allow different speeds of early completion. For
example, in aripple-carry adder, an “average-case” delay
might be used if adder inputs result in short carry chains; a
“best-case” delay might be used if there is no carry chain
(eg., if an operand is0).

Second, an abort detection network is associated with
each speculative delay. The network determinesif the core-
sponding speculative completion must be aborted, due to
worst-case data.  Abort detection is computed in parallel
with datapath computation. The abort signal is alowed to
glitch. The only timing requirement isthat it become stable
and valid faster than the speculative delay.

Interestingly, the abort detection network doesnot need to
detect the exact conditions for abort. Instead, the network
can be simplified, to safely approximate the abort condi-
tions. In particular, the abort detection network must detect
all worst-case data, where abort is required. However, it
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Figure 1. Comparison of (a) standard bundled
datapath, and (b) speculative completion dat-
apath

may also abort for some “best-case” inputs, where abort is
unnecessary. The only impact of an unnecessary abort is
to produce alate completion signa. Safe approximation of
abort conditions can be used to simplify the abort detection
logic.

The third feature, modified result logic, isnot visiblein
Figure 1(b). With speculative completion, early completion
is allowed when results can be produced early. In practice,
though, some datapaths do not allow early generation of
results. For example, in certain adder designs (see below),
evenif al carries are computed early, these carries must pass
through several levels of logic before producing the correct
sum. Therefore, bypasslogic is required, to alow the sum
to be generated using these early carries. Further details
appear in the next subsection.

22 A Préiminary Gate-Level Study: Brent-
Kung Adder

We now review our previous case study [12]: the design

of Brent-Kung 32-bit binary lookahead carry (BLC) adder

using speculative completion. The desigh was gate-level

only; no simulationswere presented. The focus of the study

was on static implementations.

221 BLC Adder Design

A pardld 32-bit carry-lookahead adder of Brent and
Kung [10, 11] isshown in Figure 2. This adder uses a bit-
wise, or binary, lookahead carry (BLC) method. InaCMOS
implementation of this adder, the stack depth of each gate
is 2, and the gate fanout load is usualy 2. The design is
amenable to regular layout.

The 32-bit adder produces all propagate (p) and generate
(g) signasin Level-0 and produces asum in Level-6. The
critical path from input to output istherefore 7 gate delays.
Between Level-0 and Level-6, the adder computes the cu-
mulative P and GG valuesin parale for each of the 32 bit
dlices. Specifically, Level-1 computes dl 2-bit P and ¢
values (where P! = p; - pi_iand G} = gi + p; - gi—1),
Level-2 computes al 4-bit values (where P? = P! Pt
and G2 = G}+ P Gl ), andsoon. InLevel-6, the
ith sum hit, s;, is computed as the XOR of propagate bit p;
(taken from Level-0), and the final generate bit (or “carry-
out”) G2_, of the preceding stage (taken from Level-5).

2.2.2 Speculative Adder Design
The speculative adder uses the same basic datapath, but with
several modifications. We review the three components.

Completion Network

Figure 3 shows ablock diagram of our speculative comple-
tion network. For simplicity, inverter chains are used for
model delays, but replicated portionsof the critical path can
be used instead. In thisfigure, each inverter delay roughly
corresponds to the delay of one level in the BLC adder.
There are two model delay paths. The worst-case delay
path has 7 gate delays. The speculative delay path has only
5 gate delays, and applies to cases where al fina generate
values are availablein Level-3 (i.e., no useful computation
occursin Level-4 and Level-5).

Abort Detection Network
The key component of the design is the abort detection
network, which generates the abort signal. By early com-
pletion, we mean that all fina generate signalsare available
in Level-3: no further changes occur on generate signalsin
Level-4 or Level-5. By late compl etion, we mean that some
final generate signal is not available in Level-3: it is com-
puted in Level-4 or Level-5 (i.e., differs from its Level-3
value).

In [12], a necessary condition for late completion was
presented:
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Condition 2.1. Late completion can only occur if there
exists a run of 8 consecutive Level -0 propagate signals. O
Theresultisjustified asfollows. Atthenthlevel, agenerate
function of the ith stage is computed as: G? = G771+
PGt wherej = i — 27~ (ignoringthe alternating
inversions in the actual implementation). Clearly, G7' is
the same as the generate of the preceding level, G?‘l if
the propagate term, P/"~%, is 0. For the given detection,
n = 4, so each Level-4 generate signal is the same as
the corresponding Level-3 generate signal if each Level-3
propagate signal is 0. Each Leve-3 propagate signd is
effectively the product of a run of 8 consecutive Level-0
propagate signals. Such a condition is called an 8-p run.
Therefore, the goa of the abort detection network is to
detect any 8-p run, and abort if one occurs.

For efficiency, this condition is further safely approxi-
mated, to produce simpler networks. As an example, con-
sider the product ¢ pe p7 ps. This product covers, or
detects, the 8-p run from p3 to p1p. If the run occurs, then
¢ = 1. However, if the run does not occur, then ¢ may or
may not be set to 0. The use of ¢ simplifies detection, and
detectionis“safely approximate”: ¢ isnever 0 when an 8-p



run occurs.

In generd, a product covers a set of 8-p runs. For ex-
ample, ¢ covers the 8-p runs from 1 — 8 through 6 — 13.
To design an abort detection network, productsare sel ected,
each of which detects a set of 8-p runs. The abort detection
network isconstructed out of asum of such productswhich,
together, cover all possible 8-p runs. If any 8-p run occurs,
the network will detect it.

A number of different abort detection networks can be
used. Each implementation uses adifferent safe approxima:
tion to exact abort detection.

3-Literal Products. Each product contains a run of 3
p-signas (in Level-0). The network contains 5 products;
it is given by equation: pspep7 + p11p12p13 + p17p18P19 +
P23p24p2s + p2opsops1. Product pspep7 covers the 8-p runs
from stage: O through 7, 1 through 8, ..., 5 through 12.
That is, if any of these runs occurs, this product will be 1.
Similarly, the remaining four products cover the other runs.

4-Literal Products. Each product containsarun of 4 p-
signals, thereare 5 products. The sum-of-productsequation
iS. papspep7 + Pop10P11P12 + P14P15P16P17 + ProP20p21P22 +
p24p2sp2ep27. Each product covers fewer 8-p runs than in
the preceding 3-literal product implementation, though the
same total number of productsis used.

5-Literal Products. Each product contains a run of 5
p-signas; there are 7 products. The sum-of-products equa
tion is: pspapspep7 + p7pspepiop11 + P11P12P13P14P15 +
D15p16P17P18P19 + P1opP20pP21P22p23 + P23paapaspaepr +
P27P28P29P30P31- Note that in this case, adjacent products
overlap; that is, they have alitera in common.

Alternative augmented abort networks can be designed,
which use“kill” signalsaswell (see [12]).

The abort detection network is allowed to have hazards.
The only requirement is that it produce a stable and valid
result faster than thespecul ativedelay. Becausethisnetwork
is critical, the designer must optimize its performance to
meet thistiming requirement.

Modified Sum Generation

The final component of the design is sum generation. In
a basic Brent-Kung adder, even if al carries are computed
early, an early sum cannot be generated (see Figure 4(a)).
The problem is that each sum bit, sum;, uses a generate
signa only from Level-5: sum; = p; & G?_,. Therefore,
bypass logic is needed, to alow the sum to use a Level-3
generate signa: G3_,.

A gate-leve solutionisshowninFigure4(b). Thesignas
areordered for fast completionusing ¢3_; and slower com-
pletion (with additional overhead) using G?_,. The late-en
signals are described in more detail in [12]. Basically, a
late-enable signal isthe output of an abort detection product,
which covers this sum bit. Each late-en signal is broadcast
to the sum bitswhich it covers.

This solution is fairly complex. One reason is that, in
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Figure 4. Sum Generation for Brent-Kung
Adder

a static CMOS implementation, internal nodes are never
reset, so their state is in general unknown. During early
completion, onceLevel-3 G signalsarevalid and stable, the
goal isto usethem for early sum generation. Unfortunately,
the values of Level-5 G signals are unknown at this point.
Therefore, complex sum generation logic is needed, to in-
sure that a valid early sum is produced, using Level-3 G
signals, regardless of the values on Level-5 GG signals.

3 Basic Dynamic Brent-Kung Adders

We now introduce the first class of new speculative
designs: basic dynamic implementations of Brent-Kung
adders. Dynamic logic alows two key improvements:
(i) greatly simplified sum generation; (ii) fast abort detection
logic. We present designsfor (i) 32+32 bit addition, using 1
speculative delay (i.e., 2-speed), and (ii) 64+64 bit addition,
using 2 speculative delays (i.e., 3-speed).

3.1 Basic Dynamic P/G Cell.

prech —

Gﬁil jD Si

Figure 5. Basic dynamic cell:
adder

Brent-Kung

A basic dynamic cell is shown in Figure 5. The cdl is
used for P;/G; generation in Level-1 through Level-5. The



static implementation aternated between P;/G; and P; /G
in adjacent levels. In contrast, the dynamic implementation
usesinverters, so it produces P/ at each level. Theinitia
Level-0 p; /g; valuesare produced using dynamic XOR and
AND gates, respectively (not shown).

3.2 Dynamic Adder Design: Overview.

Completion Network.
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Figure 6. Basic completion network: Brent-

Kung adder

A matched completion network for a 32+32 bit dynamic
Brent-Kung adder can easily be built. Figure 6 shows two
matched delay paths: (i) aspecul ativepath, assuming Level-
3G signasare used for sum, producing Done.qrry ; and (ii)
the default path, assuming Level-5 & signas are used for
sum, producing Donejgqe .

The matched delay paths consist of replicated basic cells
for P/G generation. At the left, initia signals, Paummy1
and Paummy2 are set to 1 in Level-0. Asaresult, in each
subsequent level, the P; output becomes 1, in turn. In the
final stage in each path (Level-3 in speculative, Level-5 in
default), the GG; inputsaretiedto 1, and (&; inputsaretied to
0, producing afina G; output of 1 only after input P; = 1
arrives. These signals are each fed into an XOR, to match
the sum generation logic. Finally, the resulting Done.qriy
and Donejqz. Signals are fed into a MUX (not shown in
the figure) which is controlled by the abort detection net-
work. The resulting completion network contributes little
area overhead to the entire adder.

Abort Detection Network.

A dynamic implementation of an abort detection network
is shown in Figure 7. This particular network is the 4-
literal/5-product network described in the previous section.
A similar implementation can be used for other networks.

The network has only 2 levels of logic (ignoring invert-
ers), and pull-down stack depthis2. The network is small,
fast and has a low abort rate. The network alows early
completion (i.e., no abort) on 72% of random inputs. As
shown in Section 6, even a more complex abort network (a
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Figure 7. A dynamic abort detection network:
Brent-Kung adder

5-literal/7-product network) easily meetsthetiming require-
ments (determines abort in less than 1ns, much faster than
the speculative delay path).

M odified Sum Generation.
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(a) Modified Sum Generation: 2-speed adder
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Figure 8. Dynamic modified-sum generation:
Brent-Kung adder

Dynamic logic allows a greatly simplified design of the
sum logic. In the static design of the previous section,
modified sum logic was complicated. The problem was
that internal nodes are not reset and, therefore, their state
isin general unknown. Therefore, complex modified sum
generation logic was needed, to produce a vaid early sum
result. In addition, late-enable signals had to be distributed
to the different sum modules.

In contrast, with dynamiclogic, al nodesarereset during
the precharge phase, so values of internal nodes are known.
The new dynamic implementation for modified sumlogicis
shown in Figure 8(a). The ith sumisgivenby: s; = p; &
(G3_,+ G?_,). Here, G3_, isthe early (Level-3) carryout
fromthei — 1 stage, G?_, isthelate (Level-5) carryout from
the: — 1 stage, and p; istheith Level-0 propagate bit. No



late-en signal need to be distributed.

This scheme produces a correct sum in every case. |If
completion is late (i.e., abort occurs), then either (i) G>_,
and G3_, are both 1, (ii) G?_, and G3_, are both O, or
(iii) G>_,island G2 _, isO. Theremaining case, 2_, isO
and G_, is 1, cannot occur, since ¢2_, is a positive unate
functionof G3_,. Inall cases, G?_, + G?_, = G?_,, sothe
correct late sumis produced. If completionisearly (i.e., no
abort occurs), then case (iii) cannot occur, otherwisean abort
would have occurred. If G3_, = 1, thenG?_, + G2, =1
as desired, regardless of whether G3_; has had time to be
setto 1. Similarly, if G3_, = 0,then G>_, + G, = 0.

The above scheme extends naturally when there are mul -
tiple speculative delays. each appropriate early G signal is
fed into the OR gate, as shown in Figure 8(b).

3.3 Adder Examples.

In the Results section, we will consider two basic dy-
namic Brent-Kung adders.
32+32 BK Adder (2-speed). Level-0 is p/g generation,
Level-1 through Level-5 is P/G generation, and Level-6
is sum generation. The 5-literal/7-product abort network,
described above, is used. The adder operates at 2 speeds.
Thereisonespeculativepath, whichallowsearly compl etion
after Level-3 ¢ signashave been used for sum generation.
64+64 BK Adder (3-speed). Level-0 is p/g generation,
Level-1 through Level-6 is P/ generation, and Level-7 is
sum generation. Inthiscase, the adder operatesat 3 speeds.
There are two speculative delay paths, alowing (i) very
early completion after Level-3 G signals have been used
for sum generation, or (ii) early completion after Level-4 GG
signals have been used for sum generation.

The very early abort detection network detects al 8-p
runs using 12 products, each with 4 literals: papspep7 +
Pap10p11P12 + P14pi1sp1ePa7 + P1op2op21p22 + prapaspaep2r +
DP29P30P31P32+ P34P35P36P37 + P39PA0PALP A2+ D4aaPAsPacPAT +
P4a9Ps0Ps1P52 + PsapsspsePs7 + PsoPeoPeiPez.  The early
abort detection network detects al 16-p runs using 6
products, each with 8 literas: pspopiop11p12p13p14P15 +
D17P18P19P20P21P22P23P24 +  P26P27P28P29P30P31P32P33 +
D35P36P37P38P39P40p41 42 +  Paapaspaeparpagpaopsops1 +
P53P54P55P5657P58P59P60-

4 Handling Small Numbers

We now introduce two variant architectures, to handle
addition of small numbers.

Small-number additionisan important specia case, aris-
ing in severa processor applications. By a small number,
we mean a number with small magnitude, either positive or
negative. Our focuswill be on additions, A + B, whereone
particular operand (say B) is, or may be, small. In contrast,
A may belarge.

The goa of thiswork isto alow very early completion
when handling small numbers. Specifically, for a 32+32

bit Brent-Kung adder, our goal isto produce an early sum
using Level-2 G signals. In contrast, the basic dynamic 32-
bit Brent-Kung adder in the previous section used Level-3
G signalsfor early sum.

Small-number addition occurs in two common applica
tions: (i) sign-extension and (ii) non-random input distri-
butions. Sign-extension of an operand, from, say, 16- to
32-bits, often occurs in RISC processors during branch tar-
get address cal culation (for conditional branches) and effec-
tive address calculation (for memory data transfers). Non-
random input distributions occur in actual code sequences
for real programs. In particular, even in ALU add op-
erations, without sign-extension, actual operands may be
statistically skewed towards small numbers (see also [13]).

In each case, very early completion is often possible,
since carry chains are often short. However, there are two
major problemsin applying a basic specul ative architecture
for these cases. First, abort detection logic becomes quite
complex, since many short carry chains must be detected.
At the same time, abort detection logic must be even faster,
since avery early speculative delay is used.

We now describe two variants of the speculative archi-
tecture, to handle sign-extension and non-random inputs.

4.1 Sign-Extension

Thefirst design isa 32+32 bit Brent-Kung adder, where
the second operand, B, is a 16-bit sign-extended integer.
Thegoa istoalow very early completion, i.e., using Level-
2 G signasfor the sum.

Consider two operands, A = agjaszy...arap and B =
ba1bso . . . b1bg, Where B is sign-extended 16-bit number;
that is, b3y = b3p = ... = b1g = b15. We shall refer to bits
15 to 31 as the upper bits, and to bits 0 to 14 as the lower
bits. Since the upper bits of B are identica (al O or all 1),
abort detection can be greatly simplified.

Our basic strategy isto use partial abort detection: we
detect abort conditions only in the lower bits (roughly).
However, the problem with thisapproach isthat long carries
in upper bitsare still possible! Thisproblemisaddressed in
the sequdl.

Complete Abort Detection.

A complete abort detection network could be used, to de-
tect al long carries. To dlow very early completion, us-
ing Level-2 G signals, it is sufficient to check for any 4-p
run, i.e., run of 4 consecutive Level-0 propagate signals,
pi - .pi+3. 1T n04-prun occurs, then no late completion is
necessary, as a corollary of Condition 2.1.

A complete abort detection network must detect every
4-prun, from0 — 3t028 — 31. For example, using 3-litera
products. product p;pops detects two 4-p runs, 0 — 3 and
1—4; p3p4ps detectstwo 4-p runs, 2— 5and 3 — 6; etc. The
resulting network has 15 products, and detects al 4-p runs.



Partial Abort Detection.

A better alternative is to use a partial abort detection net-
work. The network ismuch simpler; it only detects the 4-p
runs from O — 3 through 15 — 18. The implementation is
shown in Figure9.

To prove that this partia network is sufficent, two
cases must be considered, depending on whether the sign-
extended operand, B, is positive or negative.

Casel: B IsPositive.

In this case, the key observation is that each upper bit,
i (i = 15...31), is either a propagate (p) bit (i.e, p; =
a; & b; = 1) or akill (k) bit (i.e, k; = @ - b; = 1). No
upper generate (g) bit (i.e., g; = a; - ;) can occur, since bits
bis — b3y aredl 0.

We now show that only 4-p runsup to 15— 18 need to be
detected. Consider therun, 15— 18. Thisisacrossover run:
itisthelowest 4-p runthat containsonly sign-extension bits
of B. Inthiscase, bits 15 — 18 can have only p or k values.

Suppose 15 — 18isa4-prun(i.e., containsdl p values).
In this case, an abort is required, since a long carry chain
(length > 4) through bit 19 may occur, resulting in a late
sum.

Alternatively, suppose 15 — 18 isnot a 4-p run. In this
case, no carry chain ispossiblein the higher bits. In partic-
ular, some bit j € 15...18 isnot a propagate (p) bit, so it
must be akill (k) bit. Thisbit, j, effectively killsany carry
into the next bit, 19. As a result, no carry out will occur
in any higher bit, since these bits are either p or &, and not
¢. Therefore, no carry chain occurs in the upper bits, so no
higher 4-p runs (16 — 19...28 — 31) need to be detected.
The partial abort detection network can safely be used.
Casell: B IsNegative.

In this case, the key observation isthat each upper bit, ¢
(f = 15...31), isnow either a propagate bit or a generate
bit. No upper kill bit can occur, since bitsbys — b3y areall 1.

This case isdua to the positive case, but thereisasubtle
difference; long carry chains can now be generated in the
upper bits! For example, suppose ay is 1, and bits ap;
through ayg are al 0. Bit 20 is a generate bit (since by is
1), whilebits21 — 28 are propagate bitsforming an 8-p run
(sinceby; — bog areadll 1). Therefore, acarry chain of length
8 occurs, generated in bit 20. These carry chains can cause
late changes in the upper sum bits. Our goa is to avoid
detecting these long upper-bit carry chains, yet still produce
acorrect early sum.

We now provethat only 4-prunsupto 15— 18 need to be
detected. Again, consider the crossover run, 15— 18. Here,
bits 15 — 18 can have only p or ¢ values.

Suppose 15 — 18 isa4-prun (i.e, al p values). In this
case, an abort isrequired, since along carry chain into bit
19 may, or may not, occur. The abort is required, since
the value of sumig cannot safely be resolved during early
completion: it dependson whether the carryinto 15 actualy

occurs.

Alternatively, suppose 15 — 18 isnot a4-p run. We show
that every higher bit now has a carryout. In thiscase, some
bit j € 15...18 isnot a propagate (p) bit, so it must be a
generate (¢) bit. This bit, j, effectively generates a carry
into the next bit, 19. Since each upper bit is either p or g,
this carry initiates a carry chain, insuring that every higher
bit, i > j (whether p or ¢) produces a carryout.

As an example, suppose j = 17, the upper bits 23 and
28 are g, and the remaining bits 18 — 22, 24 — 27 and
29 — 31 are dl p. Here, 17 is g, initiating a carry chain,
of length 5, through the p-run from 17 — 22, and insuring
a carryout of each of these bits. The remaining ¢ bits, 23
and 28, aready initiate carry chainsinto p-runs24 — 27 and
29 — 31, respectively. Therefore, every upper bit produces
acarryout.

In this case, long carry chains in upper bits can occur.
And yet, this condition of “al-carryouts’ in upper bits can
be used to insure a correct early sum, in spite of the long
carry chains.

Modified Upper Sum Generation.

The solution is to modify the upper sum bits. We first
show that, for each upper bit 7, a; is the correct sum; for
early completion, and p; & G?_, isthe correct sum; for late
completion. Thisresult isjustified below.

In Casel (B ispositive), if thereisno abort, we showed
that there is no carryout from any upper bit ¢, ¢ > 18.
Therefore, an upper bit sum, sum;, i > 18, is:

pi®carryout;_1 = p;®0 = p; = a; Db; = ¢; 0 = q;.

InCasell (B isnegative), if thereisno abort, we showed
that thereisalwaysacarryout fromevery upper bit ¢, i > 18.
In thiscase, an upper bit sum, sum;, ¢ > 18,is.

pi@earryouti 1 =p;®l=p=a; b =a;d1=
a; ®0=q,.

In each case, if there is no abort, the ith upper sum bit
is sum; = a;. This result holds, regardless of long carry
chainsin the upper bits(in Case ).

Based on this result, modified sum logic for the upper
sum bits sum;, i > 19, must be designed. Figure 10 shows
our new implementation. Each upper bit isimplemented as:
sum; = p; @ (G?_l + b1s7). Here, Z isthe abort signd,
and b5 isthe sign bit of the 16-bit operand.> The AND of
signals Z and b1s is broadcast to each of these upper sum
bits. If thereis no abort, these upper sum bits generate the
correct result, a;, quickly, even in Case |l (B is negative)
where there may be long carry chainsin the upper bits.

To see that this upper sum logic is correct, consider the
two cases. In Casel, B ispositive, so b15is0. Therefore,
sum; = p;®(G2_1+0) = p;®G?_,. Forearly completion,

2A faster alternative is to use product, pispisp17p1s, as the Z signal.
This product detects the cross-over run, 15 — 18, and can safely replace
abort, forthesign-extension case. However, timing constraintswereeasily
met using abort as Z.
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Figure 10. Modified Upper Sum Bit for Sign-Extension (bit i=19-31): Brent-Kung Adder

thereare no upper carries, so G?_, remainsat 0, and sum;
pi @0 =p; = a; ®b; = a; ® 0= a;. For late completion,
sum; = p; & G>_,, as desired. In Case ll, B is negative,
s0 bi5 is 1. For early completion, 7 = 0, sO sum; =
pi®(Go1+b152) =pi® (G3 + 1) =pidl=07
a; ®b; = a; ® 1 = a;. For late completion, Z = 1, so
sum; =p;®(G3_1+0157) = p;©(G3_140) = pi Gy,
In both cases, the logic produces the correct sum: a; if no
abort, otherwise p; & G3_,.

As shown in Section 6, the partia abort detection net-
work and modified upper sum logic easily meet all timing
constraints. They allow very fast completion, using Level-2
G signals.

4.2 Case2: Non-Random Input Distributions.

Our second designisa32+32bit Brent-Kung adder where
the second operand, B, isfrequently small. This case arises
in practice, where a 32+32 bit adder receives non-random
input distributions, e.g., when running programs where the
inputs are skewed to small numbers.

This case is more genera than Case 1, since B may not
aways beasign-extended 16-bit number. Again, thegoa is
to dlow very early completion, after Level-2 (not Level-3)
G signals are produced.

Our solution isasimple modification of our approach for
sign-extension. We simply check if operand B is a sign-
extended number. If it is, very early completion is used
(if there is no abort), as before. If not, the default late
completionis used (using Level-5 GG signasto produce the
sum).

Two hardware modifications are needed, over the Case 1
design. First, a signextendg detection network is added,
to check if B is a sign-extended number. This network
consists of two subnetworks, upperq and upperi. Output

uppero is the NOR of bits by5 — b31, and determines if
these bits are al O; if so, B is a sign-extended positive
number. Output uppery isthe AND of bits by5 — bs1, and
determinesif these bitsare dl 1; if so, B isasign-extended
negative number. Operand B is a sign-extended number if
stgnextendp = upperg + uppery = 1.

Second, signextendg isused to augment the abort de-
tection network. In particular, the term signextendg =
upperg-upper: iSORedwiththeorigina abort network. The
new abort detection network isshowninFigure1l. Anabort
occurs if a4-p run is detected in the lower bits (as before),
or if B isnot asign-extended number (signeztendg = 0).
The idea is that, if B is not a sign-extended number, we
conservatively abort, since a4-p run may occur inthe upper
bits, and will not be detected.

There are no changes to upper sum bits; the same imple-
mentations are used as in sign extension (see Figure 10).

5 Hybrid Carry-Bypass Adder

This section illustrates how the abort detection scheme
can be efficiently combined with existing completion sens-
ing strategies. Our god is to avoid completion sensing
overhead for fast cases, but obtain the benefit of variable
completion sensing for slower cases.

We target a dynamic 32-bit asynchronous carry-bypass
adder (CBA), illustratedin Figure 12(a) [ 15]. Theadder con-
tains eight 4-bit dual-rail Manchester carry groupsthat gen-
erate dual-rail carry signals, as illustrated in Figure 12(b).
For bit , either ¢ or ¢!" rising signifiesthat the carry gener-
ation is completed. Because the carry bits can completein
any order, thecompl etion sensing logic must detect when all
32 carry bits are completed. Thus, the completion sensing
logic consists of a 32-bit OR-AND network.

Figure 12(c) illustrates our implementation consisting of
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atree of domino logic gates that we optimized to minimize
the worst-case delay. Specificaly, the delay from c3; to
the done signal goes through two fast 2-input domino AND
gates, whilethe delay from other carry signalssuch as¢; go
through up to three additional domino gates.

Thesumlogicisfaster thanthefastest completion sensing
delay and thus is guaranteed to complete before done+ is
generated. In fact, donet+ occurs up to 1 ns after the last
sum bit changes, representing significant delay overhead.

In order to reduce compl etion sensing overhead, we com-
bine the completion sensing logic with a specul ative com-
pletion scheme, asillustrated in Figure 13. Here, amatched
average-case delay line, qualified with the output of an abort
network, is ORed with the existing variable-delay comple-
tion sensing network. When an early case occurs, both
inputs to the OR gate will rise, but the first to rise causes
donet, signifyingcompletion. Sincethe matched delay line
isfast, wecan often save asignificant fraction of thecomple-
tion sensing overhead. For the non-early cases (abort = 1),
only the compl etion sensing network rising causes done+.

A dtatigtical analysis by Garside et a. [14] guided our
choice of abort detection networks. He observed that real
data often exhibits a two-humped carry-chain length distri-
bution, one hump near a carry-chain length of 5 and one
much closer to theworst-case. Sincethe original adder was
already designed to minimize worst-case delay, we chose to
target the abort network towards additionshaving very short
carry-chains.

Asillustrated in Figure 14, the abort detection network
consists of a group of eight 4-p product terms. The upper
7 terms form the main portion of the detection network,
where each 4-p term bridges consecutive 4-bit groups. (The
role of the bottom 8th term will be discussed shortly.) To
avoid charge-sharing problems, these 4-bit productsare im-
plemented in two levels of domino gates. Essentially, these
products detect when the maximum effective carry-chain
delay consists of 5 consecutive carry propagates or more,
assuming that all carry delays are equal and that the carry-
bypass delay equals a carry delay. In redlity, however, the
carry bypass delay and the carry propagate between 4-bit
groups, referred to as inter-group propagate, are signifi-

cantly larger than the others carry propagate delays. Con-
sequently, using this 4-p network the average-case matched
delay must be larger than:

e PG dday + 1 carry bypass + 1 carry propagate + sum
delay and

o PG delay + 3 carry propagates + 1 inter-group propa

Ngﬁtc%?i%ltr?nd%gyboth equations, the generation of the
group propagate signal does not appear. This is because
it isusualy not in the critical path, i.e, it is stable by the
time the carry must be bypassed. This, however, is not the
case for the group propagate of the first 4-bit group. To
address this problem, we could make the matched delay
longer to account for this delay. However, this makes the
hybrid scheme ineffective in reducing average-case delay.
Thus, instead, we abort if this case is detected using an 8th
product term, consisting of p1 - p2 - p3 - p4.

6 Results

We completed the transistor-level design of the four
addersin 0.5 micron HP CMOS14TB three-metal process.
This section describes our SPICE analysisto determine var-
iouscritical delays, aswell as statistical analysisto obtain a
measure of average-case performance.

6.1 SPICE Analysis
We simulated al designs using Mentor Graphics Ac-

cusim (SPICE) simulator at 50° C witha 3.3V power supply.
For each of thefour Brent-Kung Adders, we simulated afew
input cases and report the resultsin Table 1.

Column Abort indicates the delay required for the abort
network to complete. For the 64-bit design, the delays for
both abort networksare given. For each design, the columns
G2 through G6 show the delay of the Done signal, for the
various matched delay paths. For example, G2 indicatesthe
done signal for very fast completion, where signal Level-2
G signas are used to generate the sum. In each example,
these columns have a checkmark if the associated delay
represents the delay of the addition. The last column, Last
bit, givesthe delay of the last-changing sum bit. All delays
are in nano-seconds.

We a so performed SPICE andysison the Hybrid Carry-
Bypass Adder and present abreakdown of delaysfor various
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(c) two of the four 8-bit groups constituting the domino logic implementation of the completion

sensing tree.

examplesinTable2. Thecolumn PGK Gen. Delay provides
thedelay for generating the p;, ¢;, and k; signas; itisacon-
stant for al examples. The column Comp. Detect., provides
the delay through the completion sensing tree. This gives
an indication of the delay of the adder if no abort network
existed. The column Matched Delay contains the delay of
the matched delay line; it is essentially constant for all ex-
amples. The column Last Bit identifies the delay of the last
sum bit changing a ong withitshit #. The column Donepro-
videsthe actual delay of the adder. The last column, Saved
is the difference between the actual adder delay (given by
the Done column) and the adder assuming no abort network
were used (given by the Completion Detect. column). This
gives an indication of how much time the abort network

saved.

6.2 Statistical Performance Analysis

We statistically analyzed the average-case performance
of four of the speculative-completion adders we described:
the 32-bit BK, the 32+16-bit BK, the 32-bit+small BK, and
the 32-bit Hybrid CBA. For each of these adders we consid-
ered

¢ random data, where each operand bit has 0.5 probabil-
ity of being 1, and

o real data, obtained by running benchmark programson
an ARM simulator in which we incorporated software
performance models of our adders derived from our
SPICE andlysis.



e 4 q
cd Fef \—{ \—{
dHL ref e+ ket o
o Fef o e ce
co— Fef

prech
3L T R
Tt
24(c. +ci)

23 4{
E(CiT+ )

done

11

‘ Matched delay }

‘ Abort logic }

abort

Figure 13. lllustration of the hybrid approach in which completion-sensing is combined with a

matched delay line using an abort network.

prech

abon

%%%%

rec
P2
Ps
Pa
Ps

FIIP

P P2 P2
P P1 P1 F‘z P2
P P P2 P2

P1 P2 Pz P2

%ﬁ%

Figure 14. Dynamic transistor-level implementation of the proposed abort network.

For the random case only, we aso considered 64-bit BK
adders(therea datawasfor 32-bit additionsonly). We com-
pared our speculative Brent-Kung adders to synchronous
Brent-Kung adders, to demonstrate the advantage of specu-
lative completion. For our hybrid CBA, however, we com-
pared to an asynchronous compl etion-sensing CBA without
speculative compl etion, to demonstrate the advantage of the
hybrid approach.

Random Data. The analysis on random data indicates
that speculative completion yields significant performance
improvements. On average, the 64-bit BK speculativeadder
is 29% faster than a 64-bit synchronous BK adder. The
32+32-hit BK adder is 19% faster, and the 32+16-bit BK
adder is 8% faster, than a 32-bit synchronous BK adder.
The 32-bit results are summarized in Table 3. (The Table
only liststhe 32-bit adders, sincethe ARM simulationswere
only for 32-bit addition.)

Real Data. We obtained real data by running an ARM
simulator on four benchmark programsand analyzing al the
additions and subtractions performed by the ALU. These
operations are partitioned into three sets. Thefirst partition
consists of branch-target additions in which a 24-bit sign-
extended offset isadded to a 32-bit PC address. The second
partition consists of address calculations in which 24-bit
sign-extended offset is added to a 32-hit base-address. The
third partition consists of arithmetic (ALU) 32-bit additions.

Since in our benchmark programs the branch-target off-
set could always be represented with less than 16-bits, we
used the branch partition to analyze our 32+16-bit adder.
Furthermore, since a significant fraction of address calcula
tions involved numbers with |less than 16-bits, we used the
address partition to analyze our 32+small BK adder. Table
3 reports the average improvements obtained for each data
partition.



SPICE Simulation of Brent-Kung Adders

SPICE Simulation of 32-bit Hybrid Carry-Bypass Adder

Last PGK Comp. Matched | Abort Last
Example Abort G2 G3 G4 G5 G6 bit Example Gen. Detect. Delay Gen. Bit Done | Saved
64+64 bit BK Adder 171 1.88 242 ACB6EC2A7+ 1.18/
7FFFFFFFFFFFFFFE+ || 0.86/ EECA45692 054 | 183 1.59 24 | 165 | 018
0000000000000000 1.09 v | 233 || FFFFFFFF+
0000000000000LFF+ 00000001 054 | 439 1.55 093 - 452 | -0.13
0000000000000001 101- v 1.87 || 0000001F+ 1.74]
000000000000001F+ 00000001 054 | 217 152 107 | 5 | 233 | -016
0000000000000001 /- v 164 | [ F8000000+ 1.64/
3FB000000000001F+ 00000000 054 | 188 1.60 31 | 166 | 022
0010000000000001 /- v 168 || OLFDFDFC+ 1.69/
32+32 DIt BK Adder 163 213 00040404 054 | 219 1.54 - 9 | 170 | 049
00000001+ . . .
TFFFFFFF 081 v 211 Table 2. SPICE simulation of 0.5 micron Hy-
63A9CB2B+ brid Carry-Bypass Adder at 50°C and 3.3V on
BA6A3D9 v 155 various inputs.
32+16 bit BK Adder 141 215
OFFB0400+
00000FOD v 1.29
OFFFO000+ because the percentage for very fast completion is particu-
00000FOD 095 983 | |arly low in the Dhrystone benchmark. This suggests that,
OFFFCO000+ . . . .
00004F0D 0.89 188 | forthi saopll| cation, athree-tiered abort network ableto com-
70F84000+ plete after either G2 or G3may bepreferred. Duetothelack
FFFF880D 0.98 2.08 of time, such acircuit could not be simulated using SPICE
7OFFCO00+ and thus a more detailed analysis could not be presented.
FFFF880D v 1.09 . . .
Z0FECO00T We aso observed a high variance in the performance
FEFFOB77 Vv 108 of the CBAs. The hybrid CBA does surprisingly well for
32+small-number address and branch calculations, over a base asynchronous
BK Adder 141 214 CBA, but is often slow when doing arithmetic adds. Sim-
OFFB0400h + ulations show that the percent improvement delivered by
32‘;‘;%'2%3& 087 v 129 the abort detection network ranged from 1.4% (Dhrystone
. . 0
00000FODh v 129 | arithmetic) to 19.84% (Dhrystone branches).

Table 1. SPICE simulation of 0.5 micron Brent-
Kung Adders at 50°C and 3.3V on various in-
puts.

As mentioned earlier, it has been observed that red data
is often skewed towards the worst case, exhibiting longer
average carry-chain lengths than would be predicted using
random data [14]. For this reason, asynchronous adders
often perform poorer in practice than a theoretical anadysis
using random data might expect. However, it isaso im-
portant to note that results from real data often exhibit sig-
nificant variances and can be a manifestation of the unique
properties of an individual benchmark. Thus, when mak-
ing performance judgments, we believe that both real and
random data should be critically analyzed.

Resultsarepresentedin Table 3. The 32+16-bit BK adder
had thelowest averagedelay (8.52% improvement) and low-
est individual delay (on dhrystone, 13.5% improvement) for
branch caculations. The 32+small BK adder, however, per-
forms relatively poorly on address calculations, primarily
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Statistical Performance Analysis of Various Adders

32-bit | 32+16-bit | 32+small | 32-bit
Data Set Source BK BK BK CBA
Random data
Avg. % Early 80.0 34.4 N/A N/A
Avg. Delay 1.73 1.90 N/A N/A
% Improvement 19 8 N/A N/A
Branch calculations partition
% Early
Dhrystone 56.90 55.70 N/A 63.60
Espresso 52.80 41.30 N/A 45.50
Compiler 1 40.30 30.00 N/A 47.10
Compiler 2 8.50 21.50 N/A 7.70
Avg. % Early 39.62 37.12 N/A 40.97
Avg. Delay 1.94 1.88 N/A 243
% Improvement 517 8.52 N/A 11.88
Address calculations par tition
% Early
Dhrystone 73.60 N/A 8.40 68.20
Espresso 63.40 N/A 27.50 43.30
Compiler 1 45.80 N/A 14.10 41.40
Compiler 2 67.00 N/A 26.70 65.20
Avg. % Early 62.45 N/A 19.18 5453
Avg. Delay 1.83 N/A 2.01 2.18
% Improvement 10.96 N/A 2.04 15.50
Arithmetic calculations partition
% Early
Dhrystone 11.30 N/A N/A 10.00
Espresso 33.30 N/A N/A 31.30
Compiler 1 24.10 N/A N/A 22.30
Compiler 2 22.40 N/A N/A 20.90
Avg. % 2277 N/A N/A 21.12
Avg. Delay 2.03 N/A N/A 3.27
% Improvement 0.90 N/A N/A 325

Table 3. Statistical performance analysis on
random and ARM-simulation data.




