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Abstract

This paper presents an in-depth case study in high-
performance asynchronous adder design. A recent method,
called “speculative completion”, is used. This method uses
single-rail bundled datapaths but also allows early comple-
tion. Five new dynamic designs are presented for Brent-
Kung and Carry-Bypass adders. Furthermore, two new
architectures are introduced, which target (i) small number
addition,and (ii) hybrid operation. Initial SPICE simulation
and statistical analysis show performance improvements up
to 19% on random inputs and 14% on actual programs for
32-bit adders, and up to 29% on random inputs for 64-bit
adders, over comparable synchronous designs.

1 Introduction
Asynchronous design is enjoying a resurgence, with a

many recent technical and practical advances [1]. In princi-
ple, asynchronous systems promise several advantages over
synchronous systems: (i) low power, since an asynchronous
component computes only when necessary; (ii) high perfor-
mance, since global clock distribution and synchronization
can be avoided; and (iii) scalability and ease of design, since
there are no global timing constraints.

The promise of high-performance datapaths is especially
attractive. In principle, a number of components have data-
dependent behavior: fast operation on certain inputs, and
slower operation on other inputs. Therefore, following the
RISC philosophy of “making the common case fast”, asyn-
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chronous datapaths have the potential to outperform syn-
chronous designs on average inputs.

In practice, though, this potential is often difficult to real-
ize. Existing methods for asynchronous datapath design can
incur significant performance overhead, undercutting the
potential benefits. The goal of this paper is to design high-
performance asynchronous datapath components, which are
faster than synchronous designs and yet have low area over-
head.

A number of approaches have been proposed to design
asynchronous datapath components. Most fall into one of
two categories, depending on how completion is determined:
bundled data and completion detection.

A bundled data design uses a worst-case model delay,
designed to exceed the longest path through the subsys-
tem [6, 1]. This delay may be an inverter chain or a repli-
cated portion of the critical path. This method has been
widely used [4, 3, 2, 5]. The main advantage is that a
standard synchronous (i.e., non-hazard-free) single-rail im-
plementation may be used, so implementations are easy to
design, and have low power and limited area. However, the
key disadvantage is that completion is fixed to worst-case
computation, regardless of actual data inputs.1

A completion detection method [1, 7] detects when com-
putation is actually completed. The datapath is typically
implemented in dual-rail, where each bit is mapped to a
pair of wires, which encode both the value and validity of
the data. Different encoding schemes have been used, such
as 4-phase RZ and 2-phase LEDR (see [1]), and the methods
have been applied to a number of designs [8, 7]. In princi-
ple, this approach has the advantage that the datapath itself
indicates when computation is actually completed. The key
disadvantage, in many applications, is that a completion
detection network is usually required, adding several gate

1Unlike synchronous design, though, delay margins may be somewhat
tighter, since timing constraints are localized.



delays between completion and its detection. Furthermore,
the increased wiring and switching activity often result in
much greater area and power consumption. An alternative
scheme, current-sensing completion detection, avoids the
detection network [9], but requires special current sensors
and still requires a number of gate delays of overhead.

In recent work [12], we introduced a new method for
designing asynchronous datapath components, called spec-
ulative completion. The method has many advantages of
the bundled data approach, such as the use of a single-rail
synchronous datapath. Unlike bundled data, though, several
different matched delays are used: a worst-case model delay,
and one or more speculative delays. Therefore, a compo-
nent can operate at several possible speeds. A speculative
delay allows early completion,and is disabled for worst-case
data. However, unlike completion detection methods, early
completion detection occurs in parallel with the datapath
computation, not after computation is complete. Therefore,
completion overhead is minimal.

As an initial case study, we presented a design for an
asynchronous Brent-Kung adder [12]. This study was quite
limited: only one gate-level design was presented. In ad-
dition, though careful gate-level analysis was included, we
included no SPICE simulations. Our focus was only on
static CMOS design, and one particular component of our
design (“modified sum generation”) was complex.

The contribution of this paper is a detailed case study
of the design of high-performance asynchronous adders,
using speculative completion. The focus is on dynamic
implementations. Detailed SPICE simulations are provided
for 5 designs, including both Brent-Kung and Carry-Bypass
adders.

We first show that the use of dynamic logic can simplify
the design of speculative adders. Both 2-speed and 3-speed
designs are presented, for 32- and 64-bit addition.

We then introduce two new variant architectures. The
first is designed to handle addition of small numbers, and
allows very early completion. Small-number addition is an
important special case, which arises in two common proces-
sor applications: (i) sign-extended addition, and (ii) non-
random input distributions. Sign-extension of an operand
commonly occurs in processors during branch target address
calculation (for conditional branches) and effective address
calculation (for memory data transfers). Non-random input
distributions occur when running code sequences for actual
programs. In this case, operands may be statistically skewed
towards small numbers. We introduce the architecture, and
apply it to Brent-Kung adders.

The second architecture is a hybrid design, which com-
bines speculative completion (for early cases) with comple-
tion sensing (for other cases). The goal is to avoid comple-
tion sensing overhead for early cases, but obtain the benefit
of variable completion sensing for slower cases. We intro-

duce the hybrid architecture, and apply it to a carry-bypass
adder.

Finally, SPICE analysis and detailed experimental per-
formance evaluations of the adders are presented, assuming
both random and non-random input distributions. Non-
random input distributions were obtained from an ARM
simulator, evaluated over a small set of programs (e.g.,
espresso) and benchmarks (e.g., dhrystone). Initial results
indicate performance improvements ranging up to 19% on
random inputs, and 14% on experimental inputs, for 32-bit
addition, and 29% on random inputs for 64-bit addition,
over comparable synchronous adders.

The case studies in this paper are meant to demonstrate
the viability of this approach for high-performance design.
It is important to note that speculative completion is not
limited to Brent-Kung or Carry-Bypass adders. It can be
applied to other adders, as well as multipliers and other
components which exhibit data-dependent operation.

2 Background: Speculative Completion

This section reviews the basic speculative completion
architecture, as presented in [12].

2.1 Basic Architecture

A standard single-rail bundled datapath is shown in Fig-
ure 1(a). The function block can be implemented using
synchronous (i.e., non-hazard-free) single-rail logic. A sin-
gle model delay is used, with input req and outputack. This
delay receives a request, req, when data inputs are valid, and
will produce an ack only after the function outputs are valid.
This matched delay must be slower than the function block
under all physical conditions and all data inputs.

Figure 1(b) shows the basic architecture of our specula-
tive completion datapath. There are three key features. First,
we use multiple model delays: one for worst-case and the
remaining ones for speculative completion. These specula-
tive delays allow different speeds of early completion. For
example, in a ripple-carry adder, an “average-case” delay
might be used if adder inputs result in short carry chains; a
“best-case” delay might be used if there is no carry chain
(e.g., if an operand is 0).

Second, an abort detection network is associated with
each speculative delay. The network determines if the core-
sponding speculative completion must be aborted, due to
worst-case data. Abort detection is computed in parallel
with datapath computation. The abort signal is allowed to
glitch. The only timing requirement is that it become stable
and valid faster than the speculative delay.

Interestingly, the abort detection network does not need to
detect the exact conditions for abort. Instead, the network
can be simplified, to safely approximate the abort condi-
tions. In particular, the abort detection network must detect
all worst-case data, where abort is required. However, it
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Figure 1. Comparison of (a) standard bundled
datapath, and (b) speculative completion dat-
apath

may also abort for some “best-case” inputs, where abort is
unnecessary. The only impact of an unnecessary abort is
to produce a late completion signal. Safe approximation of
abort conditions can be used to simplify the abort detection
logic.

The third feature, modified result logic, is not visible in
Figure 1(b). With speculative completion, early completion
is allowed when results can be produced early. In practice,
though, some datapaths do not allow early generation of
results. For example, in certain adder designs (see below),
even if all carries are computed early, these carries must pass
through several levels of logic before producing the correct
sum. Therefore, bypass logic is required, to allow the sum
to be generated using these early carries. Further details
appear in the next subsection.

2.2 A Preliminary Gate-Level Study: Brent-
Kung Adder

We now review our previous case study [12]: the design
of Brent-Kung 32-bit binary lookahead carry (BLC) adder
using speculative completion. The design was gate-level
only; no simulations were presented. The focus of the study
was on static implementations.

2.2.1 BLC Adder Design
A parallel 32-bit carry-lookahead adder of Brent and
Kung [10, 11] is shown in Figure 2. This adder uses a bit-
wise, or binary, lookahead carry (BLC) method. In a CMOS
implementation of this adder, the stack depth of each gate
is 2, and the gate fanout load is usually 2. The design is
amenable to regular layout.

The 32-bit adder produces all propagate (p) and generate
(g) signals in Level-0 and produces a sum in Level-6. The
critical path from input to output is therefore 7 gate delays.
Between Level-0 and Level-6, the adder computes the cu-
mulative P and G values in parallel for each of the 32 bit
slices. Specifically, Level-1 computes all 2-bit P and G

values (where P 1
i = pi � pi�1 and G1

i = gi + pi � gi�1),
Level-2 computes all 4-bit values (where P 2

i = P 1
i � P

1
i�2

and G2
i = G1

i + P 1
i � G

1
i�2), and so on. In Level-6, the

ith sum bit, si, is computed as the XOR of propagate bit pi
(taken from Level-0), and the final generate bit (or “carry-
out”) G5

i�1 of the preceding stage (taken from Level-5).

2.2.2 Speculative Adder Design
The speculative adder uses the same basic datapath, but with
several modifications. We review the three components.

Completion Network
Figure 3 shows a block diagram of our speculative comple-
tion network. For simplicity, inverter chains are used for
model delays, but replicated portions of the critical path can
be used instead. In this figure, each inverter delay roughly
corresponds to the delay of one level in the BLC adder.
There are two model delay paths. The worst-case delay
path has 7 gate delays. The speculative delay path has only
5 gate delays, and applies to cases where all final generate
values are available in Level-3 (i.e., no useful computation
occurs in Level-4 and Level-5).

Abort Detection Network
The key component of the design is the abort detection
network, which generates the abort signal. By early com-
pletion, we mean that all final generate signals are available
in Level-3: no further changes occur on generate signals in
Level-4 or Level-5. By late completion, we mean that some
final generate signal is not available in Level-3: it is com-
puted in Level-4 or Level-5 (i.e., differs from its Level-3
value).

In [12], a necessary condition for late completion was
presented:
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Condition 2.1. Late completion can only occur if there
exists a run of 8 consecutive Level-0 propagate signals. 2
The result is justified as follows. At the nth level, a generate
function of the ith stage is computed as: Gn

i = Gn�1
i +

Pn�1
i Gn�1

j , where j = i � 2n�1 (ignoring the alternating
inversions in the actual implementation). Clearly, Gn

i is
the same as the generate of the preceding level, Gn�1

i if
the propagate term, Pn�1

i , is 0. For the given detection,
n = 4, so each Level-4 generate signal is the same as
the corresponding Level-3 generate signal if each Level-3
propagate signal is 0. Each Level-3 propagate signal is
effectively the product of a run of 8 consecutive Level-0
propagate signals. Such a condition is called an 8-p run.
Therefore, the goal of the abort detection network is to
detect any 8-p run, and abort if one occurs.

For efficiency, this condition is further safely approxi-
mated, to produce simpler networks. As an example, con-
sider the product c = p6 p7 p8. This product covers, or
detects, the 8-p run from p3 to p10. If the run occurs, then
c = 1. However, if the run does not occur, then c may or
may not be set to 0. The use of c simplifies detection, and
detection is “safely approximate”: c is never 0 when an 8-p



run occurs.
In general, a product covers a set of 8-p runs. For ex-

ample, c covers the 8-p runs from 1 � 8 through 6 � 13.
To design an abort detection network, products are selected,
each of which detects a set of 8-p runs. The abort detection
network is constructed out of a sum of such products which,
together, cover all possible 8-p runs. If any 8-p run occurs,
the network will detect it.

A number of different abort detection networks can be
used. Each implementation uses a different safe approxima-
tion to exact abort detection.

3-Literal Products. Each product contains a run of 3
p-signals (in Level-0). The network contains 5 products;
it is given by equation: p5p6p7 + p11p12p13 + p17p18p19 +

p23p24p25 + p29p30p31. Product p5p6p7 covers the 8-p runs
from stage: 0 through 7, 1 through 8, : : :, 5 through 12.
That is, if any of these runs occurs, this product will be 1.
Similarly, the remaining four products cover the other runs.

4-Literal Products. Each product contains a run of 4 p-
signals; there are 5 products. The sum-of-products equation
is: p4p5p6p7+p9p10p11p12+p14p15p16p17 +p19p20p21p22+

p24p25p26p27. Each product covers fewer 8-p runs than in
the preceding 3-literal product implementation, though the
same total number of products is used.

5-Literal Products. Each product contains a run of 5
p-signals; there are 7 products. The sum-of-products equa-
tion is: p3p4p5p6p7 + p7p8p9p10p11 + p11p12p13p14p15 +

p15p16p17p18p19 + p19p20p21p22p23 + p23p24p25p26p27 +

p27p28p29p30p31. Note that in this case, adjacent products
overlap; that is, they have a literal in common.

Alternative augmented abort networks can be designed,
which use “kill” signals as well (see [12]).

The abort detection network is allowed to have hazards.
The only requirement is that it produce a stable and valid
result faster than the speculative delay. Because this network
is critical, the designer must optimize its performance to
meet this timing requirement.

Modified Sum Generation
The final component of the design is sum generation. In
a basic Brent-Kung adder, even if all carries are computed
early, an early sum cannot be generated (see Figure 4(a)).
The problem is that each sum bit, sumi, uses a generate
signal only from Level-5: sumi = pi � G5

i�1. Therefore,
bypass logic is needed, to allow the sum to use a Level-3
generate signal: G3

i�1.
A gate-level solutionis shown in Figure 4(b). The signals

are ordered for fast completion usingG3
i�1 and slower com-

pletion (with additional overhead) using G5
i�1. The late-en

signals are described in more detail in [12]. Basically, a
late-enable signal is the output of an abort detection product,
which covers this sum bit. Each late-en signal is broadcast
to the sum bits which it covers.

This solution is fairly complex. One reason is that, in
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Figure 4. Sum Generation for Brent-Kung
Adder

a static CMOS implementation, internal nodes are never
reset, so their state is in general unknown. During early
completion, once Level-3 G signals are valid and stable, the
goal is to use them for early sum generation. Unfortunately,
the values of Level-5 G signals are unknown at this point.
Therefore, complex sum generation logic is needed, to in-
sure that a valid early sum is produced, using Level-3 G

signals, regardless of the values on Level-5 G signals.

3 Basic Dynamic Brent-Kung Adders
We now introduce the first class of new speculative

designs: basic dynamic implementations of Brent-Kung
adders. Dynamic logic allows two key improvements:
(i) greatly simplified sum generation; (ii) fast abort detection
logic. We present designs for (i) 32+32 bit addition, using 1
speculative delay (i.e., 2-speed), and (ii) 64+64 bit addition,
using 2 speculative delays (i.e., 3-speed).

3.1 Basic Dynamic P/G Cell.
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Figure 5. Basic dynamic cell: Brent-Kung
adder

A basic dynamic cell is shown in Figure 5. The cell is
used for Pi=Gi generation in Level-1 through Level-5. The



static implementation alternated between Pi=Gi and Pi=Gi

in adjacent levels. In contrast, the dynamic implementation
uses inverters, so it produces P=G at each level. The initial
Level-0 pi=gi values are produced using dynamic XOR and
AND gates, respectively (not shown).

3.2 Dynamic Adder Design: Overview.

Completion Network.
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Figure 6. Basic completion network: Brent-
Kung adder

A matched completion network for a 32+32 bit dynamic
Brent-Kung adder can easily be built. Figure 6 shows two
matched delay paths: (i) a speculative path, assuming Level-
3G signals are used for sum, producingDoneearly ; and (ii)
the default path, assuming Level-5 G signals are used for
sum, producing Donelate.

The matched delay paths consist of replicated basic cells
for P=G generation. At the left, initial signals, Pdummy1

and Pdummy2 are set to 1 in Level-0. As a result, in each
subsequent level, the Pi output becomes 1, in turn. In the
final stage in each path (Level-3 in speculative, Level-5 in
default), the Gj inputs are tied to 1, andGi inputs are tied to
0, producing a final Gi output of 1 only after input Pi = 1
arrives. These signals are each fed into an XOR, to match
the sum generation logic. Finally, the resulting Doneearly
and Donelate signals are fed into a MUX (not shown in
the figure) which is controlled by the abort detection net-
work. The resulting completion network contributes little
area overhead to the entire adder.

Abort Detection Network.
A dynamic implementation of an abort detection network

is shown in Figure 7. This particular network is the 4-
literal/5-product network described in the previous section.
A similar implementation can be used for other networks.

The network has only 2 levels of logic (ignoring invert-
ers), and pull-down stack depth is 2. The network is small,
fast and has a low abort rate. The network allows early
completion (i.e., no abort) on 72% of random inputs. As
shown in Section 6, even a more complex abort network (a
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5-literal/7-product network) easily meets the timing require-
ments (determines abort in less than 1ns, much faster than
the speculative delay path).
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Figure 8. Dynamic modified-sum generation:
Brent-Kung adder

Dynamic logic allows a greatly simplified design of the
sum logic. In the static design of the previous section,
modified sum logic was complicated. The problem was
that internal nodes are not reset and, therefore, their state
is in general unknown. Therefore, complex modified sum
generation logic was needed, to produce a valid early sum
result. In addition, late-enable signals had to be distributed
to the different sum modules.

In contrast, with dynamic logic, all nodes are reset during
the precharge phase, so values of internal nodes are known.
The new dynamic implementation for modified sum logic is
shown in Figure 8(a). The ith sum is given by: si = pi �

(G3
i�1 + G5

i�1): Here, G3
i�1 is the early (Level-3) carryout

from the i�1 stage, G5
i�1 is the late (Level-5) carryout from

the i � 1 stage, and pi is the ith Level-0 propagate bit. No



late-en signal need to be distributed.
This scheme produces a correct sum in every case. If

completion is late (i.e., abort occurs), then either (i) G5
i�1

and G3
i�1 are both 1, (ii) G5

i�1 and G3
i�1 are both 0, or

(iii)G5
i�1 is 1 and G3

i�1 is 0. The remaining case, G5
i�1 is 0

and G3
i�1 is 1, cannot occur, since G5

i�1 is a positive unate
function of G3

i�1. In all cases, G5
i�1 +G3

i�1 = G5
i�1, so the

correct late sum is produced. If completion is early (i.e., no
abort occurs), then case (iii) cannot occur, otherwise an abort
would have occurred. If G3

i�1 = 1, then G5
i�1 + G3

i�1 = 1
as desired, regardless of whether G5

i�1 has had time to be
set to 1. Similarly, if G3

i�1 = 0, then G5
i�1 + G3

i�1 = 0.
The above scheme extends naturally when there are mul-

tiple speculative delays: each appropriate early G signal is
fed into the OR gate, as shown in Figure 8(b).

3.3 Adder Examples.
In the Results section, we will consider two basic dy-

namic Brent-Kung adders.
32+32 BK Adder (2-speed). Level-0 is p=g generation,
Level-1 through Level-5 is P=G generation, and Level-6
is sum generation. The 5-literal/7-product abort network,
described above, is used. The adder operates at 2 speeds.
There is one speculative path, which allows early completion
after Level-3 G signals have been used for sum generation.
64+64 BK Adder (3-speed). Level-0 is p=g generation,
Level-1 through Level-6 is P=G generation, and Level-7 is
sum generation. In this case, the adder operates at 3 speeds.
There are two speculative delay paths, allowing (i) very
early completion after Level-3 G signals have been used
for sum generation, or (ii) early completion after Level-4 G

signals have been used for sum generation.
The very early abort detection network detects all 8-p

runs using 12 products, each with 4 literals: p4p5p6p7 +

p9p10p11p12+p14p15p16p17+p19p20p21p22+p24p25p26p27+

p29p30p31p32+p34p35p36p37+p39p40p41p42+p44p45p46p47+

p49p50p51p52 + p54p55p56p57 + p59p60p61p62. The early
abort detection network detects all 16-p runs using 6
products, each with 8 literals: p8p9p10p11p12p13p14p15 +

p17p18p19p20p21p22p23p24 + p26p27p28p29p30p31p32p33 +

p35p36p37p38p39p40p41p42 + p44p45p46p47p48p49p50p51 +

p53p54p55p56p57p58p59p60.

4 Handling Small Numbers
We now introduce two variant architectures, to handle

addition of small numbers.
Small-number addition is an important special case, aris-

ing in several processor applications. By a small number,
we mean a number with small magnitude, either positive or
negative. Our focus will be on additions,A+B, where one
particular operand (say B) is, or may be, small. In contrast,
A may be large.

The goal of this work is to allow very early completion
when handling small numbers. Specifically, for a 32+32

bit Brent-Kung adder, our goal is to produce an early sum
using Level-2 G signals. In contrast, the basic dynamic 32-
bit Brent-Kung adder in the previous section used Level-3
G signals for early sum.

Small-number addition occurs in two common applica-
tions: (i) sign-extension and (ii) non-random input distri-
butions. Sign-extension of an operand, from, say, 16- to
32-bits, often occurs in RISC processors during branch tar-
get address calculation (for conditional branches) and effec-
tive address calculation (for memory data transfers). Non-
random input distributions occur in actual code sequences
for real programs. In particular, even in ALU add op-
erations, without sign-extension, actual operands may be
statistically skewed towards small numbers (see also [13]).

In each case, very early completion is often possible,
since carry chains are often short. However, there are two
major problems in applying a basic speculative architecture
for these cases. First, abort detection logic becomes quite
complex, since many short carry chains must be detected.
At the same time, abort detection logic must be even faster,
since a very early speculative delay is used.

We now describe two variants of the speculative archi-
tecture, to handle sign-extension and non-random inputs.

4.1 Sign-Extension
The first design is a 32+32 bit Brent-Kung adder, where

the second operand, B, is a 16-bit sign-extended integer.
The goal is to allow very early completion, i.e., using Level-
2 G signals for the sum.

Consider two operands, A = a31a30 : : :a1a0 and B =

b31b30 : : : b1b0, where B is sign-extended 16-bit number;
that is, b31 = b30 = : : : = b16 = b15. We shall refer to bits
15 to 31 as the upper bits, and to bits 0 to 14 as the lower
bits. Since the upper bits of B are identical (all 0 or all 1),
abort detection can be greatly simplified.

Our basic strategy is to use partial abort detection: we
detect abort conditions only in the lower bits (roughly).
However, the problem with this approach is that long carries
in upper bits are still possible! This problem is addressed in
the sequel.

Complete Abort Detection.
A complete abort detection network could be used, to de-
tect all long carries. To allow very early completion, us-
ing Level-2 G signals, it is sufficient to check for any 4-p
run, i.e., run of 4 consecutive Level-0 propagate signals,
pi : : : pi+3. If no 4-p run occurs, then no late completion is
necessary, as a corollary of Condition 2.1.

A complete abort detection network must detect every
4-p run, from 0� 3 to 28� 31. For example, using 3-literal
products: product p1p2p3 detects two 4-p runs, 0 � 3 and
1�4; p3p4p5 detects two 4-p runs, 2�5 and 3�6; etc. The
resulting network has 15 products, and detects all 4-p runs.



Partial Abort Detection.
A better alternative is to use a partial abort detection net-
work. The network is much simpler; it only detects the 4-p
runs from 0 � 3 through 15 � 18. The implementation is
shown in Figure 9.

To prove that this partial network is sufficent, two
cases must be considered, depending on whether the sign-
extended operand, B, is positive or negative.
Case I: B Is Positive.

In this case, the key observation is that each upper bit,
i (i = 15 : : :31), is either a propagate (p) bit (i.e., pi =
ai � bi = 1) or a kill (k) bit (i.e., ki = ai � bi = 1). No
upper generate (g) bit (i.e., gi = ai � bi) can occur, since bits
b15 � b31 are all 0.

We now show that only 4-p runs up to 15�18 need to be
detected. Consider the run, 15�18. This is a crossover run:
it is the lowest 4-p run that contains only sign-extension bits
of B. In this case, bits 15� 18 can have only p or k values.

Suppose 15� 18 is a 4-p run (i.e., contains all p values).
In this case, an abort is required, since a long carry chain
(length � 4) through bit 19 may occur, resulting in a late
sum.

Alternatively, suppose 15 � 18 is not a 4-p run. In this
case, no carry chain is possible in the higher bits. In partic-
ular, some bit j 2 15 : : :18 is not a propagate (p) bit, so it
must be a kill (k) bit. This bit, j, effectively kills any carry
into the next bit, 19. As a result, no carry out will occur
in any higher bit, since these bits are either p or k, and not
g. Therefore, no carry chain occurs in the upper bits, so no
higher 4-p runs (16 � 19 : : :28 � 31) need to be detected.
The partial abort detection network can safely be used.
Case II: B Is Negative.

In this case, the key observation is that each upper bit, i
(i = 15 : : :31), is now either a propagate bit or a generate
bit. No upper kill bit can occur, since bits b15 � b31 are all 1.

This case is dual to the positive case, but there is a subtle
difference: long carry chains can now be generated in the
upper bits! For example, suppose a20 is 1, and bits a21

through a28 are all 0. Bit 20 is a generate bit (since b20 is
1), while bits 21� 28 are propagate bits forming an 8-p run
(since b21 � b28 are all 1). Therefore, a carry chain of length
8 occurs, generated in bit 20. These carry chains can cause
late changes in the upper sum bits. Our goal is to avoid
detecting these long upper-bit carry chains, yet still produce
a correct early sum.

We now prove that only 4-p runs up to 15�18 need to be
detected. Again, consider the crossover run, 15� 18. Here,
bits 15 � 18 can have only p or g values.

Suppose 15 � 18 is a 4-p run (i.e., all p values). In this
case, an abort is required, since a long carry chain into bit
19 may, or may not, occur. The abort is required, since
the value of sum19 cannot safely be resolved during early
completion: it depends on whether the carryin to 15 actually

occurs.
Alternatively, suppose 15�18 is not a 4-p run. We show

that every higher bit now has a carryout. In this case, some
bit j 2 15 : : :18 is not a propagate (p) bit, so it must be a
generate (g) bit. This bit, j, effectively generates a carry
into the next bit, 19. Since each upper bit is either p or g,
this carry initiates a carry chain, insuring that every higher
bit, i > j (whether p or g) produces a carryout.

As an example, suppose j = 17, the upper bits 23 and
28 are g, and the remaining bits 18 � 22, 24 � 27 and
29 � 31 are all p. Here, 17 is g, initiating a carry chain,
of length 5, through the p-run from 17 � 22, and insuring
a carryout of each of these bits. The remaining g bits, 23
and 28, already initiate carry chains into p-runs 24� 27 and
29 � 31, respectively. Therefore, every upper bit produces
a carryout.

In this case, long carry chains in upper bits can occur.
And yet, this condition of “all-carryouts” in upper bits can
be used to insure a correct early sum, in spite of the long
carry chains.

Modified Upper Sum Generation.
The solution is to modify the upper sum bits. We first
show that, for each upper bit i, ai is the correct sumi for
early completion, and pi�G5

i�1 is the correct sumi for late
completion. This result is justified below.

In Case I (B is positive), if there is no abort, we showed
that there is no carryout from any upper bit i, i � 18.
Therefore, an upper bit sum, sumi, i > 18, is:

pi�carryouti�1 = pi�0 = pi = ai�bi = ai�0 = ai.
In Case II (B is negative), if there is no abort, we showed

that there is always a carryout from every upper bit i, i � 18.
In this case, an upper bit sum, sumi, i > 18, is:

pi � carryouti�1 = pi � 1 = pi = ai � bi = ai � 1 =

ai � 0 = ai.
In each case, if there is no abort, the ith upper sum bit
is sumi = ai: This result holds, regardless of long carry
chains in the upper bits (in Case II).

Based on this result, modified sum logic for the upper
sum bits sumi, i � 19, must be designed. Figure 10 shows
our new implementation. Each upper bit is implemented as:
sumi = pi � (G5

i�1 + b15Z). Here, Z is the abort signal,
and b15 is the sign bit of the 16-bit operand.2 The AND of
signals Z and b15 is broadcast to each of these upper sum
bits. If there is no abort, these upper sum bits generate the
correct result, ai, quickly, even in Case II (B is negative)
where there may be long carry chains in the upper bits.

To see that this upper sum logic is correct, consider the
two cases. In Case I, B is positive, so b15 is 0. Therefore,
sumi = pi�(G

5
i�1+0) = pi�G

5
i�1. For early completion,

2A faster alternative is to use product, p15p16p17p18, as the Z signal.
This product detects the cross-over run, 15 � 18, and can safely replace
abort, for the sign-extension case. However, timing constraints were easily
met using abort as Z.
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there are no upper carries, soG5
i�1 remains at 0, and sumi =

pi � 0 = pi = ai � bi = ai � 0 = ai. For late completion,
sumi = pi � G5

i�1, as desired. In Case II, B is negative,
so b15 is 1. For early completion, Z = 0, so sumi =

pi � (G5
i�1 + b15Z) = pi � (G5

i�1 + 1) = pi � 1 = pi =

ai � bi = ai � 1 = ai. For late completion, Z = 1, so
sumi = pi�(G

5
i�1+b15Z) = pi�(G

5
i�1+0) = pi�G

5
i�1:

In both cases, the logic produces the correct sum: ai if no
abort, otherwise pi �G5

i�1.
As shown in Section 6, the partial abort detection net-

work and modified upper sum logic easily meet all timing
constraints. They allow very fast completion, using Level-2
G signals.

4.2 Case 2: Non-Random Input Distributions.
Our second design is a 32+32 bit Brent-Kung adder where

the second operand, B, is frequently small. This case arises
in practice, where a 32+32 bit adder receives non-random
input distributions, e.g., when running programs where the
inputs are skewed to small numbers.

This case is more general than Case 1, since B may not
always be a sign-extended 16-bit number. Again, the goal is
to allow very early completion, after Level-2 (not Level-3)
G signals are produced.

Our solution is a simple modification of our approach for
sign-extension. We simply check if operand B is a sign-
extended number. If it is, very early completion is used
(if there is no abort), as before. If not, the default late
completion is used (using Level-5 G signals to produce the
sum).

Two hardware modifications are needed, over the Case 1
design. First, a signextendB detection network is added,
to check if B is a sign-extended number. This network
consists of two subnetworks, upper0 and upper1. Output

upper0 is the NOR of bits b15 � b31, and determines if
these bits are all 0; if so, B is a sign-extended positive
number. Output upper1 is the AND of bits b15 � b31, and
determines if these bits are all 1; if so, B is a sign-extended
negative number. Operand B is a sign-extended number if
signextendB = upper0 + upper1 = 1.

Second, signextendB is used to augment the abort de-
tection network. In particular, the term signextendB =

upper0�upper1 is ORed with the original abort network. The
new abort detection network is shown in Figure 11. An abort
occurs if a 4-p run is detected in the lower bits (as before),
or if B is not a sign-extended number (signextendB = 0).
The idea is that, if B is not a sign-extended number, we
conservatively abort, since a 4-p run may occur in the upper
bits, and will not be detected.

There are no changes to upper sum bits; the same imple-
mentations are used as in sign extension (see Figure 10).

5 Hybrid Carry-Bypass Adder
This section illustrates how the abort detection scheme

can be efficiently combined with existing completion sens-
ing strategies. Our goal is to avoid completion sensing
overhead for fast cases, but obtain the benefit of variable
completion sensing for slower cases.

We target a dynamic 32-bit asynchronous carry-bypass
adder (CBA), illustrated in Figure 12(a) [15]. The adder con-
tains eight 4-bit dual-rail Manchester carry groups that gen-
erate dual-rail carry signals, as illustrated in Figure 12(b).
For bit i, either cTi or cFi rising signifies that the carry gener-
ation is completed. Because the carry bits can complete in
any order, the completion sensing logic must detect when all
32 carry bits are completed. Thus, the completion sensing
logic consists of a 32-bit OR-AND network.

Figure 12(c) illustrates our implementation consisting of
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a tree of domino logic gates that we optimized to minimize
the worst-case delay. Specifically, the delay from c31 to
the done signal goes through two fast 2-input domino AND
gates, while the delay from other carry signals such as c1 go
through up to three additional domino gates.

The sum logic is faster than the fastest completion sensing
delay and thus is guaranteed to complete before done+ is
generated. In fact, done+ occurs up to 1 ns after the last
sum bit changes, representing significant delay overhead.

In order to reduce completion sensing overhead, we com-
bine the completion sensing logic with a speculative com-
pletion scheme, as illustrated in Figure 13. Here, a matched
average-case delay line, qualified with the output of an abort
network, is ORed with the existing variable-delay comple-
tion sensing network. When an early case occurs, both
inputs to the OR gate will rise, but the first to rise causes
done+, signifying completion. Since the matched delay line
is fast, we can often save a significant fraction of the comple-
tion sensing overhead. For the non-early cases (abort = 1),
only the completion sensing network rising causes done+.

A statistical analysis by Garside et al. [14] guided our
choice of abort detection networks. He observed that real
data often exhibits a two-humped carry-chain length distri-
bution, one hump near a carry-chain length of 5 and one
much closer to the worst-case. Since the original adder was
already designed to minimize worst-case delay, we chose to
target the abort network towards additions having very short
carry-chains.

As illustrated in Figure 14, the abort detection network
consists of a group of eight 4-p product terms. The upper
7 terms form the main portion of the detection network,
where each 4-p term bridges consecutive 4-bit groups. (The
role of the bottom 8th term will be discussed shortly.) To
avoid charge-sharing problems, these 4-bit products are im-
plemented in two levels of domino gates. Essentially, these
products detect when the maximum effective carry-chain
delay consists of 5 consecutive carry propagates or more,
assuming that all carry delays are equal and that the carry-
bypass delay equals a carry delay. In reality, however, the
carry bypass delay and the carry propagate between 4-bit
groups, referred to as inter-group propagate, are signifi-

cantly larger than the others carry propagate delays. Con-
sequently, using this 4-p network the average-case matched
delay must be larger than:

� PG delay + 1 carry bypass + 1 carry propagate + sum
delay and

� PG delay + 3 carry propagates + 1 inter-group propa-
gate + sum delay.

Notice that in the both equations, the generation of the
group propagate signal does not appear. This is because
it is usually not in the critical path, i.e., it is stable by the
time the carry must be bypassed. This, however, is not the
case for the group propagate of the first 4-bit group. To
address this problem, we could make the matched delay
longer to account for this delay. However, this makes the
hybrid scheme ineffective in reducing average-case delay.
Thus, instead, we abort if this case is detected using an 8th
product term, consisting of p1 � p2 � p3 � p4.
6 Results

We completed the transistor-level design of the four
adders in 0.5 micron HP CMOS14TB three-metal process.
This section describes our SPICE analysis to determine var-
ious critical delays, as well as statistical analysis to obtain a
measure of average-case performance.

6.1 SPICE Analysis
We simulated all designs using Mentor Graphics Ac-

cusim (SPICE) simulator at 50�C with a 3.3V power supply.
For each of the four Brent-Kung Adders, we simulated a few
input cases and report the results in Table 1.

Column Abort indicates the delay required for the abort
network to complete. For the 64-bit design, the delays for
both abort networks are given. For each design, the columns
G2 through G6 show the delay of the Done signal, for the
various matched delay paths. For example, G2 indicates the
done signal for very fast completion, where signal Level-2
G signals are used to generate the sum. In each example,
these columns have a checkmark if the associated delay
represents the delay of the addition. The last column, Last
bit, gives the delay of the last-changing sum bit. All delays
are in nano-seconds.

We also performed SPICE analysis on the Hybrid Carry-
Bypass Adder and present a breakdown of delays for various
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Figure 12. (a) Top-level view of 32-bit carry-bypass adder; (b) dual-rail Manchester carry-chain; and
(c) two of the four 8-bit groups constituting the domino logic implementation of the completion
sensing tree.

examples in Table 2. The column PGK Gen. Delay provides
the delay for generating the pi, gi, and ki signals; it is a con-
stant for all examples. The column Comp. Detect., provides
the delay through the completion sensing tree. This gives
an indication of the delay of the adder if no abort network
existed. The column Matched Delay contains the delay of
the matched delay line; it is essentially constant for all ex-
amples. The column Last Bit identifies the delay of the last
sum bit changing along with its bit #. The column Done pro-
vides the actual delay of the adder. The last column, Saved
is the difference between the actual adder delay (given by
the Done column) and the adder assuming no abort network
were used (given by the Completion Detect. column). This
gives an indication of how much time the abort network

saved.

6.2 Statistical Performance Analysis
We statistically analyzed the average-case performance

of four of the speculative-completion adders we described:
the 32-bit BK, the 32+16-bit BK, the 32-bit+small BK, and
the 32-bit Hybrid CBA. For each of these adders we consid-
ered

� random data, where each operand bit has 0.5 probabil-
ity of being 1, and

� real data, obtained by running benchmark programs on
an ARM simulator in which we incorporated software
performance models of our adders derived from our
SPICE analysis.
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For the random case only, we also considered 64-bit BK
adders (the real data was for 32-bit additions only). We com-
pared our speculative Brent-Kung adders to synchronous
Brent-Kung adders, to demonstrate the advantage of specu-
lative completion. For our hybrid CBA, however, we com-
pared to an asynchronous completion-sensing CBA without
speculative completion, to demonstrate the advantage of the
hybrid approach.

Random Data. The analysis on random data indicates
that speculative completion yields significant performance
improvements. On average, the 64-bit BK speculative adder
is 29% faster than a 64-bit synchronous BK adder. The
32+32-bit BK adder is 19% faster, and the 32+16-bit BK
adder is 8% faster, than a 32-bit synchronous BK adder.
The 32-bit results are summarized in Table 3. (The Table
only lists the 32-bit adders, since the ARM simulations were
only for 32-bit addition.)

Real Data. We obtained real data by running an ARM
simulator on four benchmark programs and analyzing all the
additions and subtractions performed by the ALU. These
operations are partitioned into three sets. The first partition
consists of branch-target additions in which a 24-bit sign-
extended offset is added to a 32-bit PC address. The second
partition consists of address calculations in which 24-bit
sign-extended offset is added to a 32-bit base-address. The
third partition consists of arithmetic (ALU) 32-bit additions.

Since in our benchmark programs the branch-target off-
set could always be represented with less than 16-bits, we
used the branch partition to analyze our 32+16-bit adder.
Furthermore, since a significant fraction of address calcula-
tions involved numbers with less than 16-bits, we used the
address partition to analyze our 32+small BK adder. Table
3 reports the average improvements obtained for each data
partition.



SPICE Simulation of Brent-Kung Adders

Last
Example Abort G2 G3 G4 G5 G6 bit

64+64 bit BK Adder 1.71 1.88 2.42

7FFFFFFFFFFFFFFF+ 0.86/
0000000000000000 1.09

p
2.33

00000000000001FF+
0000000000000001 1.01/-

p
1.87

000000000000001F+
0000000000000001 -/-

p
1.64

3FB000000000001F+
0010000000000001 -/-

p
1.68

32+32 bit BK Adder 1.63 2.13

00000001+
7FFFFFFF 0.81

p
2.11

63A9CB2B+
BA26A3D9 -

p
1.55

32+16 bit BK Adder 1.41 2.15

0FFB0400+
00000F0D -

p
1.29

0FFF0000+
00000F0D 0.95

p
0.83

0FFFC000+
00004F0D 0.89

p
1.88

70F84000+
FFFF880D 0.98

p
2.08

70FFC000+
FFFF880D -

p
1.09

70FFC000+
FFFF9B77 -

p
1.08

32+small-number
BK Adder 1.41 2.14

0FFB0400h +
80000F0Dh 0.87

p
1.29

0FFB0400h+
00000F0Dh -

p
1.29

Table 1. SPICE simulation of 0.5 micron Brent-
Kung Adders at 50�C and 3.3V on various in-
puts.

As mentioned earlier, it has been observed that real data
is often skewed towards the worst case, exhibiting longer
average carry-chain lengths than would be predicted using
random data [14]. For this reason, asynchronous adders
often perform poorer in practice than a theoretical analysis
using random data might expect. However, it is also im-
portant to note that results from real data often exhibit sig-
nificant variances and can be a manifestation of the unique
properties of an individual benchmark. Thus, when mak-
ing performance judgments, we believe that both real and
random data should be critically analyzed.

Results are presented in Table 3. The 32+16-bit BK adder
had the lowest average delay (8.52% improvement) and low-
est individual delay (on dhrystone, 13.5% improvement) for
branch calculations. The 32+small BK adder, however, per-
forms relatively poorly on address calculations, primarily

SPICE Simulation of 32-bit Hybrid Carry-Bypass Adder

PGK Comp. Matched Abort Last
Example Gen. Detect. Delay Gen. Bit Done Saved

AC6EC2A7+ 1.18/
EEC45692 0.54 1.83 1.59 - 24 1.65 0.18

FFFFFFFF+
00000001 0.54 4.39 1.55 0.93 - 4.52 -0.13

0000001F+ 1.74/
00000001 0.54 2.17 1.52 1.07 5 2.33 -0.16

F8000000+ 1.64/
00000000 0.54 1.88 1.60 - 31 1.66 0.22

01FDFDFC+ 1.69/
00040404 0.54 2.19 1.54 - 9 1.70 0.49

Table 2. SPICE simulation of 0.5 micron Hy-
brid Carry-Bypass Adder at 50�C and 3.3V on
various inputs.

because the percentage for very fast completion is particu-
larly low in the Dhrystone benchmark. This suggests that,
for this application, a three-tiered abort network able to com-
plete after either G2 or G3 may be preferred. Due to the lack
of time, such a circuit could not be simulated using SPICE
and thus a more detailed analysis could not be presented.

We also observed a high variance in the performance
of the CBAs. The hybrid CBA does surprisingly well for
address and branch calculations, over a base asynchronous
CBA, but is often slow when doing arithmetic adds. Sim-
ulations show that the percent improvement delivered by
the abort detection network ranged from 1.4% (Dhrystone
arithmetic) to 19.84% (Dhrystone branches).
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Statistical Performance Analysis of Various Adders

32-bit 32+16-bit 32+small 32-bit

Data Set Source BK BK BK CBA

Random data

Avg. % Early 80.0 34.4 N/A N/A

Avg. Delay 1.73 1.90 N/A N/A

% Improvement 19 8 N/A N/A

Branch calculations partition

% Early

Dhrystone 56.90 55.70 N/A 63.60

Espresso 52.80 41.30 N/A 45.50

Compiler 1 40.30 30.00 N/A 47.10

Compiler 2 8.50 21.50 N/A 7.70

Avg. % Early 39.62 37.12 N/A 40.97

Avg. Delay 1.94 1.88 N/A 2.43

% Improvement 5.17 8.52 N/A 11.88

Address calculations partition

% Early

Dhrystone 73.60 N/A 8.40 68.20

Espresso 63.40 N/A 27.50 43.30

Compiler 1 45.80 N/A 14.10 41.40

Compiler 2 67.00 N/A 26.70 65.20

Avg. % Early 62.45 N/A 19.18 54.53

Avg. Delay 1.83 N/A 2.01 2.18

% Improvement 10.96 N/A 2.04 15.50

Arithmetic calculations partition

% Early

Dhrystone 11.30 N/A N/A 10.00

Espresso 33.30 N/A N/A 31.30

Compiler 1 24.10 N/A N/A 22.30

Compiler 2 22.40 N/A N/A 20.90

Avg. % 22.77 N/A N/A 21.12

Avg. Delay 2.03 N/A N/A 3.27

% Improvement 0.90 N/A N/A 3.25

Table 3. Statistical performance analysis on
random and ARM-simulation data.


