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Abstract—In this paper, we have proposed speculative locking (SL) protocols to improve the performance of distributed database

systems (DDBSs) by trading extra processing resources. In SL, a transaction releases the lock on the data object whenever it

produces corresponding after-image during its execution. By accessing both before and after-images, the waiting transaction carries

out speculative executions and retains one execution based on the termination (commit or abort) mode of the preceding transactions.

By carrying out multiple executions for a transaction, SL increases parallelism without violating serializability criteria. Under the naive

version of SL, the number of speculative executions of the transaction explodes with data contention. By exploiting the fact that a

submitted transaction is more likely to commit than abort, we propose the SL variants that process transactions efficiently by

significantly reducing the number of speculative executions. The simulation results indicate that even with manageable extra

resources, these variants significantly improve the performance over two-phase locking in the DDBS environments where transactions

spend longer time for processing and transaction-aborts occur frequently.

Index Terms—Distributed database, transaction processing, concurrency control, locking, performance evaluation, speculation.
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1 INTRODUCTION

IN distributed database systems (DDBSs), concurrency
control protocols are employed to ensure the correctness

when a shared database is updated by multiple transactions
concurrently. To process a transaction, the two-phase
locking (2PL) protocol [1], [2] or its variant is widely
employed for concurrency control and the two-phase
commit (2PC) protocol [2] or its variant [3] is widely
employed for commit processing. In the literature [4], [5]
speculation has been extended to optimistic protocol to
improve the deadline performance in real-time centralized
environments (see the next section on related work). In this
paper, we extend speculation to 2PL to improve the
transaction processing performance of DDBSs. In 2PL, it
can be observed that even though a transaction produces
after-images during its execution, the locks on the data
objects are released only after the completion of 2PC.
Parallelism could be increased by allowing the waiting
transactions to access the after-images which were pro-
duced by the lock holding transaction during the execution.
In the proposed speculative locking (SL) protocols, the
waiting transaction is allowed to access the locked data
objects whenever the lock-holding transaction produces
corresponding after-images during execution. By accessing
both before and after-images, the waiting transaction carries
out speculative executions and retains one execution based
on the termination decisions of the preceding transactions.

SL improves the performance over 2PL by allowing more
parallelism among the conflicting transactions without
violating serializability criteria. However, SL requires extra
processing resources to support multiple executions for a
transaction.

The processing of a transaction Ti in DDBS is depicted in
Fig. 1a. For a transaction Ti, the notations si, ei, and ci
denote the start of execution, completion of execution, and
completion of commit processing, respectively. The nota-
tion ai denotes the abort of Ti. (Note that an abort can
happen any time during processing.) Consider T1 and T2

that access (X, Y) and (X, Z), respectively. Fig. 1b illustrates
the processing with conventional 2PL. In this figure, an arc
a ! b, indicates that b happens after a. Also, ri½X� and wi½X�
indicate read and write operations on X by Ti, respectively.
It can be observed that even though T1 produces the after-
image of X during execution, T2 accesses X only after the
completion of T1’s commit processing. Fig. 1c illustrates the
processing with SL. Whenever T1 produces X0 (X0 denotes
an after-image of X), T2 accesses both X and X0 and starts
the speculative executions: T21 and T22. However, T2

commits only after the termination of T1. If T1 commits,
T22 is retained. Otherwise, if T1 aborts, T21 is retained.

Under the naive version of SL, the number of speculative
executions of a transaction explodes with data contention.
In a database system, a submitted transaction is most likely
to commit than abort. By exploiting this fact, we proposed
the SL variants, SL(1) and SL(2), that process transactions
efficiently by significantly reducing the number of spec-
ulative executions of a transaction. The simulation results
indicate that even with manageable extra resources, both
SL(1) and SL(2) significantly improve the performance over
2PL in the DDBS environments where transactions spend
longer time for processing and transaction-aborts occur
frequently.

The work is motivated by the fact that, in DDBSs,
especially in the wide area network (WAN) environments,
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communication necessitated by the remote data access
occupies a significant portion of transaction execution time.
It has been reported that, while it takes only a few
milliseconds to deliver a message in a local area network
(LAN) environment [6], it takes several hundreds of
milliseconds to deliver a message in a WAN environment
[7]. It has been shown in [8] that the time to commit
accounts for one third of the transaction duration in a
general purpose database. Also, it has been reported in [9]
that the time to commit can be as high as 80 percent of the
transaction time in the WAN environments. This means
that, in DDBS, the performance is reduced in case of 2PL, as
the data object values become unavailable to the waiting
transactions for longer durations. With the continual
improvement in hardware technology, we now have
systems with significant amounts of processing speed and
main memory. Since the cost of both CPU and main
memory is falling, extra processing power can be added to
the system at a reasonable cost. By trading extra processing
resources, SL is able to increase concurrency without
violating serializability criteria.

The rest of this paper is organized as follows: In the next
section we discuss the related work. In Section 3, we present
the SL protocol. In Section 4, we present and analyze the
SL variants. In Section 5, we explain how SL can be extended
under limited resource environments. In Section 6, we
present the simulation results. In Section 7, we explain the
performance and implementation issues concerningwith SL.
The last section consists of the summary and conclusions.

2 RELATED WORK

In the literature, the transaction processing problem has
been well-studied in the contexts of both centralized

database systems and DDBSs [10], [11], [12]. In this section,
we review the approaches proposed in the literature to
improve the performance based on the notion of multiple
versions, early release of lock and multiple executions.

In multiversion concurrency control [13], each data object
is allowed to have multiple versions. The benefit of multiple
versions for concurrency control is to help the data manager
to avoid rejecting operations that arrive too late. When a
transaction writes a data object, it creates a new version. In
this scheme, a transaction carries out single execution by
selecting the appropriate read version. However, if the
transaction which has created a version aborts, the reader
must be aborted. However, under SL, the transaction carries
out multiple executions by selecting appropriate versions.

In semantics-based concurrency control [14], an invoked
operation is allowed to proceed when it is recoverable with
respect to uncommitted operations. The invoked operation
forms a commit dependency with an uncommitted opera-
tion. In this scheme, cascading aborts are avoided, but only
among recoverable operations. In the ordered sharing
protocol [15], multiple transactions hold conflicting locks
on data objects as long as operations are executed in the
same order as that in which locks are acquired. The
altruistic locking protocol [16] allows transactions to donate
previously locked objects after they are done with them, but
before the object is unlocked. This protocol is proposed to
synchronize long lived transactions. This approach also
suffers from cascading aborts. In the modified optimistic
protocol [17], a transaction carries out a single execution by
reading the uncommitted values produced by the conflict-
ing transaction after its execution, up to only one level.
These protocols [15], [16], [17] suffer from cascading aborts.
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Fig. 1. (a) Processing of Ti. (b) Processing with 2PL. (c) Processing with SL.



In proclamation-based model [18], a cooperative transac-
tion proclaims a set of values, one of which the transaction
promises to write if it commits. The waiting transactions
can access the proclaimed values and carry out multiple
executions. The proclamation-based approach is mainly
aimed at cooperative environments such as design data-
bases and software engineering environments, where multi-
ple users work on a single project/design. In the branching
transaction model [19], a transaction follows alternative
paths of execution in case of a conflict. In that approach the
number of executions explode with data contention.

In [4] and [5], speculation has been extended to
optimistic concurrency control [20] to improve the deadline
performance in real-time centralized environments. For the
sake of discussion, let us term this approach as optimistic
speculation (OS). In OS, in order to meet the deadline, the
transaction optimistically starts another shadow execution
as soon as conflicts that threaten the consistency of the
database are detected. By carrying out multiple speculative
executions for a transaction, speculation increases the
probability of processing the transaction before the dead-
line. For example, consider two transactions T1 and T2,
where T2 reads data object X after T1 has updated it. The
processing is depicted in Fig. 2. If the optimistic technique is
followed, T2 is restarted at the validation phase and may
miss the deadline. In OS, whenever T2 encounters a conflict
(with T1), it starts another shadow execution T 0

2 by reading
the before-image of the data object X written by T1, as if T1

can be expected to abort. If T2 is aborted, it can select the
shadow execution, T 0

2, which maximizes the chances of
meeting the T2s deadline. It can be noted that OS is an
optimistic approach and is proposed to improve the
deadline performance in centralized environments in which
a transaction-abort is not expensive as in DDBSs. Whereas,
SL is a locking-based approach that requires additional
efforts for deadlock handling and is proposed to improve
the throughput (not deadline) performance of DDBSs. In
OS, the number of speculative executions explode with data
contention, whereas, in the proposed SL variant, SL(1), the

number of speculative executions of a transaction increase
linearly with data contention.

In case of static 2PL, the transaction starts execution only
after receiving all the locks. In [21], we extended speculation
to static 2PL to improve the performance for DDBSs by
allowing a transaction to release the locks after the
execution, but before the starting of 2PC. It has been shown
that the performance can be improved over 2PL in case of
higher conflicts and longer transmission time values. In case
of dynamic 2PL, the transaction sends a lock request
whenever it requires the lock on the data object during
execution. In SL, we extend speculation to dynamic 2PL by
allowing the transaction to release the lock whenever it
completes the work during execution. We have also
extended the naive version of SL to increase concurrency
in mobile environments [22] and nested environments [23].
In this paper, we exploit the fact that most of the submitted
transactions commit rather than abort and mainly propose
the SL variants and demonstrate that these improve the
performance over the naive version of SL.

3 SPECULATIVE LOCKING FOR DDBSS

We first explain the system model and assumptions. Next,
we explain the lock compatibility matrix, present a general-
ized version of SL for DDBS, and briefly discuss about the
correctness.

3.1 System Model and Assumptions

A database system consists of a set of data objects. A data
object is the smallest accessible unit of data. Each data object
is stored at one site only. Data objects are represented by
X;Y ; . . . :. Transactions are represented by Ti; Tj; . . . and
sites are represented by Si; Sj; . . . , where i; j; . . . are integer
values. The database sites are connected by a computer
network. Each site supports a transaction manager and a
data manager [10]. The transaction manager supervises the
processing of transactions, while the data managers manage
individual databases.

156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

Fig. 2. Processing. (a) Optimistic approach. (b) Optimistic speculation.



Transaction model: A transaction is defined [10] as a
set of atomic operations on data objects. An operation is
either a read or a write. For any Ti and X, ri½X� denotes a
read executed by Ti on X. Similarly, wi½X� denotes a write
executed by Ti on X. We use ci and ai to denote T 0

i s
Commit and Abort operations. In general, a transaction
does not have to be a totally ordered sequence. When two
operations are not ordered relative to each other, these
can be executed in any order. However, a read and a
write on the same element must be ordered. The objects
to be locked by the transaction for the purpose of read
and write steps are termed as read-set (RS) and write-set
(WS), respectively. Transactions Ti and Tj are said to have
a conflict, if RSðTiÞ \WSðTjÞ 6¼ �, WSðTiÞ \RSðTjÞ 6¼ �,
or WSðTiÞ \WSðTjÞ 6¼ �.

Knowledge of after-image: Normally, a transaction
copies data objects through read operations into private
working space and issues a series of update operations. We
assume that for Ti and data object X, wi½X� operation is
issued whenever Ti completes work with the data object.
This assumption is also adopted in [15], [16].

Commit protocol: In the literature, a variety of commit
protocols have been proposed, most of which are based on
the 2PC protocol. The most popular variants of 2PC are
presumed abort and presumed commit [3]. To remove the
blocking problem of 2PC, three-phase commit (3PC) [24]
was proposed. It requires three rounds of communication.
In this paper, we propose SL by employing centralized 2PC
(communication is between the coordinator and the
participants only, i.e., the participants do not communicate
among themselves). However, any variant of 2PC or 3PC
can be employed without losing generality.

3.2 Lock Compatibility Matrix

The lock compatibility matrix of 2PL is shown Fig. 3a. R

and W denote read and write-locks, respectively. The terms

yes and no indicate that corresponding lock requests are

compatible and not compatible, respectively. In the

SL approach (Fig. 3b), the W-lock is partitioned into the

execution-write (EW) lock and the speculative-write (SPW)

lock. Transactions request only R and EW-locks. A

transaction requests the R-lock to read and the EW-lock to

read and write. Consider that the transaction obtains EW-

lock and later produces the after-images of the data object.

The EW-lock is changed to the SPW-lock after including the

after-images in the respective data object tree. We assume

no lock conversion from R to EW-lock.1

Under SL, only one transaction holds an EW-lock on the
data object at any point in time. However, multiple
transactions can hold the R and SPW-locks simultaneously.
SL ensures consistency by forming a commit dependency
among transactions. If Ti forms a commit dependency with
Tj, Ti is committed only after the termination of Tj. In
Fig. 3b, the entry sp yes (speculatively yes) indicates that
the requesting transaction carries out speculative executions
and forms the commit dependency with the transactions that
hold the R-locks and SPW-locks. The commit dependency

rules are as follows: 1) If Ti obtains the EW-lock while Tj is
holding either an R-lock or an SPW-lock on the data object,
Ti forms a commit dependency with Tj, and 2) if Ti obtains
the R-lock while Tj is holding an SPW-lock on the data
object, Ti forms a commit dependency with Tj.

3.3 Description of the SL Protocol

In this section, we present the generalized SL protocol after
explaining the corresponding terms and data structures.

3.3.1 Terms and Data Structures

. HSi : Home site of a transaction Ti.

. Tis : The sth ðs � 1Þ speculative execution of Ti. The
notation Ti1 is used to represent the initial execution
of Ti.

. depend setðTisÞ; depend setðTiÞ : Suppose Ti carries
out m speculative executions. For each Tis,

depend setðTisÞ;

1 � s � m, is a set of transactions from which Tis has
formed commit dependencies. Also, depend setðTiÞ =
[m
s¼1depend setðTisÞ.

. depend abortðTiÞ : The term depend abortðTiÞ is an
integer variable which indicates the number of
aborted transactions from which Ti has formed
commit dependencies.

. depend setðXqÞ : Xq is an uncommitted version of X.
The term depend setðXqÞ is a set of (active) transac-
tions which should commit to retain (commit) Xq.

. treeX : We employ a tree data structure to organize
the uncommitted versions of a data object produced
by speculative executions. For a data object X, its tree
is denoted by treeX . The notation Xqðq � 1Þ is used
to represent the qth version of X. Each Xq is stored in
treeX as a tuple < Xq; depend setðXqÞ > . In treeX,
the committed version of X becomes the root and the
uncommitted versions become the rest of the nodes.

. LRikðXÞ : Lock request of Ti to X that resides at Sk.

. depend setðLRikðXÞÞ : The term depend setðLRikðXÞÞ
is a set of transactions from which Ti has formed
commit dependencies at Sk on the data object X.

. queueX: Let Sk be the resident site of X. The incoming
lock requests to X are stored in queueX, which is
maintained at Sk. Suppose Ti requests a lock on X.
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1. However, lock conversion can be easily incorporated.



Then, tuple < depend setðLRikðXÞÞ; status > is en-
queued to queueX. The status variable takes two
values: waiting and not-waiting.

3.3.2 The SL(r) Protocol

Here, we present the generalized SL protocol, SL(r). In
SL(r), if a transaction conflicts with n transactions, it is
robust against r (0 � r � n) transaction-aborts. That is, a
transaction is to be aborted if the number of preceding
transaction-aborts exceeds r.

Each data object X is organized as a tree with

< X1; depend setðX1Þ >

as a root with depend setðX1Þ ¼ �. The locks are requested
dynamically one at a time. Also, the site where the object
resides is referred to as an object site. Consider that Ti has
entered the system. At HSi, both depend setðTiÞ and
depend abortðTiÞ are initialized to � and 0, respectively.
Suppose Ti requires R/EW-lock on X.

Lock acquisition

1.1 HSi sends LRikðXÞ to Sk, where X resides.

1.2 If LRikðXÞ is in conflict with preceding LRjkðXÞ that is
waiting for X, depend set ðLRikðXÞÞ is initialized to �, and
the tuple< depend set ðLRikðXÞÞ; waiting > is enqueued
to queueX.

1.3When the preceding LRjkðXÞ (lock request of Tj) acquires
R/SPW-lock (status = not-waiting), the following steps are
followed.TheR/EW-lock isgranted toLRikðXÞ. IfTi forms
a commit dependency with Tj on X, depend setðLRikðXÞÞ
is updated as depend setðLRjkðXÞÞ [ fTjg. The status of
LRikðXÞ is changed to not-waiting. Next, both treeX and
depend setðLRikðXÞÞ are sent with a lock reply message
toHSi.

Execution

2.1 At HSi, on receiving a lock reply message, Ti proceeds
as follows. Suppose Ti is carrying m (m � 1) speculative
executions and treeX contains v (v � 1)versions. Based on
the value of r, the processing is carried out as follows.

1. t=0; (t is a temporary variable)

2. n=(j depend setðTiÞ j þ j [n
q¼1depend setðXqÞ j );

3. for each Tis (s = 1 . . . m)

4. for each Xq (q=1 . . . v)

5. {

6. if r > n goto 8;

7. if j depend setðTisÞ [ depend setðXqÞ j � ðn� rÞ
8. {
9. t= t+1;

10. Tis branches to new execution, Tit with Xq;

11. depend_set(Tit) = (depend_set(Tis) [
depend_set(Xq)

12. }

13. }

14. m=t;

15. depend setðTiÞ ¼ [m
s¼1depend setðTisÞ.

2.2 When Ti issues a write operation on X, for all Tis,
s ¼ 1 . . .m, the set fdepend setðTisÞ [ Tig is copied to

depend_set(Xp), where Xp is an after-image value of X
produced by Tis. All the after-images with their
depend sets are sent to the object site.

At the object site, each after-image value along with its
depend set is included as a child to the corresponding
before-image node of treeX. Next, the EW-lock on X is
converted to an SPW-lock.

2PC processing

3.1 On completion of Ti’s execution, the coordinator (HSi)
starts 2PC by sending the PREPARE messages to the
participant sites.

3.2 Suppose the participant Sk receives a PREPARE
message. If Sk decides to abort the transaction it sends
the V OTE ABORT message to the coordinator.
Otherwise, the following actions are followed. Suppose
Ti has accessed a set of data objects, say access set. If
depend setðLRikðXÞÞ ¼ � fo r a l l X 2 access set, a
V OTE COMMIT message along with the identities
of respective root node values for the objects in the
access set are sent to the coordinator.

3.3 After receiving the VOTE COMMIT messages from all

the participants, the coordinator selects the speculative

execution to be confirmed and sends the identity of after-

images with a GLOBAL COMMIT message to all the

participants. Otherwise, if it receives a VOTE ABORT

message from any one participant, it sends a

GLOBAL ABORT message to all the participants.

3.4 When a participant Sk receives a GLOBAL COMMIT
message, the steps given below are followed.

3.4.1 The tree of the corresponding data object is replaced
by the subtree with the received after-image as the root
node.

3.4.2 For any Tw, if Ti 2 depend setðTwÞ, the identity of Ti is
deleted from depend setðTwÞ. Also, for all Tws, s=1 . . . u
(Tw is carrying u number of speculative executions), if
Ti 62 depend setðTwsÞ, Tws is dropped.

3.4.3 If any Tw accesses the data object, say X, that was
accessed by Ti at Sk, the identity of Ti is deleted from
depend setðLRwkðXÞÞ.

3.5 When a participant Sk receives a GLOBAL ABORT
message, the steps given below are followed.

3.5.1 The after-images included by the transaction are
deleted along with the subtrees.

3.5.2 For any Tw, if Ti 2 depend_setðTwÞ, the identity of Ti is

deleted from depend_setðTwÞ and the variable depend abort

ðTwÞ > r is incremented. If depend abortðTwÞ > r, Tw is

aborted. Otherwise, for all Tws, s ¼ 1 . . .u (Tw is carrying u

number of executions), if Ti 2 depend_setðTwsÞ, Tws is

dropped.

3.5.3 This step is similar to the Step 3.4.3.

Deadlocks

The process of checking deadlocks [25], [26] that occur due
to waiting for the locks and resolving commit depen-
dencies can be achieved using a single wait-for-graph
[14]. This graph, known as dependency graph, contains
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both wait-for edges and commit-dependency edges.
Whenever a lock request is made to wait for a lock or
forms a commit dependency, an edge is added to the
wait-for-graph and deadlock detection is initiated. If a
cycle is found, the transaction which is making the
request is aborted.

3.4 Correctness

Under SL, each transaction follows commit dependency rules
if it carries out speculative executions. Based on commit
dependency rules, it can be easily proved that SL histories are
serializable similar to 2PL histories [10].

4 THE SL VARIANTS

We first discuss the SL variants. Next, we discuss and
analyze the processing of transactions under these variants.
Then, we explain the processing when a transaction
conflicts on multiple data objects.

4.1 The SL(n), SL(0), SL(1), and SL(2) Protocols

We present and analyze the SL variants by considering a
situation where Ti conflicts with n transactions that are
accessing data object X. We first present extreme pessimistic
and optimistic variants of SL by setting r ¼ n and 0 in SL(r),
respectively. We then discuss SL(1) and SL(2) by setting
r ¼ 1 and 2 in SL(r), respectively.

SL(n): It is the naive (extreme pessimistic) version of SL.
In SL(n), Ti is robust against n transaction-aborts. Given that
each transaction has two possibilities of termination
(commit or abort), when Ti conflicts with n transactions,
these bring into being 2n termination possibilities. There-
fore, the total number of speculative executions carried out
by Ti comes to 2n. From binomial expansion, we can express
2n as follows:

n

0

� �
þ n

1

� �
þ . . .þ n

n

� �
¼ 2n: ð1Þ

In (1), the term n
k

� �
indicates the number of combinations

(i.e, executions of Ti) of n transactions, when k transactions
commit and n� k transactions abort. For a transaction, let p
be probability of commit and q be probability of abort
(pþ q ¼ 1). Then, the probability that k transactions commit
and n� k transactions abort is n

k

� �
pkqn�k. Also,

Xn
k¼1

n

k

� �
pkqn�k ¼ 1: ð2Þ

Under SL(n), as Ti carries out 2
n executions, the probability

that Ti commits if any of k (1 � k � n) transactions abort is
equal to 1. Let SLðnÞðabortÞ be the probability of abort
(cascading abort probability) of Ti, when k (1 � k � n)
preceding transactions abort. Then,

SLðnÞðabortÞ ¼ 0: ð3Þ

SL(0): It is the extreme optimistic version of SL. In SL(0),
a transaction carries out one execution by reading only the
after-images of the preceding transactions. So, Ti is robust
against zero transaction-aborts, i.e., Ti has to abort even one
of the preceding transactions aborts. Given p, the prob-
ability that all transactions commit = pn. Therefore, the

probability that at least one transaction aborts = 1� pn. Let
SLð0ÞðabortÞ be the probability that Ti aborts when k
(1 � k � n) transactions abort. Then,

SLð0ÞðabortÞ ¼ 1� pn: ð4Þ

From (4), we can observe that, unless p is very close to 1,
SL(0)(abort) increases significantly with n. As a result, the
performance of SL(0) decreases as data contention in-
creases.

SL(1): In a database system, it can be observed that a
submitted transaction is more likely to commit than abort,
i.e., p � q. Based on this fact, we propose SL(1) and SL(2) by
processing transactions with moderate robustness against
cascading aborts.

In SL(1), a transaction is robust against one transaction-
abort. For a transaction, to be robust against one transac-
tion-abort, it is sufficient to support nþ 1 (by covering only
last two terms in (1)) executions. Under SL(1), if the number
of the preceding transaction-aborts exceeds one, Ti has to be
aborted. Since p � q, by supporting nþ 1 executions,
cascading abort probability in SL(1) can be significantly
reduced as compared to SL(0).

The probability that n� 1 transactions commit =
n

n�1

� �
pn�1q ¼ npn�1q. Therefore, the probability that at least

n� 1 transactions commit = pn þ npn�1q. Let SLð1ÞðabortÞ
be the probability of abort of Ti when k (1 � k � n)
preceding transactions abort. Then,

SLð1ÞðabortÞ ¼ 1� pn � npn�1ð1� pÞ: ð5Þ

From (5), it can be observed that if p is close to one, the
value of SLð1ÞðabortÞ comes close to zero. Also, in SL(1), the
number of speculative executions of the transaction
increases linearly with n.

SL(2): Under this protocol, a transaction is robust against

two transaction-aborts. If the number of the preceding

transaction-aborts exceeds two, Ti has to be aborted. To be

robust against two transaction-aborts, it is sufficient to

support
P

nþ 1 executions for a transaction. This can be

computed by considering the last three terms in (1). The

probability that n� 2 transactions commit = n
n�2

� �
pn�1q2.

Therefore, the probability that at least n� 2 transactions

commit = pn þ npn�1q þ n
n�2

� �
pn�2q2. Let SL(2)(abort) be the

probability of abort of Ti when k (1 � k � n) preceding

transactions abort. Then,

SLð2ÞðabortÞ ¼ 1� pn � npn�1q � n

n� 2

� �
pn�2q2: ð6Þ

The last term in (6) reduces the value of SL(2)(abort)
significantly under high abortive environments. Therefore,
SL(2) possesses the potential to improve the performance
under high abortive situations (see Fig. 4).
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10 transactions on X.



4.2 Discussion

We first explain the processing under the SL variants

through an example and discuss the feasibility of other

SL variants.

4.2.1 Processing under SL Variants

Suppose T1, T2, T3, and T4 conflict on a data object X, in that

order. Fig. 5 depicts the speculative executions of the

transactions and the number of versions in the Xs tree

under SL(n), SL(0), SL(1), and SL(2). A commit generates an

after-image of a data object where an abort causes no

change to the before-image value. The transactions update

the Xs tree as follows: T1 reads X1 and produces X2, which

is then included to the Xs tree. Next, T2 carries out two

speculative executions: One execution reads X1 and

produces X3, and the other execution reads X2 and

produces X4. Both X3 and X4 are then included to the

Xs tree. Similarly, T3 and then T4 carry out speculative

executions and corresponding new versions of X are

included to the Xs tree.
In SL(n), a transaction carries out 2n executions and need

not be aborted even all the preceding transactions abort. For

example, if T1, T2, and T3 abort, T4 can retain the execution

carried out by reading X1. In SL(0), a transaction carries out
one execution by reading only after-images produced by the
preceding transactions and has to be aborted even if one
among the preceding transactions aborts. (In Fig. 5, thick
dotted lines indicate invalid options.) In SL(1), the transac-
tion carries out nþ 1 executions and is not aborted if any
one of the preceding transactions abort. However, if the
number of preceding transaction-aborts exceeds one, the
transaction has to be aborted. For instance, if T1 commits
and both T2 and T3 abort, then T4 has to be aborted in case
of SL(1). In SL(2), the transaction carries out

P
nþ 1

number of executions and has to be aborted if more than
two transactions abort. For instance, if T1, T2, and T3 abort,
then T4 has to be aborted. It can be observed that T4 carries
out eight executions under SL(n) and only four executions
under SL(1).

4.2.2 SL(3), SL(4), . . . Approaches

Note that, by varying the value of r in SL(r), we can have
more variants such as SL(3), SL(4), etc. However, as we
increase the robustness (or the value of r), the number of
speculative executions of the transaction also increases
accordingly. For instance, if we consider SL(3), the number
of executions comes to ðn3 þ 5nþ 6Þ=6. In this paper, we do
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Fig. 5. Depiction of tree growth and the speculative executions under SL(n), SL(0), SL(1), and SL(2) when four transactions conflict on X. The

notations c and a denote commit and abort, respectively. Also, a node of treeX is represented with corresponding version without its depend set.



not consider the other variants as SL(2) is enough to
improve the performance in high abort situations (see
experiment results).

4.3 Multiple Conflicts

We discuss the case where a transaction conflicts with other
transactions on multiple data objects. In this case, object
dependency between the data objects accessed by the
transaction affects the number of speculative executions of
the subsequent transactions. Suppose Ti accesses two data
objects X and Y. We denote the object dependency between
X and Y with depend(X,Y), which is either true or false. If
wi½Y � is an arbitrary function of ri½X� or wi½X�, depend(X,Y)
is true. Otherwise, depend(X,Y) is false. Note that
dependðX;Y Þ 6¼ dependðY ;XÞ.

If the object dependency exists between any two objects
accessed by the transaction, the subsequent transaction may
form indirect dependencies. For example, consider three
transactions T1, T2, and T3 that arrive to access (X), (X,Y),
and (Y), respectively, in that order. The progress of the trees
of both X and Y is depicted in Fig. 6. T1 accesses X1 and
then produces X2. When T2 accesses both X1 and X2, it
starts two speculative executions and each execution then
reads Y1. We explain the processing by considering two
cases. First, consider depend(X,Y) is true. In this case, T2

adds two new versions to the Y’s tree as both executions of
T2 read the same version Y1, but produce different versions
Y2 and Y3. When T3 accesses Y’s tree, it carries out three
executions since the Y’s tree contains three versions. So, the
selection of the speculative execution of T3 depends on the
termination mode of T1 even though there is no direct
conflict between T3 and T1. In this situation, T3 forms an
indirect dependency with T1. And, second, if depend(X,Y)
is false, T2 adds only one new version Y2 to the Y’s tree. So,
T3 carries out only two executions and selects the
appropriate execution based only on the T2’s termination.
If object dependency does not exist among the data objects
accessed by a transaction, a transaction carries out 2n, nþ 1,
and

P
nþ 1 executions in case of SL(n), SL(1), and SL(2),

respectively. However, if object dependency exists among

the data objects accessed by the transaction, the SL
protocols have to carry out additional executions to cover
indirect dependencies. Suppose a transaction conflicts with
n transactions directly and m transactions indirectly. Then,
it carries out at most 2nþm, nþmþ 1, and

P
ðnþmÞ þ 1

executions in case of SL(n), SL(1), and SL(2), respectively. In
this paper, however, we carry out simulation experiments
assuming that object dependency exists among all the data
objects accessed by a transaction. However, the issue of
how object dependency affects performance will be carried
out as part of future work.

5 EXTENSION UNDER LIMITED RESOURCES

We explain how the SL protocols can be extended for
limited resource environments.

In the SL protocols, since each speculative execution
needs separate work space, the size of the main memory
available in the system limits the number of speculative
executions carried out by the transaction. With this
limitation, processing cost may not be considered as a
significant overhead as current technology provides high
speed parallel computers at low cost. According to size of
the main memory, the number of speculative executions
carried out by a transaction can be controlled with two
variables: executions limit and versions limit.

. Executions limit (EL). Suppose the amount of
memory to carry out a single execution is one
memory unit. This also includes the space to keep
both the before and after-images of an execution.
The EL value is set to the maximum number of
speculative executions that can be carried out by the
system for a transaction.

. V ersions limit (V L). The V L value specifies the
maximum number of versions allowed in the
object’s tree. If the number of versions in the tree
of a data object exceeds V L, the lock request is made
to wait; i.e., the lock request waits for the termina-
tion of the preceding transactions. If the number of
nodes in the tree becomes less or equal to the
V L value, the lock is granted to the waiting lock
request.

Determining the EL value: Given the fixed amount of
resources in the system, we present a simple strategy to
determine the EL value. We assume that all the transactions
require the same amount of main memory for execution.
Also, for the transaction, all of its speculative executions
require the sameamount ofmainmemory. Let each execution
requires one unit of main memory. Let MPL/site denotes the
number of active transactions at a site and memory units

(mus), where mus � MPL, denotes the number of memory
units available at a site. In the SL approach, the EL value for
the transaction is fixed based on the mus value. By knowing
the values of bothmus andMPL at a site, we determine EL as
b mus
MPLc units of memory to each active transaction. For
instance, with mus ¼ 20 and MPL/Site = 10, two units of
memory is allotted to each transaction. However, if MPL is
reduced to five, withmus ¼ 20, four units of memory can be
allocated to each transaction.
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Fig. 6. Depiction of the growth of the object trees in case of an object

dependency.



Note that this method suffers from the problem of under-
utilization of processing resources. We leave the problem of
optimal distribution of extra memory resources among
transactions by considering transaction specific properties
(such as priority and length) for further investigation.

6 SIMULATION STUDY

We first explain the simulation model, and then discus the
simulation results of 2PL and optimistic locking protocols.
Next, we discuss the simulation results under the limited
resource and skewed environments.

6.1 Simulation Model

Wedeveloped a discrete event simulator on a closed queuing
model of a DDBS. For the sake of simplicity, the communica-
tion network is modeled as a fully-connected network. Any
site can send messages to all the sites at the same time. Each
site is modeled with multiple CPU servers and I/O servers
[30]. When a transaction needs CPU service, it is assigned a
free CPU server. Thus, at each site, we have a pool of
CPU servers, all identical and serving one global CPU queue.
Requests in the CPU queue are served in the FCFS manner.
The I/O model at each site is a probabilistic model of a
database that is spread out across all the disks. There is a
queue associated with each of the I/O servers. When a
transaction needs service, it randomly (uniform) chooses a
disk and waits in an I/O queue with the selected disks. The
service discipline for the I/O queue is also FCFS.

The meaning of each model parameter for simulation is
given in Table 1. The size of the database is assumed to be
db size data objects. We equate each data object with a page.
The database is uniformly distributed across the num sites

sites. A new transaction is assigned an arrival site which is
chosen randomly over num sites. The parameter trans size

is the average number of data objects requested by the
transaction. It is computed as the mean of a uniform

distribution between max size and min size (inclusive).
The probability that an object read by a transaction will also
be written is determined by the parameter write prob. The
parameter trans time is the time required to transmit a
message between sites. The WAN behavior is realized by
varying trans time. The parameter local to total is the ratio
of the number of local requests to the number of total
requests for a transaction. The CPUs and disks are allocated
at each site in terms of resource units; each resource unit
consists of one CPU and two disk units. The parameter rus
is the number of resource units at each site. The parameter
res io is the amount of time taken to carry out an i/o request
and the parameter res cpu is the amount of time taken to
carry out a CPU request. Accessing a data object requires
res io and res cpu. To force-write a log record (no data)
requires res cpu and then res io. Also, to write each data
object to the disk requires res cpu and then res io. The total
number of concurrent transactions active in the system at
any time is specified by the multiprogramming level (MPL).
Each transaction execution consumes a memory unit. The
parameter mus indicates the amount of memory units
available at the site.

The settings for res io, res cpu, db size, trans size,
min size, and max size parameters are given in Table 1
[30]. The variable num sites is fixed at 5. The local to total

ratio for a transaction is fixed at 0.6 [31]. Thus, 60 percent of
the data objects are randomly chosen from the local
database and 40 percent of the data objects are randomly
chosen from the remaining database sites. We have set
write prob parameter to 1; i.e., a transaction writes all the
data objects it reads. For simplicity, we do not consider
shared accesses. With respect to shared accesses, it has been
shown that a certain fraction of shared accesses can be taken
into account by modifying the effective database size [32].
We assume that all the data is accessed from the disk.

The graphs show mean values that have relative half-
widths about the mean of less than 10 percent at the
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90 percent confidence level. Each experiment has been run
10 times; each time with 10,000 transactions. Only statisti-
cally significant differences are discussed here.

Whenever a lock request waits, deadlock is checked. In
case of a deadlock, the waiting transaction is selected as a
victim. The aborted transaction is resubmitted after a delay
and makes the same data accesses as its original incarna-
tion. The length of the delay is equal to the average
transaction response time which is used in most transaction
management studies [30], [17]. We neglect the overheads for
detecting deadlocks since they are usually negligible
compared to the overall cost of accessing data [33]. Also,
since the cost of detecting deadlocks is the same for all the
approaches, it will not affect the relative performance.

The primary performance metric of our experiments is
throughput, that is, thenumber of transactions completedper
second. In the simulation experiments we vary MPL/Site
fromone to 20 (since there are five sites, overallMPL is varied
from five to 100). We vary transmission time from 0 milli-
seconds (msec) to 500 msec to take care of both the LAN and
WAN environments [7], [9].

We investigate the performance of the following
approaches.

. 2PL: We follow the dynamic 2PL. On arrival, the
transaction starts its execution by issuing a lock
request on the first data object. After receiving a lock
reply, subsequent lock request is issued. After
execution, 2PC is followed for commit processing.
The locks are released on a data object when the
corresponding site receives final commit messages.

. WDL: In the literature, by varying the blocking
policy of 2PL, wait depth limited (WDL) locking
algorithm [34] was proposed for centralized envir-
onments. In the WDL approach, the number of
transactions waiting for a data object is limited based
on some properties of transactions. Here, we con-
sider a variant of WDL, in which one transaction is
allowed to wait for a data object at any time.
Suppose T1 has acquired a lock on X. If T2 arrives
for object X, it is put to wait. Next, if T3 arrives for
object X, then we compare the progress of T2 with T3.
The progress of a transaction is defined as the
number of locks held by it. If T3s progress is more
than T2 then T2 is aborted; otherwise T3 is aborted.

. SL(0) or Optimistic locking: We have investigated
the performance of SL(0) at levels 1 and 2 (termed as
SL(0)(level=1) and SL(0)(level=2)). In SL(0)(level=1),
a transaction is put to wait if more than one
transaction has already accessed the data object,
whereas, in SL(0)(level=2), a transaction is put to
wait if more than two transactions have already
accessed the data object. Otherwise, the locks are
granted to the requesting transaction.

. SDTP: In speculative distributed transaction proces-
sing (SDTP) protocol [21], the EW-lock on a data
object is converted to SPW-lock when the transaction
finishes execution (before the starting of 2PC).

. SL(unlimited), SL(n), SL(1), SL(2): Similar to 2PL,
lock requests are issued dynamically. When the
transaction receives a lock reply, corresponding

object tree is updated with the new versions equal
to the number of executions at that instant. The after-
images are sent to the remote site. Next, the EW-lock
is changed to an SPW-lock. When a transaction
terminates the respective data object trees and
depend sets of proceeding transactions are modified.
In SL(unlimited), we show the maximum (upper
bound) performance that could be obtained with
SL(n) assuming unlimited resources are available in
the system.

In addition, we consider the case in which lock requests
are always granted by assuming no contention. This gives
upper bound on the throughput obtainable from a given
system.

We consider the WDL approach because it has been
proposed to improve the throughput performance in high
data contention environments over immediate-abort (2PL
aborting on a conflict) and the optimistic approaches. SL(0)
represents the group of protocols [15], [16], [17] which are
based on the notion of early release of lock (with cascading
abort problem).

6.2 Simulation Results: 2PL, WDL, SL(0), and
SL(unlimited)

Here, we discuss the performance of the 2PL, WDL, SL(0),
and SL(unlimited) approaches.

At different MPL values, Fig. 7 shows the performance
of the 2PL, WDL, and SL(unlimited) approaches at
trans time ¼ 0 msec. At rus = 1, the performance of these
approaches is close because of the physical resource (disk)
contention. As we increase rus to 10, physical resource
contention is reduced and data contention influences the
performance. At low MPL values, all the approaches
behave similarly as the conflicts are rare. As we increase
MPL, data contention increases accordingly. As a result,
more transactions wait for the locks. In 2PL, at higher MPL
values, the number of transactions that keep the system
busy decreases due to the chained waiting. As a result, the
performance of 2PL decreases. The abort policy of WDL
allows the processing of more transactions as compared to
2PL as an abort of a transaction causes the release of
already held locks, which causes multiple waiting transac-
tions to proceed in parallel. However, this increased
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parallelism is negated by the increased number of the
aborts in WDL, since an abort is costly in DDBS. The
performance of WDL saturates above 2PL. The performance
of SL(unlimited) increases significantly due to the early
release of locks.

Fig. 8 shows the performance results at trans time ¼ 500
msec. In DDBSs, as trans time increases, the transaction
spends longer duration in execution and commit processing.
In this figure, aswe increase rus from1 to 10, the performance
of both 2PL andWDL is not increased accordingly. In case of
2PL, due to the long transmission time factor, transactions
keep waiting for the data objects. So, the physical resources
are underutilized due to the chained waiting. Therefore, the
performance of 2PL saturates at rus ¼ 1. WDL also fails to
increase theperformancedue toa largenumberof aborts.Asa
result, theperformanceofWDLsaturates at rus ¼ 1. In caseof
SL(unlimited), even at rus ¼ 1, the performance is increased
considerably overWDLdue to the reduced lockwaiting time.
As we increase rus from 1 to 5, the physical resource
contention is further reduced. As a result, SL(unlimited)
improves the performance significantly at the higher
MPL values over other approaches. However, as trans time
increases, the performance of SL(unlimited) saturates at
rus ¼ 5. It can be observed that as we increase the rus value
from5 to10, no significant improvement is observed in caseof
SL(unlimited).

Fig. 9 shows theperformance results of both SL(0)(level=1)
and SL(0)(level=2). At low MPL values, the performance of
SL(0)(level=1) is approximately close to 2PL. The reason is
that, even though SL(0)(level=1) reads after-images when-
ever a preceding transaction produces it, the increase in
parallelism is negated by the cascading aborts. The main
factor that affects the performance of SL(0) is cascading
aborts. Also, it can be observed that the performance of
SL(0)(level=2) is close to SL(0)(level=1). Owing to the fact that
even though SL(0)(level=2) improves parallelism over
SL(0)(level=1), the improvement is negated by the corre-
sponding increase in cascading aborts. We have also
conducted experiments at higher levels and found that
performance of SL(0) further deteriorates with the number
of levels. Fig. 9 also shows the performance under no
contention. Under no contention, the performance grows
linearly with MPL, and then saturates due to the physical

resource contention. However, it can be observed that the

performance of SL(unlimited) saturates at the lower through-

put levelmuchbelow the no contention line. This is due to the

waiting involved inSL(unlimited) for the lock conversionand

resolving commit dependencies.
Fig. 9 also shows the performance results of SDTP. At the

lower MPL values, SDTP improves the performance over

both 2PL and WDL. Because, at the lower MPL values, since

the lock waiting time is less, the time required for the

commit processing is comparable to the execution time. As

data contention increases, transactions spend more time in

the execution due to the increase in the lock waiting time. It

can be observed that at higher MPL values, the performance

improvement of SDTP over 2PL is not significant. Because,

by releasing the locks after the execution, SDTP explores

parallelism only during 2PC. However, as compared to 2PL,

since the locks are being released before the completion of

the commit processing, SDTP improves the throughput

performance over 2PL. From the preceding experiments, it

can be noted that SL(unlimited) improves performance

significantly over 2PL, WDL, SL(0), and SDTP.

6.3 Simulation Results under the Limited Resource
Environments

In this section, we discuss the experiment results about the

impact of the main memory on the performance of SL(1),

SL(2), and SL(n). We assume that a transaction (or its

speculative) execution consumes one memory unit. In the

following experiments, mus=Site indicates the number of

memory units available at that site, which are distributed

equally among the active transactions at that site. So, we fix

the EL (also VL) value equal to mus=MPL. When we fix EL

for a transaction, we assume that appropriate processing

power is added to the system to support speculative

executions. So, in the simulation experiments we consider

that speculative executions of a transaction are carried out

in parallel. In the experiments, if a transaction conflicts with

n transactions, the EL (also VL) value is fixed to 2n, nþ 1,

and
P

nþ 1 executions in case of SL(n), SL(1), and SL(2),

respectively. The transaction is aborted if the number of

speculative executions exceeds the EL value.
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Fig. 8. MPL versus throughput at trans time ¼ 500 msec. Fig. 9. MPL versus throughput: SL(0)(level=1), SL(0)(level=2), and

SDTP.



In the following experiments, we have not investigated
the performance of SDTP, as the performance improvement
is not significant under the limited resource environments.

Fig. 10 shows the performance results of SL(n) at
trans time ¼ 500 msec by varying MPL. It is assumed that,
at a particular MPL/site value, mus equal to ðMPL=siteÞ �
EL are available at that site. It can be observed that even at
EL ¼ 2, SL(n) exhibits improved performance over both
SL(0)(level=1) and WDL. As we increase the EL value from
2 to 16, throughput of SL(n) increases significantly to wards
SL(unlimited) due to the increased parallelism.

Fig. 11 shows the performance results of SL(1) at
trans time ¼ 500 msec by varying MPL. It can be
observed that the performance of both SL(n) and SL(1)
coincide at EL = 2. Also, the performance of SL(n) at EL
= 8 coincides with the performance of SL(1) at EL = 4.
This is due to the fact that at EL = 8, SL(n) increases
concurrency up to 3-levels. The same performance can be
achieved under SL(1) at EL = 4 because SL(1) explores
more parallelism by carrying out few potential specula-
tive executions for a transaction.

Fig. 12 shows the throughput results of SL(2) at EL = 16.
This graph highlights the significant fact that SL(2) closely
performs with SL(n). Approximately, same degree of con-
currency is obtained under both approaches at EL = 16.

However, due to reduced number of executions, SL(2)
slightly improves the performance over SL(n). We have also
carried out experiments by increasing the EL value and itwas
observed that SL(2) performs closely with SL(n).

At different trans time values, Fig. 13 shows the
performance results of SL(n). It can be observed that, as
we increase EL, the performance keeps increasing. In
DDBS, as trans time increases, the transaction spends more
time in the processing. As a result, the performance of all
the approaches decreases (see the no contention line).
However, the performance of SL(n) decreases slowly as
compared to both WDL and SL(0)(level = 1). The reason is
that as trans time increases, the aborted transactions
increase the wasted work in both WDL and SL(0)(level =
1). In case of 2PL, the throughput decreases due to the
chained waiting. So as trans time increases, SL(n) main-
tains high throughput as compared to in case of both
SL(0)(level = 1) and WDL because of the increased
concurrency. Also, as EL increases, SL(n) significantly
improves the performance under all trans time values over
both SL(0)(level = 1) and WDL.

By varying trans time values we have also conducted
experiments for both SL(1) and SL(2) under the limited
resource environments and observed that SL(1) improves
the performance significantly over SL(2). Also, it was
observed that the performance of SL(2) is close to SL(n).

Experiment on aborts. To study the impact of aborts, we
conducted experiments by modeling a high abort situation.
In this experiment, after completing the execution, a
transaction is forcibly aborted with a certain probability.
We conducted the experiment by fixing probability of
transaction-abort at 5, 10, 15, 20, and 25 percent2 In this
experiment, we do not take into account the aborts caused
by the nature of algorithm (such as the aborts due to
deadlocks in case of 2PL, for instance).

Fig. 14 shows that as we increase the probability of abort,
the performance of all the approaches decreases due to the
wasted work. The performance of SL(0)(level=1) decreases
at a faster rate due to the increase in cascading aborts.
However, the performance of SL(1), SL(2), and SL(n)
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Fig. 11. MPL versus throughput: S(1).

Fig. 12. MPL versus throughput: S(2).

2. It has been reported [9] that in WAN environments, percentage of
aborts vary up to 25 percent.

Fig. 10. MPL versus throughput: SL(n).



decreases much slowly as compared to SL(0)(level=1). It can
be observed that under a wide range (up to 25 percent) of
abort probabilities, SL(2) performs closely with SL(n). Also,
as expected, performance crossover takes place between
SL(1) and SL(2) as we increase the probability of abort. Note
that the performance of SL(2) decreases gradually with the
aborts as it is more robust against cascading aborts as
compared to SL(1). In case of SL(2) also, a small number of
cascading aborts do occur, but these have negligible effect
on the performance. From this experiment, we conclude
that SL(1) is appropriate for low abortive situations and
SL(2) is appropriate for high abortive situations.

6.4 Simulation Results under the Skewed
Environments

We report the experimental results conducted by consider-
ing a different access pattern and database size. It has been
observed that data access pattern by transactions is nonuni-
form (skewed) [35] in real database applications. To model
nonuniform access, some models have used b� c access
behavior [36], where c ¼ 100� b. It means that b% of
transaction accesses are uniformly distributed over c% of
the data objects and the remaining accesses are uniformly
distributed over ð100� cÞ% of data. In the graphs, the
improvement factor (IF) is also shown, which gives the

throughput improvement over 2PL. For instance, IF of SL(n)
is calculated as SLðnÞ�2PL

2PL (these values indicate the corre-
sponding throughput values).

Figs. 15 and 16 show the impact of skew on the
performance when db size = 1,000 and 10,000, respectively.
When the skew is low, the SL protocols exhibit steady
performance. As the skew is increased, the performance of
all the approaches gradually decreases due to the increased
contention. It can be observed that both SL(1) and SL(2)
improve the performance significantly over 2PL under
high skew. However, if we increase the skew beyond
certain limit, the performance of the SL protocols falls
sharply due to long waiting and finally settles above the
2PL’s performance. The reason for such behavior can be
explained as follows: In a database system, the average
number of lock requests waiting for a data object is
approximately equal to ððMPL � trans sizeÞ=ðdb sizeÞÞ. So,
the number of lock requests waiting per data object is
inversely proportional to db size. When skew = 50� 50,
data accesses are uniform. As we increase the skew, the
effective db size value decreases accordingly. Due to the
inverse law, the number of lock requests waiting for a data
object increases sharply. As a result, the performance of
both SL(1) and SL(2) falls sharply. The sharp fall of the
performance of the SL protocols with skew can be more
clearly noticed in Fig. 16.
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Fig. 13. Trans time versus throughput: SL(n).

Fig. 14. Percentage of aborts versus throughput.

Fig. 15. Skew versus throughput, db size ¼ 1; 000.

Fig. 16. Skew versus throughput, db size ¼ 10; 000.



From the preceding experiments, we can conclude that
both SL(1) and SL(2) improve the performance significantly
over 2PL under a wide variety of transaction workloads.

7 PERFORMANCE AND IMPLEMENTATION ISSUES

In this section, we discuss the performance and implemen-
tation issues concerning SL.

7.1 Performance Issues

Here, we discuss about disk I/O, logging, and message
overhead issues under SL.

. No additional disk I/O: Under SL, even though the
transaction produces multiple data object versions
during its execution, it force-writes only one version
for each data object. Therefore, SL involves no extra
disk write cost.

. No additional logging overhead: Under SL, the
logging process is delayed until the transaction
confirms the single version. All the data object
versions are kept in the main memory. However,
due to the delay in logging process, the already
completed work may be wasted in case of a failure.
We believe that the effect of such failures on the
performance is negligible.

. Message overheads: During execution, the after-
images of a data object are sent to the object sites
whenever the transaction produces them. The
number of messages can be reduced in two ways.
First, the after-images of the remote data objects
piggy-back the PREPARE messages of 2PC. As a
result, the size of the message increases, but this will
have negligible effect on the performance. Second,
after-images are transferred immediately only for
the remote hot-spot data objects. Thus, with extra
messages, performance can be improved by proces-
sing the waiting lock requests. The number of
messages during the commit processing is not
increased.

7.2 Implementation Issues

The architecture of a transaction processing system is
discussed in [37]. Concurrency control is performed by
the resource manager through a software module called
lock manager that controls the accesses to the data objects
using a locking approach. The lock requests are stored in a
data object queue and are processed in a FIFO manner. As
per the lock compatibility matrix, the locks are granted to
the waiting lock requests. The recovery part is managed
through the logging mechanism. In DDBS, after the
completion of execution, 2PC is followed for commit
processing. We now explain the possible modifications
required to a typical transaction processing system to
implement SL.

. Precompiling: To implement the locks under SL,
the transaction processing system should know
when the transaction completes the work with the
data object. Therefore, before the starting of its
execution, the transaction has to be scanned by a
software module that puts a lock conversion

marker for each data object. During execution,
when the lock conversion marker is encountered,
the EW-lock on the data object should be
converted into the SPW-lock. Since the transactions
are stored procedures, we believe that it is not
difficult to put the lock conversion markers by
analyzing the stored procedures.

. Lock management: The lock manager under 2PL
manages two kinds of locks: R and W. However, the
lock manager under SL should be modified to
manage three kinds of locks: R, EW, and SPW.
During the execution of a transaction, the request to
change the EW-lock to the SPW-lock is sent to the
lock manager whenever a lock conversion marker is
encountered. The lock manager then changes the
EW-lock on the corresponding data object to the
SPW-lock. Also, whenever a the lock manager grants
the EW-lock to the lock request, it maintains the
corresponding depend set. We believe that these
changes can be easily incorporated.

. Object tree and speculative execution manage-
ment: Two additional things are to be managed
under SL over 2PL: object trees and speculative
executions. Regarding the management of object
trees, it can be noted that each active data object
under the 2PL implementation is replaced by the
corresponding tree under SL. So, the exiting transac-
tion processing systems should be extended to
manage the object trees under SL. And regarding
the management of speculative executions, it can be
noted that single execution of the transaction under
2PL is replaced by multiple executions under SL.
Similar to the case of data object trees, the existing
implementation should be extended to manage
speculative executions. Especially, recently specula-
tive execution mechanism on multithreaded proces-
sor attracts a strong attention and a lot of research on
this topics are already being done. We believe that
the SL protocols effectively utilize such environ-
ments and improve the performance.

. Index modification: Under 2PL, when the transac-
tion requests a data object value, its existence is first
checked in the main memory (database buffer).
Otherwise, it is retrieved from the disk using B-tree
index [37]. Concurrency control protocols such as
ARIES/IM [38] are employed to preserve the
consistency of the B-tree against concurrent opera-
tions. The existing B-tree index can be adopted to
access the data objects under SL as follows: Under
SL, an active data object is represented by a tree
which contains the uncommitted versions produced
by the transactions. It can be observed that, under
SL, the transaction accesses either all the versions in
the tree or not. Logically this is equal to accessing the
single version. So, the change to the existing index
implementations is minimal.

It can be noted that current database systems also
provide options to create and maintain secondary
and value based indexes to improve the query
performance. The detailed analysis how such in-
dexes can be extended under SL is beyond the scope
of this work.
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. Commit processing: Under SL, there exists two
options to implement 2PC. Firstly, 2PC is started
after the transaction’s execution without waiting for
the termination of the transactions in its depend set.
When a participant receives a PREPARE message, it
will respond only after the termination of all the
transactions in the depend sets of the corresponding
transaction’s lock requests. To prevent unnecessary
aborts, the time-out period in existing 2PC imple-
mentations should be dynamically set based on the
number of transactions in the depend set of the
transaction. Second, the transaction starts 2PC only
after the termination of all the transactions in the
depend set. The waiting period can be fixed based on
the number of transactions in the depend set. In this
option, when the transaction terminates, all those
transactions that have formed the commit depen-
dency with the aborted transaction have to be
informed which increases the communication cost.
With this option, however, the existing 2PC im-
plementation can be adopted under 2PL without
modifications.

8 SUMMARY AND CONCLUSIONS

In this paper, we have proposed the SL protocols to

improve the performance of DDBSs by trading extra

processing resources. In SL, the waiting transaction is

allowed to access the locked data object whenever the lock-

holding transaction produces the corresponding after-

image during execution. By exploiting the fact that a

submitted transaction is more likely to commit than abort,

we proposed SL variants, SL(1) and SL(2), that process

transactions efficiently by significantly reducing the num-

ber of speculative executions. Our simulation study under a

wide variety of transaction workloads indicate that even

with manageable extra resources both SL(1) and SL(2)

significantly improve the performance over 2PL in the

DDBS environments where a transaction spends longer

time in processing and transaction-aborts occur frequently.
As a part of future work, we will investigate the issues

regarding modifications required to the existing transaction

processing systems to implement SL. These issues include

the design of a precompiler routine to put the lock

conversion markers in the transaction code, efficient

management of object trees and speculative executions,

and changes to existing indexes and commit processing

routines. We will also investigate efficient strategies to

distribute extra processing resources among the active

transactions by considering the transaction-specific proper-

ties such as priority and length.
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