
multi-

died.

effec-

spawn-

reads

rough a
4
THREAD-SPAWNING SCHEMES

In this chapter, the importance of the partitioning mechanisms on the performance of speculative

threaded processors is analyzed. Different approaches for splitting programs into threads are stu

These mechanisms identify in which parts of the program speculative thread-level parallelism can be

tively exploited. The selection mechanisms for those speculative threads are referred to as thread-

ing policies. Two families of these policies are studied in this chapter; in one of them, speculative th

are selected based on some heuristics whereas in the other, speculative threads are chosen th

deeper analysis of the properties of the code.

hard-

me to

vesti-

xecu-

hreads.

lelized

ssary to

which

ation

ations

y data

are usu-

ndepen-

s are

easy to

y are

nsive

le and

eads is

ns by

in dif-

mer are

be cor-
Thread-Spawning Schemes 87

4.1. INTRODUCTION

In Chapter 1, two main requirements to exploit speculative thread-level parallelism were pointed out:

ware support for keeping the speculative contexts and run them in parallel and a partitioning sche

divide the program into speculative threads. In this Chapter, different partitioning mechanisms are in

gated and their impact on the performance is analyzed.

The idea of partitioning programs into small pieces that run simultaneously to reduce the total e

tion time is not a novel idea; hundreds of studies have been done, especially for non-speculative t

Some partitioning schemes rely on programmers to identify which parts of the program can be paral

and introduce special instructions for spawn, release and cancel parallel threads. Usually, it is nece

use specific programming languages or directives and it is required that programmers know exactly

parts of the code and under which conditions can be parallelized. Alternatively, automatic paralleliz

mechanisms can be implemented in the compiler. Current compiler techniques to parallelize applic

focus on analyzing well-known structures of the code (for instance, loops) and study the probabl

dependences that there may be among the parallel sections (e.g. iterations). Compiler techniques

ally conservative, specially for memory dependences (e.g. a dependence is assumed whenever i

dence cannot be proved).

Compiler techniques usually work well for regular and numerical applications. These program

loop-intensive and their memory access patterns are easy to detect at compile time and therefore,

disambiguate. However, compiler techniques usually fail to find thread level parallelism when the

applied to irregular or non-numerical applications. Such programs traditionally are subroutine-inte

and the loops are usually short, the number of iterations per loop execution is small, unpredictab

memory dependences are hard to disambiguate. Therefore, finding non-speculative parallel thr

almost impossible.

Speculative multithreading is a promising technique to reduce the execution time of applicatio

means of relaxing the constraints for partitioning the code into speculative parallel threads. The ma

ference between such speculative threads and traditional non-speculative threads lays in that the for

both data and control speculative on previous ones (the execution of the thread is not guaranteed to

rect).

d their

iden-

ied. In

are ana-

sented

of the

code

pecula-

ifferent

hen

instruc-

ulative

ulative

rocess

d are

depen-

depen-

idering

r case,

ir of

of the
88 CHAPTER 4

In this Chapter, different approaches to split programs into speculative threads are studied an

effectiveness is evaluated. These mechanisms, which will be referred to as spawning policies, try to

tify which parts of the code may be speculatively parallelized.

This Chapter is organized as follows: in section 4.2 the basis of the spawning schemes are stud

section 4.3, the experimental framework is described. The spawning schemes based on heuristics

lyzed in section 4.4. In section 4.5, an automatic method to divide the program into threads is pre

and discussed. Related work is commented in section 4.6 and in section 4.7 the main conclusions

Chapter are summarized.

4.2. SPAWNING AND CONTROL QUASI-INDEPENDENT POINTS

The partitioning process of programs into speculative threads tries to identify which parts of the

are the most suitable to be executed by speculative threads, at which points of the program these s

tive threads should be spawned and where the validation of the speculation should be done. The d

ways these issues are solved result on the different spawning policies.

A thread spawning operation is implemented by identifying in the code an instruction that w

reached it fires the creation of a new thread, an instruction where the spawned thread starts and an

tion where the speculation is fully validated. Note that the validation can be done when the non-spec

thread reaches the first instruction of the next thread. In this way, the instruction where the spec

thread starts and where the speculation is validated may be the same. In this way, the partitioning p

just searches for pairs of instructions that are referred to asspawning pairs.

A spawning pair is a couple of instructions that identifies the thread spawning operation an

referred to asspawning pointandcontrol quasi-independent point. The spawning point is the instruction

that when reached by the processor, it fires the creation of a new thread, whereas the control quasi-in

dent point is the instruction where the spawned thread starts. The spawning and the control quasi-in

dent point can be special instructions such asfork andspawnor conventional instructions in the instruction

set with special marks. This simple model of thread-spawning operations may be complicated cons

for each spawning point not a single control quasi-independent point but a set of them. In this latte

one of them is chosen for each particular spawn execution based.

A spawning policyis the scheme for selecting the spawning pairs from the potential set of any pa

instructions of the program. Spawning policies can take into account parameters such as the type

depen-

done

nstruc-

better

isting

e new

to the

itional

other

lative

are

ost of

re idle.

at near

ic that

pawn-

C out-

s. For

depen-

ads are
Thread-Spawning Schemes 89

instruction at the spawning and the control quasi-independent points, the distance among them, the

dences between the instructions executed by one thread and the other, etc.

There are different ways to implement the selection rules that define a spawning policy. It can be

dynamically with some special hardware support that spawns a new thread every time a particular i

tion is reached or with compiler support that analyzes the code and identifies those pairs that provide

performance. In the case that the spawning policy is fully implemented by the hardware, an ex

instruction is used to fire the creation of a new thread and it should include the address of where th

speculative thread will start or it should be easily computable. In the latter case, new instructions

instruction set architecture may be added. Compiler techniques can also take benefit of add

resources like profile information to select the best spawning pairs.

To determine which of the best spawning policy, different metrics can be considered:

• Coverage: It refers to the percentage of the program that may be executed in parallel with

threads. Thus, low coverage implies that most of the code will not benefit from exploiting specu

thread-level parallelism.

• AverageActiveThreadsperCycle(TPC): This metric refers to the average number of threads that

executing instructions simultaneously. Having a large coverage but a low TPC indicates that m

the time few threads are executing instructions and the rest of the contexts of the processor a

On the other hand, having a TPC close to the number of contexts of the processor indicates th

the maximum number of threads are running most of the time.

The previous metrics may help to determine the goodness of a spawning policy, but the metr

really determines if a spawning policy is better than another isexecutiontime. If an application executed in

a speculative multithreaded processor with a given spawning policy finishes earlier than with other s

ing policy, the former is better. The reasons why a spawning policy with less coverage and worse TP

performs others in execution time is due in most of the cases to the quality of the speculative thread

instance, if speculative threads are data dependent on previous ones, they may have to wait until the

dent values are produced and forwarded to them to continue execution whereas if speculative thre

almost data independent they may proceed in parallel most of the time.

Spawning pairs should meet some requirements in order to be effective:

iting

t may

should

in too

tely the

ommit.

t will

t.

urrent

table to

rd-to-

control

and the

it has

set of

awning

loop-

n sec-

wning

g poli-

those

hers) are

nalysis

nclu-
90 CHAPTER 4

• Control independence: The probability of reaching the control quasi-independent point after vis

the spawning point should be high in order not to waste resources executing instructions tha

never be reached.

• Threadsize: The distance between the spawning point and the control quasi-independent point

not be too small nor too large to keep the thread size into a certain limit. Small threads result

much spawning overhead and large threads may require large storage for speculative state.

• Workloadbalance: Threads that are executed by around the same time should have approxima

same size since threads are committed in sequential order and resources are not freed until c

• Dataindependence: Instructions after the control quasi-independent point (the instructions tha

correspond to the speculative thread) should have few dependences with instructions above i

• Datapredictability: If the mechanism considered to deal with data dependences among conc

threads is value prediction, it is desirable that the dependent values among threads are predic

reduce the cost of misspeculations.

The previous list does not try to be an exhaustive list. Other criteria may try to hide the cost of ha

predict branches, load misses, etc. For instance, good candidates can be spawning pairs with high

independence with respect to hard-to-predict branches or load misses between the spawning point

control quasi-independent points since this may help to hide the latency of possible mispredictions.

Basically, two families of spawning policies can be considered. One is based on heuristics and

been widely studied in the latest years. This family of spawning policies does not consider the whole

instructions pairs as candidates for spawning pairs but a small subset of them. Such candidate sp

pairs are usually well-known program constructs. Examples of this family are the loop-iteration, the

continuation and the subroutine-continuation spawning schemes, which will be analyzed in detail i

tion 4.4.

On the other hand, in this thesis a new family of spawning policies is proposed. These spa

schemes do not take into concrete program constructs as opposed to the previous family of spawnin

cies. In this family, spawning pairs are selected from the whole set of pairs of instructions and only

that meet some criteria (i.e. control quasi-independence, thread size, data independence among ot

considered. This method introduces spawn and fork instructions in the code based on an off-line a

with support of profiling data. This off-line analysis is implemented as a stand alone module. This i

sion in a compiler can be even more effective but this is not considered in this thesis.

ulti-

l thread

its own

order

been

perfor-

the fol-

inte-

p to 4

epen-

tive Ver-

d sce-

ads are

gisters

tly pre-

sumer

a-

umed
Thread-Spawning Schemes 91

4.3. EXPERIMENTAL FRAMEWORK

For the experiments in this chapter, we will consider a fully-interconnected Clustered Speculative M

threaded Processor as it was presented in Chapter 2. This microarchitecture is made up of severa

units, each one being similar to a superscalar out-of-order processor core. Each thread unit has

physical register file, register map table, instruction queue, functional units, local memory and re

buffer in order to execute multiple instructions out-of-order. The unrestricted spawning model has

considered and the cost of spawning a speculative thread is assumed to be 0. The impact on the

mance of having a non-zero initialization overhead will be investigated in the next Chapter.

The baseline speculative multithreaded processor has 16 thread units and each thread unit has

lowing features:

• Fetch: up to 4 instructions per cycle or up to the first taken branch, whichever is shorter.

• Issue bandwidth: 4 instructions per cycle.

• Functional Units (latency in brackets): 2 simple integer (1), 2 memory address computation (1), 1

ger multiplication (4), 2 simple FP (4), 1 FP multiplication (6), and 1 FP division (17).

• Reorder buffer: 128 entries.

• Local branch predictor: 14-bit gshare.

• 32 KB non-blocking, 2-way set-associative local, L1 data cache with a 32-byte block size and u

outstanding misses. The L1 latencies are 3 cycles for a hit and 8 cycles for a miss. Memory d

dence violations are detected by means of a cache coherence protocol based on the Specula

sioning Cache.

In order to evaluate the potential of the spawning policies, we have first considered an idealize

nario. Three different approaches to deal with data dependences among instructions in different thre

evaluated. In the first model, all values corresponding to inter-thread dependences through both re

and memory are assumed to be correctly predicted. This model is referred to asperfect register and mem-

ory prediction. In the second model, inter-thread dependent register values are assumed to be correc

dicted but inter-thread dependent memory values must be forwarded from the producer to the con

and the delay has been assumed to be 3 cycles. This model is referred to asperfect register prediction.

Finally, the last model, which is calledsynchronizationmodel, assumes a perfect synchronization mech

nism. In this last model, the delay for forwarding from the producer thread unit to the consumer is ass

redic-

licies,

rogram

spawn-

. For

new

e loop.

int the

when

at the

loop

dent

sub-

way,

outine

oppor-

ntrol

d, the
92 CHAPTER 4

to be 3 cycles for memory values and 1 cycle for registers. In the following Chapter, realistic value p

tors will be considered and their implications on the performance will be analyzed.

Performance is by default reported as the speed-up over a single-threaded execution.

4.4. THREAD-SPAWNING POLICIES BASED ON HEURISTICS

In this section, the spawning policies based on heuristics are analyzed. In this family of spawning po

speculative threads are usually assigned to common program constructs. Examples of this kind of p

constructs are loops and subroutines. In this section, we thoroughly analyze three of these possible

ing policies. Speculative threads in these policies are started at:

• Thenext loop iteration: This scheme will be referred to as theloop-iteration spawning scheme. Here,

the spawning point and the control quasi-independent point may be any instruction of a loop

instance, if the first instruction of a loop is chosen, every time an iteration of the loop is started, a

speculative thread is spawned at the same instruction in order to execute the next iteration of th

• Thecontinuationof aloop: This scheme will be referred to as theloop-continuation spawning scheme.

Here, the spawning point is the first instruction of the loop and the control quasi-independent po

following instruction in static order of the backward branch that closes the loop. In this scheme,

the first instruction of a loop is reached, a new speculative thread is spawned in such a way th

thread that has fired the creation of the speculative thread will execute all the iterations of the

whereas the spawned thread will execute the code after the loop.

• Thecontinuationafterasubroutinereturn: This scheme will be referred to as thesubroutine-continu-

ation scheme. The spawning point is the subroutine-call instruction and the control quasi-indepen

point the following instruction in static order after the spawning point. In this scheme, when the

routine-call instruction is reached, a new speculative thread is created just after the call. In this

the thread that has fired the creation of the speculative thread will execute the body of the subr

whereas the spawned thread will execute the code after the subroutine returns.

These program constructs are common enough to potentially offer a good coverage and lots of

tunities for thread creation. Additionally, their corresponding spawning pairs meet quite well the co

independence criterion. For instance, it is very likely that when a subroutine-call instruction is reache

following instruction in static order will be reached once the subroutine returns.

nted

instruc-

es the

ulative

erical

h less

ice to

a loop

e com-

policy

awning

hat the

l to the

f iter-

ords,

ll be

flow

ough

tions, it

ues that
Thread-Spawning Schemes 93

An additional advantage of this family of policies is that is quite straight-forward to be impleme

only by hardware mechanisms since those program constructs are delimited by easily detectable

tions such as subroutine-call and return instructions and backward branches.

In the following subsections, each of these schemes is studied. Finally, a scheme that combin

three previous ones is considered.

4.4.1. Loop-Iteration Spawning Scheme

The loop-iteration spawning scheme is based on assigning different iterations of a loop to spec

threads. The idea is very simple and it has been widely used to parallelize non-speculatively num

applications. In the case of irregular or non-numerical applications, loops are usually smaller, wit

number of iterations, with more dependences among them and harder to disambiguate.

Anyway, spawning speculative threads at loop iterations initially seems to be an excellent cho

obtain significant benefits. Practically, all the dynamic instructions of a program are executed inside

in such a way that it may guarantee very high coverage. In addition to the coverage, loops are quit

mon in the code so the number of threads that might be spawned is also very high.

Regarding the effectiveness of the loop-iteration spawning scheme, the spawning pairs of this

have significant control independence. For instance, consider the first instruction of a loop as the sp

point and the same instruction as the control quasi-independent point. In this case, the probability t

control quasi-independent point is not reached once the spawning point has been visited is equa

inverse of the average number of the remaining iterations of such loop (i.e. if the remaining number o

ations of a loop is 100, the probability to spawn a speculative thread incorrectly is 0.01). In other w

once the first instruction of a loop iteration is reached, it is very likely that this same instruction wi

executed in a near future by the following iteration of the same loop independently of the control

taken between them.

In addition to that, loop iterations may have a similar size, which favors workload balance, alth

this may not true when concurrent iterations of the loop follow very different paths.

Regarding dependences and the predictability among speculative threads based on loop-itera

has been shown in the previous Chapter that the number of dependences is not high and the val

flow from one thread to the other are quite predictable.

g and

in the

dle of

wned

ce. To

depen-

struc-

loop).

f the

leted

ns the

he sec-

erage

ns per

tions).

ance.

t com-

begin-

time.

h. This
94 CHAPTER 4

The spawning pairs of this spawning policy are usually characterized by the fact that the spawnin

the control quasi-independent point are the same static instruction. This instruction can be anyone

loop body, but the selection will affect performance. For instance, choosing an instruction in the mid

the loop body that only belongs to a subset of the control flows in the loop will cause that the spa

speculative threads may execute more than one iteration and thus will affect the workload balan

avoid this undesirable situation, the instruction selected to be the spawning and the control quasi-in

dent point is usually one of the loop body that is executed by all the iterations. Examples of these in

tions are the first instruction in the loop body and the last one (the backward branch that closes the

The behavior of these two alternatives is slightly different since in the case of the last instruction o

loop, the creation of the new speculative thread is delayed until the first iteration of the loop is comp

and such thread will execute the third iteration (the second will be executed by the thread that spaw

speculative thread) whereas in the case of the first instruction, the speculative thread will execute t

ond iteration of the loop while the spawner thread will execute the first. Figure 4.1 presents the av

number of iterations of the loops from the SpecInt95. On average, this number is about 8 iteratio

loop execution even though for most of the benchmarks, this number is quite low (less than 5 itera

This suggests that missing an iteration per loop execution may result in a significant drop in perform

Regarding the way the spawning pairs can be identified, there are basically two approaches. A

pile time, loops are easy to detect and a new instruction for thread spawning can be inserted at the

ning of the loops or such instructions may be annotated. Alternatively loops can be detected at run

This mechanism is based on the observation that loops are usually closed by a backward branc

mechanism is based on the Loop Execution Table and the Current Loop Stack[77].

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

5

10

15

20

#I
te

ra
ti

on
s/

lo
op

 e
xe

cu
ti

on

Figure 4.1. Average number of iterations per loop execution.

at are

f itera-

ber of

istent

oop is

op. The

ration

found,

to be

is not

loop.

, then

ted and

ution

eads as

pawning

celled

ulative

erhead

bene-

. The

hibit the

-flow.

ns once

ase the

ng the
Thread-Spawning Schemes 95

The Current Loop Stack is a small stack that keeps information about the nesting of the loops th

being executed. On the other hand, the Loop Execution Table keeps information about the number o

tions for every loop that has been found in the code. This information can be used to predict the num

iterations for future executions of the loop, which may avoid to spawn threads that execute non-ex

iterations. These structures basically work as follows: when a taken backward branch is found, a l

assumed to be found and the target address of the branch is considered the first instruction of the lo

Current Loop Stack is looked up with this address. If it is found at the top of the stack, then a new ite

of the same loop is assumed to be found and their current counter of iterations is increased. If it is

but it is not at top of the stack, then all the loops above of it in the Current Loop Stack are assumed

finished and their number of iterations are updated in the Loop Execution Table. If the instruction

found, a new entry at top of the Current Loop Stack is allocated to indicate a new execution of the

When a not taken backward branch is found the Current Loop Stack is also looked up. If it is found

the execution of the corresponding loop has finished, the entry and all the entries above are elimina

their corresponding entries in the Loop Execution Table are updated with the number of iterations.

Any time an instruction is fetched, it is compared to those instructions stored in the Loop Exec

Table. In case of hit, a new execution of the loop is assumed to be found and as many speculative thr

free thread units or the number of iterations, whichever is lower, are created.

Since more speculative threads are squashed by less speculative ones, most of the time, this s

policy only speculates on innermost loops, since speculative iterations of outer loops would be can

by the iterations of the innermost ones. Outer loops are larger, so they require larger storage for spec

state and more live-in values to be predicted. On the other hand, larger threads result in smaller ov

due to thread spawning activities.

Mechanisms to avoid firing speculative threads on those spawning pairs that could provide small

fits or limit the benefits produced by other spawning pairs will be later presented in subsection 4.5.3

performance results presented in subsection 4.4.4 do not take into account these mechanisms to in

spawning process.

Finally, there is a beneficial side-effect for those loops whose iterations follow the same control

In this case, those speculative threads that share the same control-flow can fetch the same instructio

and be used by all the thread units that require them. This phenomena may be interesting to incre

fetch bandwidth for those speculative multithreaded processors whose fetch unit is shared amo
thread units. This situation is really common for regular and numerical applications, but not common for

ns that

erage

quite

tion

ited to

feasi-

ns and

trace
96 CHAPTER 4

irregular and non-numerical programs. Figure 4.2 shows the average number of consecutive iteratio

follow the same control-flow for the innermost loops in the SpecInt95. We can observe that on av

there are only less than 4 consecutive iterations and for programs likego andgcc it is lower than 2. On

the other hand, the number of different control flows followed by every consecutive 8 iterations is

low as can be observed in Figure 4.3. In fact, exceptinggo , compress andgcc , the average number of

iterations with different control flows is lower than 2.

A similar feature is exploited by the CONDEL architecture [81] and the dynamic vectoriza

approach proposed in [80]. However, those approaches are more restrictive since the former is lim

loops whose static body does not exceed the implemented instruction window, whereas the latter is

ble only if the dynamic sequence of instructions executed by the loop are the same for all the iteratio

they fit into a single instruction cache line (the instruction cache organization that they use is the

cache [60])

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

A
m

ea
n

0

2

4

6

8

it

er
at

io
ns

Figure 4.2. Average number of consecutive iterations that follow the same control-flow.
co

m
pr

es
s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

A
m

ea
n

0

1

2

3

4

co

nt
ro

l f
lo

w
s

Figure 4.3. Average number of different control flows in the last 8 iterations of innermost loops.

he loop

s than

over-

is not

ns have

, so the

imiza-

never

culative

fferent

differ-

as the

con-

thout

ps for

echa-

Table

e call

lowing

ning

s fol-

ontrol
Thread-Spawning Schemes 97

4.4.2. Loop-continuation spawning scheme

The loop-continuation spawning scheme spawns a new speculative thread starting at the end of t

while the spawner thread continues with the whole execution of the loop. This results in larger thread

those generated by the loop-iteration scheme.

Similarly to the loop-iteration scheme, the abundance of loops in the code might result in a high c

age and lots of opportunities to spawn speculative threads. However, the effectiveness of this policy

as evident as for the previous scheme. It seems quite obvious than in general, once all the iteratio

been executed, the instructions beyond the backward branch that closes the loop will be executed

reaching probability is high. Problems regarding control independence may come from possible opt

tions of loops with different exits since the control quasi-independent point selected could be

reached. On the other hand, workload balance among threads is harder to obtain since the spe

threads that run in parallel may have quite different sizes since they may belong to executions of di

loops that might have different code or just executions of the same loop but each of them executing

ent number of iterations.

The spawning pairs used by this spawning scheme are made up by the first instruction of a loop,

spawning point, and the following instruction in static order of the branch that closes the loop, as the

trol quasi-independent point.

In the same way of loop-iteration scheme, this spawning policy can be implemented with or wi

compiler support. At compile-time, a spawning instruction can be added at the beginning of the loo

creating a new speculative thread at the point that the loop finishes. Alternatively, this partitioning m

nism can be dynamically implemented using the Current Loop Stack and the Loop Execution

described in the previous subsection.

4.4.3. Subroutine-continuation spawning scheme

The subroutine-continuation spawning scheme triggers the spawning process at subroutin

instructions and creates a speculative thread at the point the subroutine returns, that is, the fol

instruction in static order after the call instruction. The pairs of instructions that make up the spaw

pairs for this spawning policy consist of the subroutine-call instruction, as the spawning point, and it

lowing instruction in static order, as the control quasi-independent point.

Subroutines are also quite abundant in many codes so coverage is high. In addition to that, c
independence is almost guaranteed except for very rare cases where a subroutine does not return to the

mong

al treat-

ini-

process

ith the

e can

r codes

e

in par-

erage)

tify the

ide the

p. On

size of
98 CHAPTER 4

point where it was invoked. However, it is not clear that this policy provides good workload balance a

the threads since subroutines may have very different sizes.

Subroutines may be nested into other subroutines. Recursive subroutines may require a speci

ment since they may result in an overpopulation of threads.

4.4.4. Performance figures

The following statistics have been collected from executing 300 million of instructions after skipping

tializations. Speculative threads have been created without any compiler support and the spawning

only relies on hardware techniques. No statistics are reported forcompress since no subroutines were

found during the execution of those 300 million of instructions.

Regarding coverage, figure 4.4 shows the percentage of code that is being executed in parallel w

code of any other thread on a 16-thread unit configuration and perfect register value prediction. W

observe that this fact produces a high percentage of code that is executed in parallel. Observe that fo

such asm88ksim , li , perl and ijpeg practically the whole code is executed in parallel with som

other part of the code when speculating on loop iterations. On average, 83% of the code is executed

allel for this scheme. The coverage of the subroutine spawning policy is also quite high (76% on av

and it suffers a significant drop for the loop-continuation scheme. There are several reasons that jus

low coverage presented in this figure for the loop-continuation scheme. The first one is branches ins

loop that exit the loop but do not jump to the instruction after the backward branch that close the loo

the other hand, a less important reason is the granularity of threads. It has been evaluated that the

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg
pe

rl
vo

rt
ex

G
m

ea
n

SpecInt95

0

20

40

60

80

100

P
a
ra

ll
el

iz
ed

 C
o
d

e
(%

)

Loop-iteration Scheme
Loop-continuation Scheme
Subroutine-continuation Scheme

Figure 4.4. Percentage of code executed in parallel with other threads for each spawning policy.

ration

culative

ure 4.5,

ios, the

op-con-

cover-
Thread-Spawning Schemes 99

the speculated threads in the loop-continuation scheme is significantly greater than for the loop-ite

scheme. Then, speculating too far may cause that the thread units have to store large amount of spe

state and in case that it exceeds the storage capacity, the speculative thread stalls execution.

These high percentages of parallelized code are translated in high speed-ups as shown in Fig

especially for the models that speculate on loop iterations and subroutines. For these two scenar

processor can achieve an average speed-up of 5.7 and 3.1 respectively with 16 thread units. The lo

tinuation scheme has the lowest performance (only 2.1x on average). This is due to its relatively low

age and the workload imbalance caused by loops with different number of iterations.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

5

10

15

Sp
ee

d-
U

p

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

5

10

15

Sp
ee

d-
U

p

a) b)

c)
Figure 4.5. Speed-ups for the three different spawning polices a) loop-iteration, b) loop-continu-

ation and c) subroutine-continuation for the unrestricted thread ordering scheme.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

5

10

15

Sp
ee

d-
U

p Synchronization
Perfect Register Pred.
Perfect Reg. and Mem. Pred.

hereas

In fact

ned by

itional

are less

e most

ith the

pawn-

evious

ets of

reads

first

of the

utes the

So, if

ill be

tions

rder to

nd syn-

of the

licy are

her
100 CHAPTER 4

4.4.5. Combining Schemes

The set of spawning pairs for the subroutine-continuation scheme is quite different to the others w

for the loop-iteration and the loop-continuation scheme the spawning pairs have some intersection.

considering a combination of both loop-based policies produces quite similar results to those obtai

the loop-iteration scheme alone since the execution model will eliminate in most of the cases the add

speculative threads created by the loop-continuation scheme. This is due to the fact that iterations

speculative in program order than the continuation of the loop and in case of no idle thread units, th

speculative threads are squashed to give the thread unit to the less speculative thread.

However, a synergistic effect is expected from combining the subroutine-continuation scheme w

others since the domain of the selected spawning pairs for subroutines is different from those of the s

ing policies based on loops. Because of this, in this section a new spawning policy based on the pr

ones is presented. The set of spawning pairs for this policy is the result for applying the union of the s

spawning pairs of the spawning policies individually. That is, this policy spawns new speculative th

any time a subroutine-call is found starting at the following instruction in static order and any time a

instruction of a loop is reached. In this latter case, two speculative threads, one for the next iteration

loop and another one for the continuation of the loop are spawned. The speculative thread that exec

second iteration of the loop will spawn another speculative thread for the third iteration, and so on.

the loop has more iterations than idle thread units, the thread created at the loop continuation w

squashed to allow a less speculative thread to be executed.

The only constraint applied to the spawning pairs of this policy is that the number of instruc

between the spawning and the control-quasi independent point should be at least 32 instructions in o

avoid that the benefits of a parallel execution are offset by the thread initialization overhead.

Figure 4.6 presents the average speed-up assuming perfect value prediction for register values a

chronization for the memory values. These statistics have been collected for the whole execution

SpecInt95 with the train input set. It can be observed that the results presented by this spawning po

quite impressive, reporting an average speed-up higher than 6.5 and are especially high forli , ijpeg,

m88ksim andperl . Mechanisms to improve the performance of this spawning policy will be furt

detailed in next subsection.

verage

active

ds. On

largest

the way

the fact
Thread-Spawning Schemes 101

Figure 4.7 shows the average number of active threads per cycle. As it can be expected, the a

number of active threads per cycle is quite related to the speed-up. On average, the number of

threads is 5.9 and forli it is higher than 9.5.

Figure 4.8 shows the percentage of the code that is executed overlapped with other active threa

average, the percentage of code is about 88% and higher than 90% for the benchmarks with the

speed-ups suchm88ksim , li andperl . The largest percentage corresponds to them88ksim with a

94% and the lowest tovortex with a 78%.

4.5. THREAD-SPAWNING POLICIES NOT BASED ON HEURISTICS

The spawning policies presented in the previous section have shown impressive benefits. However,

the spawning pairs are selected by such schemes is quite simple, they choose the spawning pairs by

they belong to concrete program constructs.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

H
m

ea
n

0

5

10

Sp
ee

d-
up

Figure 4.6. Speed-up of the combination of heuristics compared with a single-
threaded execution.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

H
m

ea
n

0

5

10

A
ct

iv
e

T
hr

ea
ds

 p
er

 C
yc

le

Figure 4.7. Average number of active threads per cycle.

sed on

offer

ut pre-

ould

verage

reads

torage.

evious

t crite-

ere in

m con-

ndent

more

e the
102 CHAPTER 4

In this section, a systematic approach to identify spawning pairs is presented. This scheme is ba

quantifying the relevant properties of every section of the code, in order to identify those points that

the highest potential.

Some of the criteria to be taken into account to get effective spawning pairs have been pointed o

viously in this chapter:

• The probability to reach the control quasi-independent point after visiting the spawning point sh

be very high in order not to spawn speculative threads which are very unlikely to be needed.

• The distance between the spawning point and the control quasi-independent point (i.e. the a

number of instructions between both points) should not be too small or too large since small th

have a too high initialization overhead whereas large threads require a too large speculative s

• Instructions of the speculative threads should have few dependences with instructions of pr

threads or, at least, the values that flow through such dependences should be predictable.

The loop-iteration, the loop-continuation and the subroutine-continuation schemes meet the firs

rion but not necessarily the others.

The family of spawning policies presented here are based on identifying spawning pairs anywh

the code. In this way, speculative threads are not necessarily associated with any particular progra

struct (e.g. loop iteration) and any instruction can be a spawning point or a control quasi-indepe

point. Thus, unlike to the spawning policies based on heuristics, an only-hardware implementation is

difficult for this family of spawning policies due to the fact that a more complex analysis to determin

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

A
m

ea
n

0

20

40

60

80

100

%
 P

ar
al

le
liz

ed
 C

od
e

Figure 4.8. Percentage of parallelized code.
effectiveness of any pair of instructions must be performed.

roper-

wning

ted or

educe

struc-

locks

ntrol

pro-
Thread-Spawning Schemes 103

In this thesis, an off-line analysis with the support of profiling information is presented.

4.5.1. Profile-based Spawning Scheme

In this subsection, a technique to identify spawning pairs based on a profile-based analysis of the p

ties of any potential section of code is presented. Any basic block of the program can be either a spa

and control quasi-independent point. A basic block is a set of instructions that are either all execu

none of them.

Even though the criteria considered here can be applied to instruction granularity, in order to r

the amount of computation, the proposed analysis looks for pairs of basic blocks instead of pairs of in

tions. The result of this analysis will be spawning pairs made up of the first instructions of the basic b

considered as spawning and control quasi-independent points.

Figure 4.9 illustrates the different steps followed by this spawning scheme. Initially, a dynamic co

flow graph of the program is built from the profile information obtained through an execution of the

Step 1: Application Profile
Information

Execution Build

CFG
Dynamic

CFG

Step 2: Dynamic
CFG CFG

PrunedPruning Build

Matrix

a11 a12 … a1n

a21 a22 … a2n

… … … …
an1 an2 … ann

Reaching
Probability

Matrix

a11 a12 … a1n

a21 a22 … a2n

… … … …
an1 an2 … ann

Reaching
Probability

Matrix
Step 3:

Spawning pairs

Candidates
Traverse

Step 4:
Spawning pairs

Candidates
Profile

Information

Selected
Spawning pairs

Figure 4.9. Steps of the profile-based spawning scheme.

among

ling.

ol flow

highest

order

deces-

e from it

ring this

split

xecut-

nts the

repre-

erent

ken into

e in the

l quasi-

quence.)

of the

es the

th, the

spawn-

n a

quire-

is that
104 CHAPTER 4

gram. Each node of the graph represents a basic block and edges represent possible control flows

blocks. Edges are weighted with the frequency of the corresponding control flow obtained during profi

To reduce the size of the graph, the least frequently executed basic blocks of the dynamic contr

graph are pruned. To do this, basic blocks are ordered by execution count and they are chosen from

to lowest count until a certain percentage of the total executed instructions are covered. However, in

not to lose information about possible control flows, whenever a node is pruned, any edge from a pre

sor to it is transformed to a series of edges from that predecessor to their successors, and any edg

to a successor is transformed to a series of edges from every predecessor to that successor. Du

transformation, if an edge is transformed into multiple edges, its original weight is proportionally

across the new edges.

Once the reduced control flow graph is generated, the probability to reach any basic block after e

ing any other one is computed. We will refer to these probabilities asreaching probabilities. These proba-

bilities are stored in a two-dimensional square matrix (i.e. thereaching probability matrix) that has as

many rows and columns as nodes in the control flow graph. Each element of the matrix represe

probability to execute the basic block represented by the column after executing the basic block

sented by the row. This probability is computed as the sum of the different frequencies for all the diff

sequences of edges that exist from the source node to the destination node. The only constraint ta

account for these sequences is that the source and the destination nodes can only appear onc

sequence of nodes as the first and the last nodes respectively (the spawning node and the contro

independent node can be the same, and any other basic block can appear more than once in the se

This constraint also reduces the control logic of the processor since otherwise, the identification

starting and ending points of each thread would be quite cumbersome. This restriction also simplifi

execution model of the architecture since if the spawning point may appear more than once in the pa

processor should know that speculative threads only have to be spawned at the first instance of the

ing point and not for the followingn. Similarly if a control quasi-independent point appears more tha

once, a thread would not finish its execution when it is reached the first time but at thenth appearance.

Once the reaching probabilities are computed, the pairs that do not accomplish the minimum re

ments to be considered as good candidates are eliminated. The first property that they must satisfy

their associated reaching probability should be very high, i.e. higher than a given threshold.

point

ad cre-

ctions

the sum

cy.

i-inde-

t that

irs of

ifferent

ontrol

l quasi-

awning

ered to

stance

ssume
Thread-Spawning Schemes 105

A second requirement is that a minimum average number of instructions between the spawning

and the control quasi-independent point should exist in order to reduce the relative overhead of thre

ation. Consequently, while the reaching probability is being computed, the average number of instru

between the source node and the destination node is also calculated. The average is calculated as

of the number of instructions executed by each sequence of basic blocks multiplied by their frequen

For a given spawning point, there may be several good candidates for its associated control quas

pendent point (i.e. for a given row of the probability matrix, there may be more than one elemen

exceeds the minimum probability and the minimum size). Figure 4.10 shows the total number of pa

basic blocks obtained for the SpecInt95 benchmarks, which is on average 6218, but only 499 have d

spawning points. For this experiment, the minimum distance between the spawning point and the c

quasi-independent point is 32 instructions and the minimum reaching probability is 0.95.

When the processor reaches the spawning point, it starts a speculative thread at only one contro

independent point. Thus, the alternative quasi control-independent points associated to each sp

point must be ordered according to their expected benefits. Several alternative criteria can be consid

produce such an ordering. In this thesis, three criteria have been evaluated:

• Maximizing the distance between the spawning and the control quasi-independent point. This di

can be considered as an estimation of the size of the corresponding speculative thread if we a

that the spawning thread and the spawned thread have the same instruction throughput.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg
pe

rl
vo

rt
ex

A
m

ea
n

SpecInt95

0

1000

2000

3000

N
u

m
b

er
 o

f
p

ai
rs

Selected Pairs
Total Pairs

12764 15918 4012 12372 6219

Figure 4.10. Number of pairs of basic blocks selected and number of selected pairs
that have different spawning points.

struc-

epen-

r the

onsid-

idered.

future

letion

wning

analysis

lected

g pairs

nimum

ions.

return

imum

awning

ay the

4.11.

called

ations

ncy the

-

g as
106 CHAPTER 4

• Maximizing the number of instructions of the spawned thread that are independent of previous in

tions.

• Maximizing the number of instructions of the spawned thread that are either independent of or d

dent on predictable values generated outside the thread.

Other examples of criteria that could be taken into account are the number of live-in values o

impact of branch mispredictions and cache misses.

When ordering the spawning pairs with the same spawning point, each of the spawning pairs is c

ered as if it was the only spawning pair, so no interactions with other close spawning pairs are cons

More complex analysis schemes that take into account interactions with other threads is left for

work.

4.5.2. Performance evaluation

The following statistics have been collected after executing of the SpecInt95 benchmarks until comp

with the train input set. Profile analysis has been performed on the same input set. Unlike the spa

schemes based on heuristics, here, the speculative threads have been created through an off-line

that introduces fork and release instructions at the appropriate locations of the code.

We have considered two different spawning policies. In the former, spawning pairs have been se

with the technique proposed in the previous subsection and the order policy among the spawnin

maximizes the distance between the spawning and the control quasi-independent point. The mi

reaching probability considered is 0.95 and the minimum distance between the points is 32 instruct

In the latter scheme, in addition to the spawning pairs selected in the previous scheme, all call-

pairs (pairs of a subroutine-call and the corresponding return point) are added if they satisfy the min

size constraint since some of them may not have been selected by the previous algorithm. Those sp

pairs have a very high reaching probability (they are almost control-independent) but due to the w

reaching probabilities are computed, many of them are missed. This problem is illustrated in figure

This figure shows a piece of the dynamic control-flow graph of a program where a subroutine is

from multiple locations. The subroutine-return basic block has as may successors as different loc

from which the subroutine has been invoked. The weights in each edge correspond to the freque

subroutine has been called from each respective location (i.e.α, β andγ). Thus, when the reaching proba

bility matrix is computed, as the calculation only takes into account the information edge profilin

ercon-

on. On

to 7.2
Thread-Spawning Schemes 107

opposed to path profiling, if the values fromα, β andγ are lower than the threshold, the probability from

going to the caller block to the corresponding continuation block will be computed asα, β andγ respec-

tively, whereas the correct value should be 1.

Figure 4.12 shows the speed-up over a single-threaded execution on a 16-thread unit fully-int

nected Clustered Speculative Multithreaded Processor with a perfect inter-thread register predicti

average, the speed-up achieved is 5.9 without considering call-return pairs and it is improved up

when they are taken into account.

Part of a Dynamic Control-
Flow Graph

BB #a
call subr

BB #b
call subr

BB #c
call subr

BB #f
cont #a

BB #g
cont #b

BB #g
cont #c

BB #d
init subr

BB #e
return

.

1
1 1

α β γ

Computed Reaching

Real Reaching

Probability Submatrix

Probability Submatrix

… f g h

a α β γ
b α β γ
c α β γ

… f g h

a 1 0 0

b 0 1 0

c 0 0 1

Figure 4.11. Computed and Real reaching probability submatrix for a subroutine invoked from more
than one place in the code.

Subroutine body

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

Sp
ee

d-
U

p

Only Profile-based
With Subroutines
Figure 4.12. Speed-up over a single-threaded execution obtained for 16 TU.

loop is

tween

awning

ations

asso-

t sub-

better

an pro-

its busy

e num-

arkable

s up to

them
108 CHAPTER 4

It is especially remarkable the significant improvement of theijpeg . In this case, most of the code is

in small loops inside subroutines. Such loops have a huge number of iterations, but the body of the

smaller than 32 instructions. Then, even though the reaching probability is very high, the distance be

the spawning point and the control quasi-independent point is lower than the threshold and such sp

pairs are eliminated. Moreover, the subroutines that contain these loops are called from different loc

in such a way that the computed reaching probability is lower than 95%. Adding the spawning pairs

ciated to the subroutines allow the processor to parallelize such subroutines.

Call-return pairs achieve some improvements also forgcc , li andvortex and a slight slow-down

for the rest of benchmarks. The main reasons for such slow-down will be deeply analyzed in the nex

section, but it can be anticipated that increasing the number of spawning pairs does not always imply

performance since spawning too many threads may cause overpopulation. This overpopulation c

voke that more useful speculative threads are not spawned since the processor has the thread un

with other speculative threads that will provide less performance.

Figure 4.13 shows the average number of active threads per cycle. As it is expected, the averag

ber of active threads per cycle is increased when subroutine pairs are added. This is specially rem

for ijpeg . On average, the profile-based spawning mechanism has 6.3 active per cycle and it grow

7.4 on average when subroutine pairs are added.

Finally, figure 4.14 shows the coverage of both policies. No important differences exist among

with the exception of theijpeg . Note that even though the coverage for them88ksim is higher, for the

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

5

10

A
ct

iv
e

T
hr

ea
ds

Only Profile-Based
With Subroutines

Figure 4.13. Average number of active threads per cycle.

osite is

d units

es, but

multi-

o dif-

code.

ts (e.g.

ndent

mit in

n their

n when

pendent
Thread-Spawning Schemes 109

profile-based scheme with subroutines, the performance showed in figure 4.12 is lower, and the opp

true forgcc .

4.5.3. Improving the performance

In spite of the excellent performance results reported above, on average more than 50% of the threa

remain idle or executing threads that will be later squashed. This may be due to application’s featur

also to some limitations in the spawning policy.

There are several undesirable situations that can reduce the performance of the speculative

threaded processor:

• The processor is executing for a long period of time just a few threads. This situation may obey t

ferent causes. The most frequent one is the lack of confident spawning pairs in that part of the

In this situation, the approach to select the spawning pairs may use more relaxed constrain

reducing the minimum reaching probability between the spawning and the control quasi-indepe

point). The other situation may be due to load imbalance. Since speculative threads must com

program order, thread units become available in the same order. Threads that finish earlier tha

predecessors make their thread unit to remain idle until they can commit.

• There are some spawning pairs that never spawn useful speculative threads. This may happe

another thread has previously spawned a speculative thread at the same control quasi-inde

point.

In this subsection some mechanisms to reduce those sources of inefficiency are presented.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex

A
m

ea
n

0

20

40

60

80

100

%
 P

ar
al

le
liz

ed
 C

od
e

Only Profile-based
With Subroutines
Figure 4.14. Percentage of code that is executed in parallel with some other code.

e pro-

havior

chmark
110 CHAPTER 4

4.5.3.1. Cancellation Spawning Policy

Figure 4.15 shows the utilization of the thread units per each benchmark of the SpecInt95 for th

file-based spawning scheme with the call-return pairs. As it is expected, these figures show a be

close to a Gauss function centered on the average active threads per cycle. In the case of the ben

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

099.go

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

126.gcc

130.li

134.perl

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

124.m88ksim

129.compress

132.ijpeg

147.vortex
Figure 4.15. Thread Unit Utilization for the Profile-based spawning scheme with the call-return pairs.

ecution,

n the

usually

are

wn-

ecu-

differ-

en the

that no

it cor-

created

at point

total of

ed that

with a
Thread-Spawning Schemes 111

go , during more than 25% of the execution time, just one thread is being executed. Forcompress , its

corresponding graph approaches a Gauss function excepting for the peak at the single threaded ex

which represents almost 15% of the execution time.

Observing the individual contribution of each of the spawning pairs, we have observed that whe

processor is executing a few number of threads, in many cases the implicated spawning pairs are

the same. In fact, 80% of the time thatgo is executing 1 or 2 threads, only 2 particular spawning pairs

involved. In the case ofvortex , 85% of the execution time with less than 3 threads is due just to 3 spa

ing pairs and forcompress 2 spawning pairs are responsible for the 99% of the single-threaded ex

tion.

The cause for such low average of active threads per cycle for such spawning pairs can be due to

ent factors. For instance, it may be possible that after the control quasi-independent point or betwe

spawning and the control quasi-independent point there are no other spawning pairs in such a way

other speculative thread are spawned.

An example of this is showed in figure 4.16. This figure focuses on the spawning pair ofgo that has its

spawning point at the basic block 9360 and its control quasi-independent point at basic block 9361 (

responds to a call-return point). The figure represents the percentage of time the speculative thread

by such spawning pair is executing with some other threads. The speculative thread created at th

represents the 5% of the total instruction count of the benchmark and it represents the 45% of the

time the benchmark is executing alone and the 39% when is executing two threads. It can be observ

almost half of the time, the speculative thread created by this spawning pair is executing together

few number of threads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e
Figure 4.16. Percentage of time the spawning pair <9360-9361> of the go benchmark is executed

simultaneously with another threads.

mall-

time a

ved so

r after

e when

en they

scheme

cheme.

all

ifferent

irs are

eme, it

ieved by

rved in
112 CHAPTER 4

A proposal to avoid this situation is to dynamically eliminate those spawning pairs that provide s

benefit. Thus, we extend the spawning scheme with a dynamic mechanism that monitors how much

thread is executing alone. If it is above a certain threshold, the corresponding spawning pair is remo

that this thread is not created in the future. This scheme is referred to as thecancellation scheme.

This removal of spawning pairs can be done either the first time the above situation is observed o

the above situation has been repeated for a number of times. Figure 4.17 shows the performanc

spawning pairs are never removed, when they are removed after executing 50 cycles alone, or wh

are removed after executing 200 cycles alone. On average, the speed-up achieved for the 200 cycle

is higher than 8, which represents a 10% improvement compared with the non-removal spawning s

Most of this improvement comes from thecompress whereas for the rest of the benchmarks a sm

slow-down is produced.

Figure 4.18 shows the percentage of spawning pairs removed for each of the benchmarks for d

cancellation policies. It can be observed that on average, almost the 20% of the spawning pa

removed for the 50 cycle scheme. More than 40% of the pairs are removed forgcc , compress andli .

For li , this pair removal represents almost 20% speed-up whereas forgcc the improvement is much

lower and forcompress it causes a drastic drop of performance. It is also remarkable that forgo , remov-

ing 7.6% of the spawning pairs represents almost a 40% speed-up. Regarding the 200 cycle sch

reduces the percentage of spawning pairs eliminated and in most of the cases the performance ach

the previous one too. On average, the percentage of spawning pairs removed is 4%. It can be obse

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

S
p

ee
d

-U
p

No removal
Removal 50 cycles
Removal 200 cycles

Figure 4.17. Speed-ups achieved by the different spawning pair removal scheme for different
number of cycles executing alone.
figure 4.17 that forgo just removing the 3% of the spawning pairs produces the highest benefits. Forcom-

bench-

until

rmance

6. On

huge

ss.

cycle

ber of

3% for

r

.

read is

moving

n, the

cycles

benefit

ll
Thread-Spawning Schemes 113

press , removing the 14% of the spawning pairs achieves almost a 10% speed-up. For the rest of

marks, slight slow-downs are produced.

An alternative way to moderate the removal mechanism is to hold off cancelling a spawning pair

the speculative thread is executing alone a minimum of occurrences. Figure 4.19a shows the perfo

for a cancelling policy with 50 cycle alone scheme when the number of occurrences is 1, 8 and 1

average, delaying the removal decision results in an improvement, but it is basically due to the

improvement achieved forcompress . In fact, the rest of the programs suffer a small performance lo

Although not shown in the graphs, we have also evaluated the delayed removal policy for the 200

alone scheme and we have observed a small performance drop for all programs.

For the 50-cycle-alone cancellation policy that removes the spawning pairs after a given num

occurrences, figure 4.19b shows that the average number of spawning pairs removed is much lower,

8 occurrences and 1% for 16. This explains why there is almost no gain in figure 4.19, excepting fogo ,

which removes 3.2% of the pairs for the 8-occurrence policy and 2.4% for the 16-occurrence policy

We have also evaluated a policy that removes a spawning pair whenever the corresponding th

executing with just a few threads instead of just one. Figure 4.20 shows the speed-up obtained by re

a spawning pair if it is executing with 2 or less threads for 50, 200 and 2000 cycles. For compariso

cancellation policy that removes the spawning pairs when they are executing alone for more than 50

is also depicted in the figure. This results in a small improvement on average, although most of the

comes fromcompress . Some benefit is also reported forgcc andm88ksim . For the rest of the bench-

marks, some slow-downs can be observed, especially forijpeg . Moreover, it can be observed that for a

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

20

40

60

%
 S

pa
w

ni
ng

 P
ai

rs
 C

an
ce

lle
d

50 Cycles
200 Cycles (1 occ.)

Figure 4.18. Average number of spawning pairs removed by the cancellation policy.

later

te to the
114 CHAPTER 4

the benchmarks exceptinggcc , the most conservative spawning policy, that is, the one that removes

the spawning pairs, presents better results than the more aggressive one. This trend is the opposi

one showed in figure 4.17a, where on average the more aggressive policies present better results.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n
SpecInt95

0

5

10

Sp
ee

d-
U

p

1 occurrence
8 occurrences
16 occurrences

Figure 4.19. a) Speed-ups achieved by the different spawning pair removal scheme for different num-
ber of occurrences before cancelling for the 50-cycle removal scheme. b) Percentage of
cancelled spawning pairs for the cancellation scheme after 8 and 16 occurrences.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

20

40

60

%
 S

pa
w

ni
ng

 P
ai

rs
 C

an
ce

lle
d

8 occurrences
16 occurrences

a) b)

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

Sp
ee

d-
U

p 50 cycles, 1 thread
50 cycles, 3 thread
200 cycles, 3 threads
2000 cycles, 3 threads

Figure 4.20. Speed-up for the cancellation policies that remove spawning pairs are executing
together with 2 or less parallel threads.

as been

awning

s been

in the

but all

ds for

pawn-

average

r

s been

ingle-

n of 7

the

in the

14% to

ering a

g pair
Thread-Spawning Schemes 115

Besides, a scheme that reconsiders an eliminated spawning pair after a certain period of time h

evaluated. Results can be observed in figure 4.21. In this case, the cancelling policy removes a sp

pair after executing 50 cycles alone. A spawning pair is reconsidered when their spawning pair ha

visited 8 times. For comparison, the non-cancelling policy and cancelling after 50 cycles is shown

figure. It can be observed that on average this policy provides better results than the previous one,

the benefit comes fromcompress while some slow-down is showed for the rest of benchmarks.

Finally, to summarize the benefits of the cancellation policy, the average number of active threa

the best cancellation spawning policy are shown in 4.22. The policy corresponds to cancelling the s

ing pair the first time the associated thread is executing 50 cycles alone. It can be observed that on

all the benchmarks increase their average number of active threads per cycle and that, excepting focom-

press andm88ksim , the percentage of time the clustered processor is executing a single thread ha

reduced. In the case of the Motorola simulator, this significant increment in the percentage of s

threaded execution is more than compensated by the significant increment for the parallel executio

and 8 threads.

The case ofcompress is different since the cancellation policy is too aggressive and most of

spawning pairs are eliminated so almost no speed-up is achieved. This situation is clearly reflected

figure 4.22 where it can be observed that the percentage of single-threaded execution grows from

almost 90%. Figure 4.17a has showed that some additional benefits can be obtained when consid

less aggressive cancellation policy for this benchmark. In fact, delaying the removal of a spawnin

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0

5

10

Sp
ee

d-
U

p

No removal
50 cycles no reconsider
50 cycles and reconsider 8 later

Figure 4.21. Speed-up of the cancellation policy that reconsiders an eliminated spawning
pair after visiting it 8 times.

ncella-

4.23.

uite far
116 CHAPTER 4

until it has been executing alone for 200 cycles provide a 10% speed-up compared with the non-ca

tion policy. For this cancellation policy, the time distribution of the active threads is depicted in figure

It can be observed an important increment in the percentage of single-threaded execution, but q

from the one obtained for the 50-cycle cancellation policy. However, as form88ksim , the average number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

099.go

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

89.1%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

Figure 4.22. Thread Unit Utilization for the Profile-based spawning scheme with the call-return pairs

126.gcc

130.li

134.perl

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

124.m88ksim

129.compress

132.ijpeg

147.vortex
for the best cancellation policy (50 cycles executing alone).

ancel-

s) that

airs are

ad. One

culative

e specu-
Thread-Spawning Schemes 117

of active threads per cycle is higher than the one obtained by the non-cancelling policy (7.6 for the c

lation policy and 7.2 for non-cancelling) which results in a better overall performance.

4.5.3.2. Reassign Spawning Policies

Figure 4.24 shows the percentage of spawning pairs (not taking into account the call-return pair

create at least a speculative thread. It can be observed that on average only 42% of the spawning p

used.

There are different reasons that can cause that a spawning pair never tries to create a new thre

of them is that when the spawning point is reached, all the thread units are used by other less spe

threads. Another reason is that whenever a thread reaches a spawning point, there is already a mor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Active Thread Units

0

10

20

30

%
 E

xe
cu

ti
on

 T
im

e

No cancel
Cancelling

Figure 4.23. Thread unit utilization for compress when the cancellation policy is applied after
200 cycles of execution alone.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

20

40

60

%
Sp

aw
ni

ng
 p

ai
rs

 u
se

d

Figure 4.24. Percentage of spawning pairs that create speculative threads (not taking into account the

call-return pairs).

s spec-

are not

t starts

at the

ed, if a

l quasi-

licies

oduces

spawn-

for the

wning

ults are
118 CHAPTER 4

lative thread started in the same dynamic instance of the control quasi-independent point. That is, a

ulative threads are disjunct, threads executing the same pieces of the dynamic instruction stream

allowed. This situation can be detected with the order predictor explained in Chapter 2: a thread tha

in a given control quasi-independent point can never be compared with another thread that starts

same control quasi-independent point.

Thus, an alternative policy may be considered. That says whenever a spawning point is reach

thread cannot be spawned at the most convenient control quasi-independent point, the next contro

independent point is tried according the previously mentioned criterion. This family of spawning po

will be referred to asreassign spawning policies.

Figure 4.25 shows the performance obtained by this reassign policy. On average, reassigning pr

a 3% slow-down compared with no reassign.

On the other hand, these reassigning approach can be used with a different flavour. Whenever a

ing pair is removed, the next most convenient pair with the same spawning point can be considered

next time the spawning point is reached.

The result of these modifications are shown in Figure 4.26, together with the cancellation spa

scheme that just considers a single spawning pair per spawning point. It can be observed that the res

again worse for the reassign policy and the degradation is quite significant.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

H
m

ea
n

SpecInt95

0

5

10

Sp
ee

d-
U

p

No Reasign
Reasign

Figure 4.25. Speed-up for the reassign policy.

is the

endent

given

file-

the next

t such

ed the

ulative

small

proces-

l quasi-

ber of

out the

e is the

e

ns, but
Thread-Spawning Schemes 119

The main reason for the performance degradation suffered for the reassign spawning policies

fact that whenever a control quasi-independent point cannot be chosen, the next control quasi-indep

point is usually too close. Note that the criterion to order the control quasi-independent points for a

spawning point is maximizing the distance between both points. Then, it is very likely that if the pro

based spawning scheme has chosen a given basic block to be the control quasi-independent point,

candidate in order will be the previous basic block. Thus, when the speculative thread is created a

new control-quasi independent point, few instructions later it will stop its execution since it has reach

starting point of another speculative thread (the one that has prevented the creation of the spec

thread at the primary control quasi-independent point). That is, the processor is generating very

threads that do not provide any benefit. Even worse, they may cause to waste the resources of the

sor.

4.5.3.3. Minimum Thread Size Spawning Policies

Figure 4.27 shows the average number of instructions that are between the spawning and the contro

independent point. This average is almost 100 instructions. On the other hand, the average num

instructions that are executed on average by each thread unit is close to 35 instructions and is ab

third part of the expected thread size extracted from the profile analysis. The most remarkable cas

average thread size for benchmarks such asm88ksim (21 instructions),gcc (30 instructions),com-

press (24 instructions),li (17 instructions) andperl (29 instructions). Note that the minimum distanc

between the spawning and the control quasi-independent point should be at least 32 instructio

clearly it is much lower.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg
pe

rl
vo

rt
ex

H
m

ea
n

SpecInt95

0

5

10

S
p

ee
d

-U
p

Removal 50 cyc.
Reassign

Figure 4.26. Speed-up of the reassign spawning policy compared with the 50-cycle removal pol-
icy (for compress, 200 cycles).

the fact

y pos-

namic

reaches
120 CHAPTER 4

The reason for that divergence between the expected and the real sizes of the threads is due to

that the profile analysis considers each spawning point individually and does not take into account an

sible interaction among speculative threads. Figure 4.28 illustrates this problem. Assume that a dy

instruction stream as the one shown in the figure is being executed in TUi. When Spawning Point 1 (SP1)

is reached, a new speculative thread is created on an idle thread unit (TUj) starting at Control Quasi-Inde-

pendent Point 1 (CQIP1) and both threads proceed in parallel. Later on, the non-speculative thread

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

50

100

150

T
hr

ea
d

Si
ze

Static Analysis
Dynamic Size

Figure 4.27. Average number of instructions between the spawning and the control quasi-
independent point statically compared with the number of dynamic instructions
executed at each thread unit.

Dynamic instruction stream

TUi

TUj

SP1 SP2 CQIP1 CQIP2

After spawning a speculative thread at SP1

SP1 SP2

CQIP1 CQIP2

TUi

TUj

TUk

After spawning a speculative thread at SP2

SP1 SP2

CQIP1

CQIP2

Wasted TU

Figure 4.28. Example that justifies that thread sizes are lower than the expected.

paral-

me

d at

e exe-

corre-

whose

e tradi-

tional

those

y 10%

mber

valuated
Thread-Spawning Schemes 121

the Spawning Point 2 (SP2) and creates a new thread on another idle thread unit (TUk) starting at their cor-

responding Control Quasi-Independent Point 2 (CQIP2) and the three threads continue executing in

lel. When the thread that is being executed in TUj reaches CQIP2, it finishes. As this thread has not beco

the non-speculative yet, it will have to wait for the finalization of the thread that is executing at TUi to com-

mit its values. During this time, TUj is idle but not free and no other speculative threads can be spawne

this thread unit.

To avoid this undesirable situation, the processor may monitor the number of instructions that ar

cuted by each thread unit. If this number is lower than a certain threshold (i.e. 32 instructions), the

sponding spawning pair is removed. We refer to this spawning policy as theminimum thread size spawning

policy.

Figure 4.29 shows the performance for the spawning policy that removes those spawning pairs

speculative threads execute less than 32 instruction in 8 consecutive occurrences (in addition to th

tional removal policy). For comparison, the left bar shows the speed-up obtained for the conven

removal policy (a 50-cycle threshold is considered for all the benchmarks, except forcompress , which is

set to 200 cycles). It can be observed that enforcing the minimum size of the threads and removing

spawning pairs that execute less instructions than 32 outperforms the conventional removal policy b

and achieves an average speed-up slightly higher than 9.

Some other different criterion to decide when a spawning pair must be removed (varying the nu

of occurrences, total number of occurrences instead of consecutive ones, etc....) have also been e

Figure 4.29. Speed-up achieved when a minimum thread size is considered to spawn new
speculative threads.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg
pe

rl
vo

rt
ex

H
m

ea
n

SpecInt95

0

5

10

S
p

ee
d

-U
p

No Minimum Size
Minimum Size = 32

%) by

ns.

figure

sed. In

broutine

4.5 and

hreads

ing pairs

nits.

idered

ulative

uctions
122 CHAPTER 4

and the results were similar or worse. Specially remarkable is the slow-down suffered (more than 35

the spawning policy that removes a spawning pair at the first time it executes less than 32 instructio

The impact on the thread size of the minimum thread size spawning policy can be observed in

4.30. It can be observed that the average number of instructions is increased almost three times.

4.5.4. Profile-based vs. Heuristics

In the previous subsection, a spawning policy based on combining the different heuristics was propo

this spawning scheme, speculative threads are created at loop-iterations, loop-continuations and su

continuations. The results obtained by this partitioning mechanism were presented in subsection 4.

shown quite significant speed-ups. In this section, a different approach for obtaining speculative t

has been proposed. This scheme is based on a profile analysis of the code that selects the spawn

depending on their features, and some mechanisms to guarantee a better utilization of the thread u

In order to compare both families of spawning schemes, the same dynamic optimizations cons

for the profile-based spawning scheme are taken into account for the combined one. Then, if a spec

thread spawned by either an iteration, loop continuation or subroutine executes less than 32 instr

per iteration, this spawning pair is disabled for the future.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

50

100

150

T
hr

ea
d

Si
ze

No enforcing
Minimum size = 32

Figure 4.30. Thread size for the conventional removal policy and for the minimum thread size
spawning policy.

tion of

gister

prove-

ks

.

ristic-

s based

isms or

M[14]

d by the

reads.

sup-

ds such

pro-
Thread-Spawning Schemes 123

Figure 4.31 shows the speed-up obtained by the profile-based spawning policy over the combina

loop-iteration, subroutine-continuation and loop-continuation spawning schemes when perfect re

value prediction is considered for both spawning schemes. It can be observed that on average the im

ment is close to 20%, being quite high forvortex and higher than 10% for the rest of the benchmar

(except forperl , which suffers a small slow-down (8%)). This fact is due to the workload imbalance

Thus, we can conclude that the off-line analysis provides significant improvement over the heu

based approach.

4.6. RELATED WORK

The most usual spawning scheme used by speculative multithreaded architectures in the literature i

on spawning speculative threads at loop iterations, either at run-time by means of hardware mechan

with compiler support.

Examples of this last group that relies on the compiler for the partitioning process are the SPS

and the Superthreaded architectures[76]. In this last architecture, some code reordering is performe

compiler to obtain a fast computation of the dependent values and start the execution of following th

In addition to this speculative multithreaded architectures, lots of works on-chip multiprocessors with

port for speculative multithreading has chosen loop iterations as a main source for speculative threa

as the works from the I-ACOMA[5][34] group, the STAMPede[71][72] among others. In all cases,

grams are split by the compiler.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
H

m
ea

n

SpecInt95

0.8

1.0

1.2

1.4

Sp
ee

d-
U

p
Figure 4.31. Speed-up of the profile-based spawning policy over the combination of heuristics.

p and

traces

help

a mem-

cted not

, the

ed on

ad bal-

at one

as too

ipro-

p itera-

multi-

threads

asically

ads at

rofil-

effec-

nt point,

d maxi-
124 CHAPTER 4

A different heuristic is used by the Dynamic Multithreaded Processor[2] which speculates on loo

subroutine continuations and allows the speculative threads to be created in any order.

On the other hand, Trace Processors[59] partition a sequential program into almost fixed-length

which is specially suited to maximize the workload balance among the different thread units with the

of the trace cache[60].

A different proposal to divide the program into threads was done by Codrescuet al. The MEM-slicing

scheme[9] is also based on profile analysis, but the spawning algorithm spawns a new thread when

ory instruction is reached, and the speculative thread starts at some distance where values are expe

to depend on that memory value.

A more complex approach was taken by the Multiscalar[16][68] architecture. In that architecture

compiler is responsible for dividing the code into tasks[84]. The policy used by the compiler is bas

heuristics that try to minimize the data dependences among active threads or maximize the worklo

ance, among other compiler criteria. The way tasks are built is incremental. The compiler starts

basic block and looks for other basic blocks to be added to such task until it becomes too large or it h

may predecessors or successors or too many data dependences.

Finally, some works comparing different spawning policies have been performed for on-chip mult

cessors[9][53]. The spawning policies considered are based on assigning speculative threads to loo

tions, loop continuations and subroutine continuations.

4.7. CONCLUSIONS

In this chapter, the impact of the spawning schemes on the overall performance of the speculative

threaded processors has been analyzed. Two different approaches for partitioning programs into

have been studied. In the first one, spawning pairs are obtained through several heuristics that b

look for common program constructs. Examples of this partitioning policy are those that spawn thre

loop-iterations, at loop-continuations and at subroutine continuations.

The second family of partitioning mechanisms is based on an off-line analysis with support of p

ing. This approach looks for threads that accomplish some properties that usually make them more

tive. Schemes that maximizes the distance between the spawning and the control quasi-independe

maximize the number of independent instructions between the spawner and the spawned thread an

d evalu-

aver-

multi-
Thread-Spawning Schemes 125

mizes the number of independent and predictable instructions between the threads are proposed an

ated.

Both families have been compared, showing that the off-line analysis provides better results on

age than the one based on simple heuristics (almost 20% higher with a 16-thread unit speculative

threaded processor).

	4
	Thread-Spawning Schemes

	4.1. Introduction
	4.2. Spawning and Control Quasi-Independent Points
	4.3. Experimental Framework
	4.4. Thread-Spawning Policies Based on Heuristics
	4.4.1. Loop-Iteration Spawning Scheme
	Figure 4.1. Average number of iterations per loop execution.
	Figure 4.2. Average number of consecutive iterations that follow the same control-flow.
	Figure 4.3. Average number of different control flows in the last 8 iterations of innermost loops.

	4.4.2. Loop-continuation spawning scheme
	4.4.3. Subroutine-continuation spawning scheme
	4.4.4. Performance figures
	Figure 4.4. Percentage of code executed in parallel with other threads for each spawning policy.
	Figure 4.5. Speed-ups for the three different spawning polices a) loop-iteration, b) loop-continu...

	4.4.5. Combining Schemes
	Figure 4.6. Speed-up of the combination of heuristics compared with a single- threaded execution.
	Figure 4.7. Average number of active threads per cycle.
	Figure 4.8. Percentage of parallelized code.

	4.5. Thread-Spawning Policies Not Based on Heuristics
	4.5.1. Profile-based Spawning Scheme
	Figure 4.9. Steps of the profile-based spawning scheme.
	Figure 4.10. Number of pairs of basic blocks selected and number of selected pairs that have diff...

	4.5.2. Performance evaluation
	Figure 4.11. Computed and Real reaching probability submatrix for a subroutine invoked from more ...
	Figure 4.12. Speed-up over a single-threaded execution obtained for 16 TU.
	Figure 4.13. Average number of active threads per cycle.
	Figure 4.14. Percentage of code that is executed in parallel with some other code.

	4.5.3. Improving the performance
	4.5.3.1. Cancellation Spawning Policy
	Figure 4.15. Thread Unit Utilization for the Profile-based spawning scheme with the call-return p...
	Figure 4.16. Percentage of time the spawning pair <9360-9361> of the go benchmark is executed sim...
	Figure 4.17. Speed-ups achieved by the different spawning pair removal scheme for different numbe...
	Figure 4.18. Average number of spawning pairs removed by the cancellation policy.
	Figure 4.19. a) Speed-ups achieved by the different spawning pair removal scheme for different nu...
	Figure 4.20. Speed-up for the cancellation policies that remove spawning pairs are executing toge...
	Figure 4.21. Speed-up of the cancellation policy that reconsiders an eliminated spawning pair aft...
	Figure 4.22. Thread Unit Utilization for the Profile-based spawning scheme with the call-return p...
	Figure 4.23. Thread unit utilization for compress when the cancellation policy is applied after 2...

	4.5.3.2. Reassign Spawning Policies
	Figure 4.24. Percentage of spawning pairs that create speculative threads (not taking into accoun...
	Figure 4.25. Speed-up for the reassign policy.
	Figure 4.26. Speed-up of the reassign spawning policy compared with the 50-cycle removal policy (...

	4.5.3.3. Minimum Thread Size Spawning Policies
	Figure 4.27. Average number of instructions between the spawning and the control quasi- independe...
	Figure 4.28. Example that justifies that thread sizes are lower than the expected.
	Figure 4.29. Speed-up achieved when a minimum thread size is considered to spawn new speculative ...
	Figure 4.30. Thread size for the conventional removal policy and for the minimum thread size spaw...

	4.5.4. Profile-based vs. Heuristics
	Figure 4.31. Speed-up of the profile-based spawning policy over the combination of heuristics.

	4.6. Related work
	4.7. Conclusions

