
Speculative VersioningCache

SridharGopal
�

T.N.Vijaykumar� JamesE. Smith
�

GurindarS.Sohi
�

gsri@cs.wisc.edu vijay@ecn.purdue.edu jes@ece.wisc.edu sohi@cs.wisc.edu
�
ComputerSciences � Schoolof Electricaland

�
Departmentof Electrical

Department ComputerEngineering andComputerEngineering
Universityof Wisconsin PurdueUniversity Universityof Wisconsin

Abstract

Dependencesamongloadsand storeswhoseaddresses
are unknownhindertheextractionof instructionlevel par-
allelismduringtheexecutionof a sequentialprogram.Such
ambiguousmemorydependencescanbeovercomebymem-
ory dependencespeculationwhich enablesa load or store
to bespeculativelyexecutedbefore theaddressesof all pre-
cedingloads and stores are known. Furthermore, multi-
ple speculativestores to a memorylocation create mul-
tiple speculativeversions of the location. Program or-
der among the speculativeversions must be tracked to
maintainsequentialsemantics.A previouslyproposedap-
proach, the AddressResolutionBuffer(ARB) usesa cen-
tralized buffer to supportspeculativeversions. Our pro-
posal,called theSpeculativeVersioningCache(SVC),uses
distributedcachesto eliminatethe latencyand bandwidth
problemsof the ARB.TheSVCconceptuallyunifiescache
coherenceand speculativeversioning by using an orga-
nization similar to snoopingbus-basedcoherent caches.
A preliminary evaluation for the Multiscalar architecture
showsthat hit latencyis an importantfactor affectingper-
formance, andprivatecachesolutionstrade-off hit ratefor
hit latency.

1. Intr oduction

Modernmicroprocessorsextract instructionlevel paral-
lelism (ILP) from sequentialprogramsby issuinginstruc-
tionsfrom anactive instructionwindow. Datadependences
amonginstructions,andnot theoriginalprogramorder, de-
terminewhenan instructionmay be issuedfrom the win-
dow. Dependencesinvolving registerdataaredetectedeas-
ily becauseregister designatorsare completelyspecified
within instructions.However, dependencesinvolving mem-
ory data(e.g. betweena loadanda storeor two stores)are
ambiguousuntil thememoryaddressesarecomputed.

A straightforwardsolutionto theproblemof ambiguous
memorydependencesis to issueloadsandstoresonly af-

ter their addressesaredetermined.Furthermore,a storeis
not allowed to completeandcommit its result to memory
until all precedinginstructionsareknown to be freeof ex-
ceptions. Eachsuchstoreto a memorylocationcreatesa
speculativeversionof that location.Thesespeculative ver-
sionsareheldin buffersuntil they canbecommitted.Mul-
tiple speculativestoresto thesamelocationcreatemultiple
versionsof the location. To improve performance,loads
areallowed to bypassbufferedstores,as long asthey are
to differentaddresses.If a load is to thesameaddressasa
bufferedstore,it canusedatabypassedfrom thestorewhen
thedatabecomesavailable.An importantconstraintof this
approachis thataloadinstructioncannotbeissueduntil the
addressesof all the precedingstoresaredetermined.This
approachmaydiminishILP unnecessarily, especiallyin the
commoncasewheretheloadis notdependentonpreceding
stores.

More aggressive uniprocessorimplementationsissue
loadinstructionsassoonastheiraddressesareknown,even
if the addressesof all previous storesmay not be known.
Theseimplementationsemploy memorydependencespec-
ulation[8] andpredictthata loaddoesnotdependonprevi-
ousstores.Furthermore,onecanalsoenvision issuingand
computingstoreaddressesout of order. Suchmemoryde-
pendencespeculationenableshigherlevelsof ILP, but more
advancedmechanismsareneededto supportthis specula-
tion. Theseaggressive uniprocessorsdispatchinstructions
from a single instructionstream,and issueload andstore
instructionsfrom a commonset of hardwarebuffers (e.g.
reservationstations).Usingacommonsetof buffersallows
the hardware to maintainprogramorder of the loadsand
storesvia simplequeuemechanisms,coupledwith address
comparisonlogic. The presenceof suchqueuesprovides
supportfor a simpleform of speculativeversioning.

However, proposednext generationprocessordesigns
usereplicatedprocessingunits that dispatchand/or issue
instructions in a distributed manner. These future ap-
proachespartition the instructionstreaminto sub streams
called tasks[11] or traces[10]. Higher level instruction

1

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

control units distribute the tasksto the processorsfor ex-
ecutionand,theprocessorsexecutethe instructionswithin
eachtask leadingto a hierarchicalexecutionmodel. Pro-
posednext generationmultiprocessors[9, 12] thatprovide
hardwaresupportfor dependencespeculationalsousesuch
executionmodels.A hierarchicalexecutionmodelnaturally
leadsto memoryaddressstreamswith asimilarhierarchical
structure. In particular, eachindividual taskgeneratesits
own addressstream,which can be properlyordered(dis-
ambiguated)within the processorthat generatesit, andat
thehigherlevel, themultiple addressstreamsproducedby
the processorsmust also be properly ordered. It is more
challengingto supportspeculative versioningfor this exe-
cutionmodelthana superscalarexecutionmodelbecausea
processorexecutesloadsandstoreswithout knowing those
executedby otherprocessors.

TheAddressResolutionBuffer [3] (ARB) providesspec-
ulative versioningsupportfor suchhierarchicalexecution
models.Eachentry in the ARB buffersall versionsof the
samememorylocation. However, therearetwo significant
performancelimitationsof theARB:

1. TheARB is asinglesharedbuffer connectedto themulti-
pleprocessorsandhence,every loadandstoreincursthe
latency of the interconnectionnetwork. Also, the ARB
hasto providesufficientbandwidthfor all theprocessors.

2. Whenataskcompletesall its instructions,theARB com-
mits its speculative stateinto the architectedstorage(or
copiesall the versionscreatedby this task to the data
cache).Suchwrite backsgeneratebursty traffic andcan
increasethe time to commita task,which delaysthe is-
sueof new taskto that processorandlowerstheoverall
performance.

We proposea new solution for speculative versioning
calledthe Speculative VersioningCache[5, 2] (SVC), for
hierarchicalexecutionmodels. The SVC comprisesa pri-
vatecachefor eachprocessor, andthesystemis organized
similar to a snoopingbus-basedcachecoherentSymmetric
Multiprocessor(SMP). Memory referencesthat hit in the
privatecachedo not usethe bus asin an SMP. Taskcom-
mitsdonotwrite backspeculativeversionsenmasse. Each
cacheline is individually handledwhenit is accessedthe
next time.

Section2 introducesthe hierarchicalexecutionmodel
briefly and identifies the issuesin providing support for
speculativeversioningfor suchexecutionmodels.Section3
presentstheSVCasaprogressionof designsto easeunder-
standing.Section4 givesa preliminaryperformanceeval-
uationof theSVC to highlight the importanceof a private
cachesolutionfor speculative versioning. We derive con-
clusionsin section5.

2. Speculative versioning

First,wediscusstheissuesinvolvedin providingsupport
for speculativeversioningfor currentgenerationprocessors.
Second,we describethehierarchicalexecutionmodelused
by theproposednext generationprocessors.Third, we dis-
cusstheissuesin providingsupportfor speculativeversion-
ing for this executionmodelanduseexamplesto illustrate
them.Finally, wepresentsimilaritiesbetweenmultiproces-
sor cachecoherenceandspeculative versioningfor the hi-
erarchicalexecutionmodelandusethisunificationto moti-
vateournew design,thespeculativeversioningcache.

Speculativeversioninginvolvestrackingtheprogramor-
der amongthe multiple bufferedversionsof a location to
guaranteethefollowing sequentialprogramsemantics:
� A loadmusteventuallyreadthevaluecreatedby themost

recentstoreto the samelocation. This requiresthat (i)
the loadmustbesquashedandre-executedif it executes
beforethestoreandincorrectlyreadsthepreviousversion
and,(ii) all stores(to the samelocation)that follow the
load in programordermustbebuffereduntil the load is
executed.

� A memorylocationmusteventuallyhavethecorrectver-
sion independentof theorderof thecreationof thever-
sions. Consequently, the speculative versionsof a loca-
tion mustbecommittedto thearchitectedstoragein pro-
gramorder.

2.1. Hierar chical executionmodel

In this executionmodel,thedynamicinstructionstream
of a programis partitioned into fragmentscalled tasks.
Thesetasksform a sequencecorrespondingto their order
in the dynamicinstructionstream. A higher level control
unit predicts the next task in the sequenceand assignsit
for executionto a freeprocessor. Eachprocessorexecutes
the instructionsin the task assignedto it and buffers the
speculative statecreatedby the task. TheWisconsinMul-
tiscalar[11] is anexamplearchitecturethatusesthehierar-
chicalexecutionmodel.

When a taskmispredictionis detected,the speculative
stateof all the tasksin the sequenceincluding and after
theincorrectlypredictedtaskareinvalidated1 andthecorre-
spondingprocessorsarefreed.This is calleda tasksquash.
Thecorrecttasksin thesequencearethenassignedfor exe-
cution. Whena taskpredictionhasbeenvalidated,it com-
mitsby copying thespeculative bufferedstateto thearchi-
tectedstorage.Taskscommitoneby onein theorderof the
sequence.Oncea taskcommits,its processoris freeto ex-
ecutea new task.Sincethetaskscommitin programorder,
tasksareassignedto theprocessorsin programorder.

1An alternative model for recovery invalidatesonly the dependent

2

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

3 1 13 3 1

99

0 0

2 2

4

(c)(a) (b)

Figure 1: Task commits and squashes: example.

Figure1 illustratestaskcommitsandtasksquashes.Ini-
tially, tasks � , � , ��� and � arepredictedandspeculatively
executedin parallel by the four processorsas shown in
Figure1(a). Whenthemispredictionof task �	� is detected,
tasks ��� and � are squashedand their bufferedstatesare
invalidated. New tasks
 and � are then executedby the
processorsasshow in Figure1(b). Tasksthatarecurrently
executingaresaidto beactive. Whentask � completesexe-
cution,thecorrespondingprocessoris freedandtask � is as-
signedfor executionasshown in Figure1(c). Theprogram
order, representedby the sequenceamongthe tasks,en-
forcesan implicit total orderamongtheprocessors;thear-
rowsshow thisorder. Whenthetasksarespeculatively exe-
cutedin parallel,themultiplespeculativeload/storestreams
from theprocessorsaremergedin arbitraryorder. Provid-
ing supportfor speculative versioningfor suchexecution
modelsrequiresmechanismsthat establishprogramorder
amongthesestreams. The following subsectionsoutline
how theorderis establishedusingthesequenceamongthe
tasks.

2.1.1.Loads A taskexecutesa loadassoonasits address
is available,speculatingthat storesfrom previous tasksin
thesequencedonot write to thesamelocation.Theclosest
previousversionof thelocationis suppliedto theload;this
versioncouldhave beencreatedeitherby thesametaskor
by a previoustask.A loadthat is supplieda versionfrom a
previoustaskis recordedto indicateausebeforeapotential
definition. If sucha definition(a storeto thesamelocation
from aprevioustask)occurs,theloadwassuppliedwith an
incorrectversionandmemorydependencewasviolated.

2.1.2.Stores Whena taskexecutesa storeto a memory
location,it is communicatedto all later active tasksin the
sequence2. Whenataskreceivesanew versionof alocation
from a previous task,it squashesif a usebeforedefinition
is recordedfor that location— a memorydependencevio-
lation is detected.All tasksafterthesquashedtaskarealso
squashedasonataskmisprediction(simplesquashmodel).

2.1.3.Taskcommitsand squashes Theoldestactivetask
is non-speculative and can commit its speculative mem-
ory state(versionscreatedby storesfrom this task) to ar-

chainsof instructionsby maintaininginformation at a finer granularity.
Thispaperassumesthesimplermodel.

2In reality, thestorehasto becommunicatedonly until thetaskthathas
createdthenext version,if any, of thelocation.

chitectedstorage.Committinga versioninvolveslogically
copying theversionsfrom thespeculative buffersto thear-
chitectedstorage(datacache). As we assumethe simple
tasksquashmodel, the speculative stateassociatedwith a
taskis invalidatedwhenit is squashed.

2.2. Examplesfor speculativeversioning

Figure2 illustratestheissuesinvolvedin speculativever-
sioningusinganexampleprogramanda sampleexecution
of theprogramona four processorhierarchicalsystem.We
usethe sameexamplein the later sectionsto explain the
SVC design. Figure2(a)shows theloadsandstoresin the
exampleprogramandthe taskpartitioning. Otherinstruc-
tions arenot of direct relevancehere. Figure 2(b) shows
two snapshotsof thememorysystemduringa sampleexe-
cutionof theprogram.Eachsnapshotcontainsfour boxes,
onefor eachactivetaskandshowstheloador storethathas
beenexecutedby thecorrespondingtask. Theprogramor-
deramongthe instructionstranslatesto a sequenceamong
thetaskswhich imposesa total orderamongtheprocessors
executingthem;solid arrowheadsshow the programorder
andhollowarrowheadsshow theexecutiontimeorderin all
theexamples.

Example Program(a) (b) Sample Execution

st 3, A

ld r, A

st 0, A

0

2
13

st 0, A

st 1, A

Task #
0 st 0, A

st 1, A

st 3, A

st 5, A

ld r, A

ld r, A

P
ro

gr
am

 O
rd

er

6

3

2

1

5

st 1, A

Dependence Violation

0

2
13

Figure 2: Speculative versioning example.

The first snapshotis taken just beforetask � executes
a storeto address� . Tasks � and � have alreadystored
� and � to � and task
 hasexecuteda load to � . The
load is suppliedthe versioncreatedand buffered by task
� . But, accordingto the original program,this load must
be suppliedthe value � createdby the storefrom task � ,
i.e., the storeto load dependencehasbeenviolated. This
violation is detectedwhen task � storesto address� and
all thetasksincludingandaftertask
 aresquashedandre-
executed.Thesecondsnapshotis takenafterthetaskshave
beensquashedandre-started.

2.3. Coherenceand speculativeversioning

The actionsperformedon memory accessesand task
commitsand squashesare summarizedin Table 1. The
functionalityin this tablerequiresthehardwareto trackthe

3

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

active tasksor processorsthatexecuteda load/storeto a lo-
cationandtheorderamongthedifferentcopies/versionsof
this location. CachecoherentSymmetricMultiProcessors
(SMP)usesimilarfunctionalityto trackthecachesthathave
acopy of everymemorylocation.SMPs,however, neednot
tracktheorderamongthesecopiessinceall thecopiesare
of asingleversion.

Event Actions

Load Recordusebeforedefinitionby thetask;
supplytheclosestpreviousversion.

Store Communicatestoreto latertasks;later
taskslook for memorydependenceviolations.

Commit Write backbufferedversionscreated
by thetaskto mainmemory.

Squash Invalidatebufferedversionscreated
by thetask.

Table 1: Versioning: events and actions.

SMPstypically usesnooping[4] to implementa Multi-
ple Reader/SingleWriter protocol,which usesa coherence
directorythatis acollectionof sets,eachof whichtracksthe
sharersof a line. In a snoopingbus basedSMP, thedirec-
tory is typically implementedin a distributedfashioncom-
prising statebits associatedwith eachcacheline. On the
other hand, the Speculative VersioningCache(SVC) im-
plementsa Multiple Reader/MultipleWriter protocol that
trackscopiesof multiplespeculativeversionsof eachmem-
ory location. This protocol usesa versiondirectory that
maintainsordered setsfor eachline, eachof which tracks
theprogramorderamongthemultiple speculative versions
of a line. This orderedset or list, called the VersionOr-
deringList (VOL), can be implementedin several differ-
entways— theSVC, proposedin this paper, usesexplicit
pointersin eachline to implementit asa linkedlist (like in
SCI [1]). Thefollowing sectionselaborateon a designthat
usespointersin eachcacheline to maintaintheVOL.

The private cacheorganizationof the SVC makes it
a feasiblememory systemfor proposednext generation
single chip multiprocessorsthat execute sequentialpro-
gramson tightly coupledprocessorsusingautomaticpar-
allelization [9, 12]. Previously, ambiguousmemory de-
pendenceslimited the rangeof programschosenfor auto-
maticparallelization.TheSVC provideshardwaresupport
to overcomeambiguousmemorydependencesandenables
moreaggressiveautomaticparallelizationof sequentialpro-
grams.

3. SVC design

In this section,we presentthe Speculative Versioning
Cache(SVC) as a progressionof designsto easeunder-
standing.Eachdesignimprovesthe performanceover the

previousoneby trackingmoreinformation.We begin with
a brief review of snoopingbus-basedcachecoherenceand
thenpresenta baseSVC designwhichprovidessupportfor
speculative versioningwith minimal modificationsto the
cachecoherencescheme. We then highlight the perfor-
mancebottlenecksin the basedesignand introduceopti-
mizationsoneby onein therestof thedesigns.

3.1. Snoopingbusbasedcachecoherence

Figure 3 shows a 4-processorSMP with private L1
cachesthatusesa snoopingbus to keepthecachesconsis-
tent. Eachcacheline comprisesanaddresstag that identi-
fiesthedatathat is cached,thedatathat is cached,andtwo
bits (valid andstore)representingthestateof the line. The
valid (
) bit is setif theline is valid. Thestore(�) or dirty
bit is setwhena processorstoresto theline.

Bus Arbiter

V: Valid S: Store or dirty

P

$

P

$

P

$

P

$

Tag V S Data

Next level

memory
Snooping Bus

Figure 3: SMP coherent cache.

A cacheline is in oneof threestates:Invalid, Cleanand
Dirty. A request(load or store)from a processorto its L1
cachehits if a valid line with therequestedtag is in anap-
propriatestate;otherwise,it misses. Cachemissesissuebus
requestswhile cachehits do not. More specifically, a load
from a cleanor dirty line anda storeto a dirty line resultin
cachehits. Otherwise,theload(store)missesandthecache
issuesa BusRead(BusWrite) request. The L1 cachesand
the next level memorysnoopthe bus on every request.If
a cachehasa valid line with therequestedtag, it issuesan
appropriateresponseaccordingto a coherenceprotocol. A
storeto a cleanline missesandthecacheissuesa BusWrite
request. An invalidation-basedcoherenceprotocol invali-
datescopiesof this line in all other caches,if any. This
protocol allows a dirty line to be presentin only one of
the caches.However, a cleanline canbe presentin mul-
tiple cachessimultaneously. The cachewith the dirty line
suppliesthe dataon a BusReadrequest.A cacheissuesa
BusWback requestto castout a dirty line on a replacement.
This simpleprotocolcanbe extendedby addingan exclu-
sivebit to the stateof eachline to cut down traffic on the
sharedbus. If a cacheline hastheexclusive bit set,thenit
hastheonly valid copy of the line andcanperforma store

4

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

to that line locally. TheSVC designswe discussin thefol-
lowing sectionsalsouseaninvalidation-basedprotocol.

Z
Y

X
W

Z
Y

X
W

Z
Y

X
W

Z
Y

X
W

BusWback

Flush
Replace

VS 1

BusWrite Invalidate
ld r, A

BusRead

Flush
st 1, A

VS 0

V

V 0

0

State Data W..Z: Caches

Figure 4: Cache coherence example.

Figure4 shows snapshotsof thecachelineswith tagor
address� in anSMPwith four processors,� , � , � , and�

. The stateof the cacheline is shown in a box corre-
spondingto that cache.An emptybox correspondingto a
cacherepresentsthat the line is not presentin that cache.
Thefirst snapshotis takenbeforeprocessor

�
issuesa load

from � andmissesin its privatecache.Thecacheissuesa
BusReadrequestandcache� suppliesthedataon thebus.
Thesecondsnapshotshows thefinal stateof thelines; they
areclean. Later, processor� issuesa BusWriterequestto
performa storeto � . Thecleancopiesin caches� and

�

areinvalidatedandthethird snapshotshows thefinal state.
Now, if cache� choosesto replacethis line, it castsout
the line to memoryby issuinga BusWback request;the fi-
nalstateis shown in thefourthsnapshot;only thenext level
memorycontainsavalid copy of theline.

3.2. BaseSVC design

The organizationof the private L1 cachesin the SVC
designis shown in Figure 5; all the SVC designsusethe
sameorganization.Thebasedesignminimally modifiesthe
memorysystemof thesnoopingbus-basedcachecoherent
SMPto supportspeculativeversioningfor processorsbased
on thehierarchicalexecutionmodel.We assumethatmem-
ory dependencesamongloadsandstoresexecutedby anin-
dividualprocessorareensuredby aconventionalload-store
queue;our designguaranteesprogramorderamongloads
andstoresfrom differentprocessors.Thebasedesignalso
assumesthat thecacheline sizeis oneword; a laterdesign
relaxesthis assumption.First, we introducethe modifica-
tionsto theSMPcoherentcache,andthendiscusshow the
individualoperationslistedin Table1 areperformed.

1. Eachcachelinemaintainsanextrastatebit calledtheload
(�) bit, asshown in Figure6. The � bit is setwhenatask
loadsfrom a line beforestoringto theline — a potential

PPPP

Bus Arbiter
Version Control Logic

SV$ SV$ SV$ SV$

Next level

memory
Snooping Bus

Version Control LogicTask

assignment

information

VCL responses to each cache

States of snooped lines from each cache

Figure 5: Speculative versioning cache.

V: Valid S: Store L: Load

Tag Pointer DataS LV

Figure 6: Base SVC design: structure of a line.

violation of memorydependencein casea previoustask
storesto thesameline.

2. Eachcacheline maintainsa pointer that identifies the
processor(or L1 cache)that hasthe next copy/version,
if any, in the VersionOrderingList (VOL) for that line.
Thus,theVOL for a line is storedin adistributedfashion
amongtheprivateL1 cachelines. It is importantto note
that the pointeridentifiesa processorratherthana task.
StoringtheVOL explicitly in thecachelinesusingpoint-
ersmaynotbenecessaryfor thebasedesign.However, it
is necessaryto explicitly storetheVOL for theadvanced
designsandwe introduceit in thebasedesignto easethe
transitionto theadvanceddesigns.

3. The SVC usescombinationallogic called the Version
Control Logic (VCL) that providessupportfor specula-
tive versioningusingtheVOL. A processorrequestthat
hits in theprivateL1 cachedoesnot needto consultthe
VOL andhencedoesnot issuea bus request;the VCL
is alsonot used. Cachemissesissuea bus requestthat
is snoopedby theL1 cachesandthenext level memory.
Thestatesof therequestedline in eachL1 cacheandthe
VOL aresuppliedto theVCL. TheVCL usesthebusre-
quest,theprogramorderamongthe tasks,andtheVOL
to computeappropriateresponsesfor eachcache.Each
cacheline is updatedbasedon its initial state,the bus
requestandthe VCL response.A block diagramof the
VersionControlLogic is shown in Figure5. For thebase
design,theVCL responsesaresimilar to thatof thedis-

5

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

ambiguationlogic in the ARB [3]. The disambiguation
logic searchesfor previousor succeedingstagesin a line
to executea loador store,respectively.

3.2.1.Loads Loadsarehandledin thesameway asin an
SMPexceptthat the � bit is setif the line wasinitially in-
valid. On a BusReadrequest,the VCL locatesthe closest
previousversionby searchingtheVOL in thereverseorder
beginning from the requestor;this version,if any, is sup-
plied to therequestor. If a previousversionis not buffered
in any of theL1 caches,thenext level memorysuppliesthe
data.Taskassignmentinformationis usedto determinethe
positionof therequestorin theVOL. TheVCL cansearch
theVOL in reverseorderbecauseit hastheentirelist avail-
ableandthelist is short.

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

0..3: TasksDataPointerStateW..Z: Caches

ZS

WL 1

S Y 0

S 3 1S3

S Y 0

S W 1

ld r, A

- -

Execution time orderProgram order

Figure 7: Base SVC design: example load.

We illustratetheloadexecutedby task
 to address� in
theexampleprogram. Figure7 shows two snapshots:one
beforethe loadexecutesandoneafter the loadcompletes.
Eachbox shows the line with tag or address� in an L1
cache(the valid bit is not explicitly shown). The number
adjacentto a box givesa processor/cacheidentifier anda
taskidentifier. Theprocessoridentifiersareusedby theex-
plicit pointersin eachline to representthe VOL, whereas,
thetaskidentifiersserve only to easetheexplanationof the
examples.Task
 executesaloadthatmissesin cache

�
and

resultsin a bus request.The VCL locatescache
�

in the
VOL for address� usingprogramorderandthensearches
theVOL in the reverseorderto find the correctversionto
supply, which is theversionin cache� (theversioncreated
by task �).

3.2.2. Stores The SVC performsmore operationson a
storemissascomparedto a cachecoherentSMP. Whena
BusWriterequestis issuedon a storemiss,theVCL sends
invalidationresponsesto thecachesbeginningfrom there-
questor’simmediatesuccessor(in taskassignmentorder)to
the cachethat hasthe next version(including it, if it has
the � bit set). This invalidationresponseallows for multi-
ple versionsof thesameline to exist andalsoservesto de-
tect memorydependenceviolations. A cachesendsa task
squashsignalto its processorwhenit receivesan invalida-
tion responsefrom theVCL andthe � bit is setin theline.

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

S 0

S 3

S 0

-

WL

S 0

S 3

S Y 0

S 1 --

-L 0

Z Z

Z

st 3, A st 1, A

X/0
Y/1W/-

Z/-

0

0WL

Figure 8: Base SVC design: example stores.

We illustratethestoresexecutedby tasks � and � in the
exampleprogram. Figure 8 shows four snapshotsof the
cachelineswith address� . Thefirst snapshotis takenbe-
fore task � executesa storethat resultsin a BusWritere-
quest.Sincetask � is themostrecentin programorder, the
storeby task � doesnot result in any invalidations. Note
thatastoreto a line doesnot invalidateall othercachelines
(unlike anSMP)to allow for multiple versionsof thesame
line. Thesecondsnapshotis takenafterthestorefrom task
� completesandbeforetask � executesits store.Basedon
taskassignmentinformation,theVCL sendsaninvalidation
responseto eachcachefrom theoneaftercache� until the
onebeforecache� , which hasthenext versionof theline
(cache� is notincludedsinceit doesnothavethe � bit set)
— VCL sendsaninvalidationresponseto cache

�
. But, the

loadexecutedby task
 , which follows thestoreby task �
in programorder, hasalreadyexecuted.Cache

�
detectsa

memorydependenceviolation sincethe � bit is setwhen
it receivesaninvalidationresponsefrom theVCL. Tasks

and � aresquashedasshown in thethird snapshotby shaded
boxes. Thefinal snapshotis takenafter thestoreby task �
hascompleted.

3.2.3. Task commits and squashes The baseSVC de-
sign handlestask commitsand squashesin a naive man-
ner. When a processorcommitsa task, all dirty lines in
its L1 cacheare immediatelywritten backto thenext level
memoryandall other lines areinvalidated. To write back
all thedirty lines immediately, a list of thestoresexecuted
by the task is maintainedby the processor. When a task
is squashed,all linesin thecorrespondingcacheareinvali-
dated.

3.3. Basedesignperformancedrawbacks

The basedesignjust describedhastwo significantper-
formancelimitations that make it lessdesirable:(i) write
backsperformedwhena processorcommitsa taskleadto
burstybus traffic thatmay increasethe time to commit the
taskanddelayissuinganew taskto thatprocessor, (ii) clean

6

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

linesarealsoinvalidatedwhena taskcommitsor squashes
becausethebufferedversionscouldbestalefor thenew task
allocatedonthesameprocessor;thecorrectversionmaybe
presentin other caches. Consequently, every task begins
executionwith a cold L1 cache,increasingthe bandwidth
demand.The following advanceddesignseliminatethese
problemsby trackingadditionalinformation.

1. Thefirst advanceddesign,theECSdesign(section3.5),
makestaskcommitsandsquashesmoreefficient. To ease
theunderstandingof thisdesign,wefirst presentaninter-
mediatedesign,the EC design(section3.4), thatmakes
taskcommitsefficient by distributing thewrite backsof
dirty linesovertime. Also, it retainsread-onlydatain the
L1 cachesacrosstaskcommitsby carefulbook-keeping.
However, it assumesthat mispredictionsdo not occur.
Then,wepresenttheECSdesignthatextendstheECde-
signto allow tasksquashes.Tasksquashesareassimple
asin thebasedesign,but aremoreefficientasthey retain
non-speculativedatain thecachesacrosstasksquashes.

2. Thesecondadvanceddesign(section3.6)booststhehit-
rateof theECSdesignby allowing requeststo snarf [6]
thebus to accountfor referencespreading.Snarfingin-
volvescopying thedatasuppliedon a busrequestissued
by anotherprocessorin an attemptto combinebus re-
questsindirectly.

3. The final design(section3.7) is realisticandallows the
sizeof a cacheline to bemorethanoneword.

3.4. Implementing efficient task commits (EC)

The EC designavoids expensive cacheflusheson task
commitsbymaintaininganextrastatebit, calledthecommit
bit, in eachcacheline. Taskcommitsdo not stall until all
lines with speculative versionsarewritten back. The EC
designeliminateswrite backburstson the bus during task
commits.Also,noextrahardwareis necessarytomaintaina
list of storesperformedby eachtask.Further, theECdesign
improvescacheutilization by keepingtheL1 cacheswarm
acrosstasks.

Tag S LV DataC T Pointer

V: Valid L: Load
C: Commit

S: Store
T: sTale

Figure 9: EC design: structure of a line.

Thestructureof a cacheline in theEC designis shown
in Figure 9. Whena processorcommitsa task,the � bit
is setin all its cachelines. This operationis entirely local
to the L1 cacheanddoesnot issuea bus request.A dirty
committedline is written back,if necessary, whenit is ac-
cessedthe next time eitheron a processorrequestor on a
busrequest.Therefore,committedversionscouldremainin

the cachesuntil muchlater in time sincethe taskthat cre-
atedthe versioncommitted. The orderamongcommitted
anduncommittedversionsis still maintainedby theexplicit
pointersin the line. This orderamongtheversionsis nec-
essaryto write backthe correctcommittedversionandto
supply the correctversionon a bus request. The EC de-
signusesanadditionalstatebit, thesTale(�) bit, to retain
read-onlydataacrosstasks.First,wediscusshow loadsand
storesarehandledwhencacheshave both committedand
uncommittedversionsandthendiscussthestalebit.

3.4.1. Loads and stores Loads to committedlines are
handledlikecachemissesandissueabusrequest.TheVCL
searchesthe VOL in the reverseorderbeginning from the
requestorfor theclosestpreviousuncommittedversion;this
version,if any, is suppliedto therequestor. If no suchver-
sionis found,theVCL suppliesthemostrecentcommitted
version,if any. This versionis thefirst committedversion
thatis encounteredonthereversesearch.All othercommit-
ted versionsneednot be written backandareinvalidated.
Onastoremiss,committedversionsarepurgedin asimilar
fashion.

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5S 33- -S

CS 1

CS 0

W

X

ld r, A

W 1L

Figure 10: EC design: example load.

We illustratethe loadexecutedby task
 in theexample
program. Figure10 shows two snapshots:onebeforethe
load executesandoneafter the load completes.Versions
� and � have beencommitted(the � bit is set in the lines
in caches� and �). Task
 executesa load thatmissesin
cache

�
andresultsin a busrequest.TheVCL knows that

task
 is theheadtaskanddeterminesthatcache� hasthe
mostrecentcommittedversion.Cache� suppliesthedata
which is alsowritten backto thenext level memory. Other
committedversions(version�) areinvalidatedandarenever
writtenbacktomemory. TheVCL alsoinsertsthenew copy
of version � into theVOL by modifying thepointersin the
lines accordingly— the secondsnapshotshows themodi-
fiedVOL.

Figure 11 illustratesthe actionsperformedon a store
miss. Thefirst snapshotis takenbeforea storeis executed
by task � . Versions � and � have beencommitted. Task
� executesa storethat missesin cache� andresultsin a
BusWriterequesteventhoughtheline hasacommittedver-
sion. The VCL purgesall committedversionsof this line
— it determinesthatversion � hasto bewrittenbackto the
next level memoryand the otherversions(version �) can
beinvalidated.Purging thecommittedversionsalsomakes

7

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

spacefor the new version(version �). ThemodifiedVOL
shown in thesecondsnapshotcontainsonly thetwo uncom-
mittedversions.

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5S 33-S

CS 1

CS 0

W

X S - 5Y

st 5, A

Figure 11: EC design: example store.

3.4.2.Stale copies The EC designmakes task commits
efficientby delayingto commiteachcacheline until a later
time. Therefore,a cacheline could have a stalecopybe-
causeversionsmorerecentthantheversionbufferedby the
committedtaskcouldbepresentin othercaches.Thebase
SVCdesigndoesnot introducestalecopiesbecauseit inval-
idatesall non-dirtylineswhenevera taskcommits.TheEC
designusesthestale(�) bit to distinguishstalecopiesfrom
correctcopiesandavoidsissuinga busrequeston accesses
to correctcopies.ThisadditionalinformationallowstheEC
designto retainread-onlydata(correctcopies)acrosstask
commits. First, we illustrate that staleandcorrectcopies
areindistinguishablewithout the � bit andthenshow how
the � bit is used.

Z/2

X/4X/0

Z/6

ld r, A

W/3 Y/5Y/1 W/7 CSS 1Z 1Z

CSS 0Y 0Y

1 1CLL - -

X/4

Z/2

X/4

Z/6

ld r, A

CS CS0Y Y 0

1 1CLL W

Y/5W/3 Y/5 CS CSCS3S W/71Z Z3 1

W

- -

Figure 12: EC design: correct and stale copies.

Figure 12 shows two executiontime lines — one that
leavesacorrectcopy of address� (shown usingsolid lines)
in cache

�
andanotherthat leavesa stalecopy of address

� in thesamecache(shown usingdashedlines). Thefirst
timeline showsasampleexecutionof amodifiedversionof
ourexampleprogram— task � in Figure2 doesnotexecute
thestore. Thesecondtime line shows anexecutionof our
original program. The first snapshotis the samefor both
time lines. Thesecondsnapshotin thesecondtime line is
takenaftertasks� and � havecommitted.The � bit is setin
theircachesandnew tasks� and � havebeenallocated.The
final snapshotin bothtime linesaretakenwhentasks� to �
areactiveandbeforetask � executesa load.In thefirst time

line, thedatain cache
�

is acorrectcopy, sincenoversions
werecreatedafterversion � ; the loadcanbesupplieddata
by justresettingthe � bit andwithout issuingabusrequest.
In thesecondtimeline, thecopy in cache

�
is stalesincethe

creationof version � andhencethe loadmissesresultinga
busrequest.However, cache

�
cannotdistinguishbetween

thesetwo scenariosandhasto issuea requestin bothcases
to consulttheVOL andobtainacopy of thecorrectversion.

The EC designusesthe stale(�) bit to distinguishbe-
tweenthesetwo scenariosandavoidsthebusrequestwhen-
evera copy is notstale.Thedesignmaintainstheinvariant:
the most recentversionof an addressand its copieshave
the � bit resetandtheothercopiesandversionshavethe �
bit set. This invariantis easilyguaranteedby resettingthe
� bit in the most recentversion,or a copy thereof,when
it is createdandsettingthe � bit in the previousversions,
if any. The � bits areupdatedon theBusWriterequestis-
suedto createaversionor aBusReadrequestissuedto copy
a versionandhencedo not generateadditionalbus traffic.
Sincestoresin differenttaskscanbe executedout of pro-
gramorder, an active taskcould executea storeto a copy
thathasthe � bit set(thecopy is not stalefor this task,but
is stalefor the next taskallocatedto the sameprocessor).
Figure13showsthetwo time linesin ourexamplewith the
statusof the � bit. Cache

�
candistinguishbetweenthe

correctcopy (� bit is not set)andthe stalecopy (� bit is
set). The load hits if a correctcopy is presentandno bus
requestis issued.

Z/2

X/4X/0

Z/6

ld r, A

W/3 Y/5Y/1 W/7

CS

1CLL

X/4

Z/2

X/4

Z/6

ld r, A

Y/5W/3 Y/53 W/7-

LT

- 1

Z 1S

CST Y 0

ZCST 1S

CST 0

Z 1CST

W 1

CST Z 1

Y 0

CST

CLT

CS - 3

Y 0Y

W 1

-

Figure 13: EC design: Using the stale bit.

TheEC designeliminatestheserialbottleneckin flush-
ing theL1 cacheon taskcommitsby usingthecommit(�)
bit. Also, this designretainsnon-dirtylinesaftertaskcom-
mitsaslongasthey arenotstale.Moregenerally, read-only
datausedby a programis fetchedonly once into the L1
cachesandnever invalidatedunlesschosento be replaced
on a cachemiss.Furthera taskcommitsby just settingthe
� bit in all linesin its L1 cache.

8

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

3.5. Implementing efficient task squashes(ECS)

The ECS designextendsthe EC designto allow task
squashesfor the EC design. Also, the ECSdesignmakes
thetasksquashesmoreefficient thanin thebasedesignby
retainingnon-speculativedatain thecachesacrosssquashes
usinganotherstatebit, theArchitectural(�) bit. Thestruc-
tureof a line in theECSdesignis shown in Figure14.

V: Valid S: Store L: Load

C: Commit T: sTale A: Architectural

Tag S LV C A Pointer DataT

Figure 14: ECS design: structure of a line.

Whena tasksquashes,all uncommittedlines(lineswith
the � bit reset)areinvalidatedby resettingthevalid (
) bit.
Theinvalidationmakesthepointersin theselinesandtheir
VOLsinexact.TheVOL hasa(dangling)pointerin thelast
valid (or unsquashed)copy or versionof the line and the
statusof the � bit in thelinesareincorrect.TheECSdesign
repairstheVOL of suchalinewhentheline isaccessedlater
eitheron a processorrequestor on a busrequest.Updating
the � bitsis notnecessarybecauseit is only ahint to avoid a
busrequestanda squashwouldnot incorrectlyreseta stale
versionto becorrect.However, theECSdesignupdatesthe
� bit on thisbusrequestby consultingtherepairedVOL.

Z/2
W/3 Y/1

X/4

1

CST Y 0

1

ld r, A

S -
X/4

W/-
X/-

Y/1
Z/2

Y/1
Z/2

W/3

L -

Y 0CST

ST ST WW3

ZS 1

1

Figure 15: ECS design: VOL repair.

Figure 15 illustratesVOL repairwith an exampletime
line with threesnapshots.The first snapshotis taken just
beforethetasksquashoccurs.Tasks� and � aresquashed;
onlyversion� is invalidated.TheVOL with incorrect� bits
andthedanglingpointerareshown in thesecondsnapshot.
Task
 executesa load thatmissesin cache� andresults
in a busrequest.TheVCL resetsthedanglingpointerand
the � bit in cache� . TheVCL thendeterminestheversion
to supplytheload.Also, themostrecentcommittedversion
(version �) is written backto the next level memory. The
third snapshotis takenaftertheloadhascompleted.

3.5.1.Squashinvalidations The basedesigninvalidates
non-dirty lines in the L1 cacheon tasksquashes.This in-

cludesbothspeculativedatafrom previoustasksandarchi-
tecturaldatafrom the next level memory(or the commit-
ted tasks).Thebasedesigninvalidatestheselinesbecause
it doesnot track the creatorof a speculative versionsfor
eachline andhencecannotdeterminewhetherthe version
in a line hasbeencommittedor squashed.Squashingnon-
speculativedataleadsto highermissratesfor tasksthatare
squashedandrestartedmultiple times.

To distinguishbetweencopiesof speculative andarchi-
tecturalversions,we addthe architectural(�) bit to each
cacheline as shown in Figure 14. The � bit is set in a
copy if either the next level memoryor a committedver-
sion suppliesdatawhena bus requestissuedto obtainthe
copy; elsethe � bit is reset.Oneof theVCL responseson
a bus requestspecifieswhetherthe � bit shouldbe setor
reset. Copiesof architecturalversionsarenot invalidated
on tasksquashes,i.e., theECSdesignonly invalidateslines
thathave both the � and � bits reset.Further, a copy of a
speculativeversionusedby a taskbecomesanarchitectural
copy whenthetaskcommits.However, the � bit is not set
until the line is accessedby a later task,whenthe � bit is
resetandthe � bit is set.

3.6. Hit rate optimizations

The baseand ECS designsincur severe performance
penaltiesdue to referencespreading. When a uniproces-
sorprogramis executedonmultipleprocessorswith private
L1 caches,successiveaccessesto thesameline thathit after
missingoncein asharedL1 cachecouldresultin aseriesof
misses.Thisphenomenonis alsoobservedfor parallelpro-
gramswherethe miss rate for read-onlyshareddatawith
privatecachesis higherthanthatwith a sharedcache.We
usesnarfing[6] to mitigatethis problem.Our SVC imple-
mentationsnarfsdataon thebusif thecorrespondingcache
sethasafreeline available.However, anactivetask’scache
canonly snarf the versionthat the taskcanuseunlike an
SMPcoherentcache.TheVCL determineswhethera task
cancopy a particularversionor not andinformscachesof
anopportunityto snarfdataona busrequest.

3.7. Realistic line size

The baseandECSdesignsassumethat the line sizeof
theL1 cachesis oneword. Thefinal SVC designhowever
allows lines to be longerthana word. Similar to an SMP
coherentcache,we observe effectsdueto falsesharing.In
additionto causinghigherbustraffic, falsesharingleadsto
moresquasheswhena storeto a cacheline from a taskis
executedout-of-orderwith a load from a differentbyte or
word in the sameline from a later task. We mitigate the
effectsof falsesharingby usinga techniquesimilar to the
sectorcache[7]. Eachline is divided into sub-blocksand
the � and � bits aremaintainedfor eachsub-block. The

9

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

sizeof a sub-blockor versioningblock is lessthanthatof
theaddressblock (storageunit for which anaddresstag is
maintained).Also, whena storemissresultsin a BusWrite
request,maskbits thatindicatetheversioningblocksmodi-
fiedby thestorearealsomadeavailableon thebus.

4. Performanceevaluation

We reportpreliminaryperformanceresultsfor theSVC
usingtheSPEC95benchmarks.Thegoalof our implemen-
tationandevaluationis to provetheSVC designnot just to
analyzeits performance.We underlinethe importanceof
a privatecachesolutionby first showing how performance
degradesrapidly asthehit latency for a sharedcachesolu-
tion is increased;the AddressResolutionBuffer (ARB) is
the sharedcachesolutionwe usefor this evaluation. We
mitigatethecommittimebottlenecksin theARB (by using
anextrastagethatcontainsarchitecturaldata)to isolatethe
effectsof purehit latency from otherperformancebottle-
necks.

4.1. Methodologyand configuration

All the resultsin this paperwerecollectedon a simu-
lator that faithfully modelsa Multiscalar processor. The
simulatordynamicallyswitchesbetweena functionalanda
detailedcycle-by-cycle modelto provide accurateandfast
simulationof a program. The memorysystemmodel in-
cludesa fair amountof detail includinganoff chip cache,
DRAM banksandinterconnectsbetweenthedifferentlev-
elsof memoryhierarchy. TheMultiscalarprocessorusedin
theexperimentshas4 processorseachof whichcanissue2
instructionsout-of-order. Eachprocessorhas2 simpleinte-
ger ALUs, 1 complex integerunit, 1 floating point unit, 1
branchunit and1 addresscalculationunit, all of which are
assumedto be completelypipelined. Inter-processorreg-
ister communicationlatency is 1 cycle andeachprocessor
cansendasmany astwo registersto its neighborin every
cycle. Loadsandstoresfrom eachprocessorareexecuted
in programorderby usinga load/storequeueof 16 entries
each.

TheARB is a fully-associative setof 32-bytelineswith
a total of 8KB storageperstageandfive stages;theshared
datacachethat backsup theARB is 2-way setassociative
and64KB in size. Theoff chip cacheis 4MB in sizewith
a total peakbandwidthof 16 bytesper processorclock to
theL1 data,instructionandtaskcaches.Main memoryac-
cesstime for the first word is 24 processorclocksandhas
a RAMBUS-like interfacethat operatesat half the speed
of the processorsto provide a peakbandwidthof 8 bytes
every busclock. All thecachesandmemoryare4-way in-
terleaved. Both the ARB and the L1 datacachehave 16
MSHRs/writebufferseach;eachbuffer cancombineupto 8
accessesto thesameline. Disambiguationis performedat

thebyte-level. ThebaseARB hit time is variedfrom 1 to 3
cyclesin theexperiments.BoththetagsanddataRAMs are
singleportedin all thecaches.

TheprivatecachesthatcomprisetheSVCareconnected
togetherand with the off chip cacheby an 8-word split-
transactionsnoopingbus where a typical transactionre-
quires3 processorcycles3. Eachprocessorhasits own pri-
vateL1 cachewith 16KBof 4-wayset-associativestoragein
32-bytelines. Both loadsandstoresarenon-blockingwith
8 MSHRs/writebufferspercache.Eachbuffer cancombine
up to 4 accessesto the sameline. Disambiguationis per-
formedat thebyte-level. L1 cachehit time is fixedat 1 cy-
cle. ThetagRAM is dualportedto supportsnoopingwhile
thedataRAM is singleported.

4.2. Benchmarks

We used the following programsfrom the SPEC95
benchmarksuite with train inputs except in the cases
listed: compress, gcc (ref/jump.i), vortex, perl, ijpeg
(test/specmun.ppm), mgrid (test/mgrid.in), apsi, fpppp, and
turb3d. All programswerestoppedafterexecuting1 billion
instructions.Frompastexperience,we know that for these
programsperformancechangeis not significantbeyond 1
billion instructions.

4.3. Experiments

Figure 16 presentsthe instructionsper cycle (IPC) for
a Multiscalarprocessorwith either the ARB or the SVC.
Theconfigurationskeeptotal datastorageof the SVC and
ARB/cachestorageroughlythesame.Thepercentagemiss
ratesfor the ARB and the SVC are shown on top of the
IPC barclusters(in thatorder). For theSVC, anaccessis
countedasamissif datais suppliedby thenext level mem-
ory; datatransfersbetweenthe L1 cachesarenot counted
asmisses.

Fromthesepreliminaryexperiments,wemake threeob-
servations: (i) thehit latency of datamemorysignificantly
affectsARB performance,(ii) the SVC trades-off hit rate
for hit latency and the ARB trades-off hit latency for hit
rateto achieveperformance,and(iii) for thesametotaldata
storage,theSVCperformsbetterthantheARB having ahit
latency of 2 or morecyclesasshown in Figure 16. The
graphsin thesefiguresshow thatperformanceimprovesin
therangeof 5% to 20%whendecreasingthehit latency of
the ARB from 3 cyclesto 1 cycle. This improvementin-
dicatesthat techniquesthat useprivatecachesto improve
hit latency areanimportantfactorin increasingoverallper-
formance,evenfor latency tolerantprocessorslikea Multi-
scalarprocessor.

3Busarbitrationoccursonly oncefor cacheto cachedatatransfers.An
extracycle is usedto flushacommittedversionto thenext level memory.

10

To appearin theFourth InternationalSymposiumonHigh-PerformanceComputerArchitecture.

1

2

3

4

5

6

compress

gcc
vortex

perl
ijpeg

mgrid
apsi

fpppp
turb3d

IP
C

3.1/7.5

 2.1/3.6

1.9/2.5

2.6/2.4

1.5/2.7

 8.1/9.3

2.3/3.4

1.1/2.2

6.9/8.1

ARB (3 cycle)

ARB (2 cycle)

ARB (1 cycle)

SVC (1 cycle)

Figure 16: SPEC95 IPCs for ARB and SVC.

Thedistributionof storagefor theSVC produceshigher
miss ratesthan for the ARB. We attribute the increasein
miss ratesfor the SVC to two factors. First, distributing
theavailablestorageresultsin referencespreading[6] and
replicationof data reducesavailable storage. Second,a
latestversionof a line that cachesfine-grainshareddata
betweenMultiscalar tasksconstantlymovesfrom one L1
cacheto another(migratorydata).Suchfine-graincommu-
nicationmayincreasethenumberof totalmissesaswell.

5. Conclusion

Speculative versioningis importantto overcomelimits
on InstructionLevel Parallelism(ILP) due to ambiguous
memorydependencesin a sequentialprogram. Our pro-
posal,calledtheSpeculative VersioningCache(SVC),uses
distributedcachesto eliminatethe latency andbandwidth
problemsof a previous solution, the AddressResolution
Buffer, whichusesacentralizedbuffer. TheSVCconceptu-
ally unifiescachecoherenceandspeculative versioningby
usinganorganizationsimilar to snoopingbus-basedcoher-
ent caches. A preliminary evaluationfor the Multiscalar
architectureshows that hit latency is an important factor
affecting performance,and private cachesolutionstrade-
off hit rate for hit latency. The SVC provides hardware
supportto breakambiguousmemorydependencesallowing
proposednext generationmultiprocessorsto useaggressive
parallelizingsoftwarefor sequentialprograms.

Acknowledgements

We thank Scott Breach,AndreasMoshovos, Subbarao
Palacharlaandtheanonymousrefereesfor their comments
andvaluablesuggestionsonearlierdraftsof thepaper.

This work wassupportedin part by NSF GrantsCCR-
9303030 and MIP-9505853, ONR Grant N00014-93-1-
0465, and by U.S. Army Intelligence Center and Fort
HuachucaunderContractDABT63-95-C-0127andARPA
orderno. D346anda donationfrom Intel Corp. Theviews
andconclusionscontainedhereinare thoseof the authors
and shouldnot be interpretedas necessarilyrepresenting
the official policies or endorsements,either expressedor
implied, of the U. S. Army IntelligenceCenterand Fort
Huachuca,or theU.S.Government.

References

[1] IEEE Standardfor ScalableCoherentInterface(SCI) 1596-
1992.IEEE1993.

[2] S. E. Breach,T. Vijaykumar, S. Gopal, J. E. Smith, and
G. S. Sohi. Datamemoryalternativesfor multiscalarpro-
cessors.TechnicalReportCSTR-1344,Universityof Wis-
consin,Madison,Nov. 1996.

[3] M. FranklinandG. S.Sohi. ARB: A hardwaremechanism
for dynamicreorderingof memoryreferences.IEEETrans-
actionson Computers, 45(5):552–571,May 1996.

[4] J. R. Goodman.Usingcachememoryto reduceprocessor-
memorytraffic. In Proceedingsof the 10th Annual Inter-
nationalSymposiumon ComputerArchitecture, pages124–
131,1983.

[5] S.Gopal,T.N.Vijaykumar, J.E.Smith,andG.S.Sohi.Spec-
ulative VersioningCache. TechnicalReportCS TR-1334,
Universityof Wisconsin,Madison,July 1997.

[6] D. Lilja, D. Marcovitz, andP.-C. Yew. Memory reference
behavior andcacheperformancein a sharedmemorymulti-
processor. TechnicalReport836,CSRD,Universityof Illi-
nois,Urbana-Champaign,Dec.1988.

[7] J. S.Liptay. Structuralaspectsof thesystem/360model85
partII: Thecache.IBM SystemsJournal, 7(1):15–21,1968.

[8] A. Moshovos, S. E. Breach,T. N. Vijaykumar, and G. S.
Sohi. Dynamicspeculationandsynchronizationof datade-
pendences.In Proceedingsof the24thAnnualInternational
SymposiumonComputerArchitecture, June2–4,1997.

[9] K. Olukotun, B. A. Nayfeh,L. Hammond,K. Wilson, and
K.-Y. Chang.Thecasefor a single-chipmultiprocessor. In
Proceedingsof the 7th InternationalConferenceon Archi-
tectural Supportfor ProgrammingLanguagesand Operat-
ing Systems, pages2–11,October1–5,1996.

[10] J.E. SmithandS.Vajapeyam. Traceprocessors:Moving to
fourth-generationmicroarchitectures.Computer, 30(9):68–
74,Sept.1997.

[11] G. S.Sohi,S.E. Breach,andT. N. Vijaykumar. Multiscalar
processors.In Proceedingsof the22ndAnnualInternational
SymposiumonComputerArchitecture, pages414–425,June
22–24,1995.

[12] J.G.SteffanandT. C.Mowry. Thepotentialfor thread-level
dataspeculationin tightly-coupledmultiprocessors.Techni-
cal ReportCSRI-TR-350,ComputerSystemsResearchIn-
stitute,Universityof Toronto,Feb. 1997.

11

