
SPEECH ANALYSIS AND COGNITION USING
CATEGORY-DEPENDENT FEATURES IN A MODEL OF

THE CENTRAL AUDITORY SYSTEM

A Thesis
Presented to

The Academic Faculty

by

Woojay Jeon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2006



SPEECH ANALYSIS AND COGNITION USING
CATEGORY-DEPENDENT FEATURES IN A MODEL OF

THE CENTRAL AUDITORY SYSTEM

Approved by:

Professor Biing-Hwang Juang, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Elliot Moore II
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Mark Clements
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Robert Lee
Department of Biomedical Engineering
Georgia Institute of Technology

Professor David Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 9 November 2006



To my mother and father,

for their boundless

love and patience

iii



ACKNOWLEDGEMENTS

First and foremost, I thank my parents for their unconditional love and support,

without which none of the worthwhile achievements in my life would have been possi-

ble. I also give my deepest thanks to my advisor, Prof. Fred Juang, for his excellent

research guidance and training and for teaching me the meaning of hard work and

dedication by show of example. He is a true researcher and advisor.

I thank the many other faculty members who interacted with me in varying degrees

and helped me in the process of developing as a graduate student, including Prof.

Mark Clements, Prof. David Anderson, Prof. Raghupathy Sivakumar, Prof. James

McClellan, and Prof. Douglas Williams.

I also thank Prof. Shihab Shamma at the University of Maryland and Kuansan

Wang at Microsoft Research for their helpful comments on the details of the auditory

model, and the members of my thesis defense committee including Prof. Elliot Moore

II and Prof. Robert Lee (other than those already mentioned).

The friendship and support of peers was also an indispensable part of my tenure

as a graduate student. At the risk of inadvertently omitting some names, I thank

Janghyun Yoon, Jinwoo Kang, Joon Hyun Sung, Martin Tobias, Michael Farrell,

Sourabh Ravindran, and Raviv and Genevieve Raich.

I also thank the members of my research group including Antonio Moreno, Dwi

Sianto Mansjur, Enrique Robledo-Arnuncio, Gaofeng Yue, Qiang Fu (who assisted the

MCE training in Section 3.3), Rungsun Munkong (who assisted the implementation

of the auditory model), Soo Hyun Bae, Ted Wada, and other members of the Center

for Signal and Image Processing.

Also thanks to Soner Ozgun and Volkan Cevher for consistently demonstrating to

iv



me that Turks cannot play Starcraft, my ex-roommate Paolo Marinaro for the tasty

Italian dishes and crazy midnight drives around the neighborhood, and all the people

in the blogosphere who helped me stay sane during the stressful last three years.

I thank my sister for her help and support in my coming to graduate school

in the first place. I also express my gratitude to the Ministry of Information and

Communication of Korea for its generous financial support that funded part of my

studies.

I thank Didier Contis and Keith May for their computer equipment-related sup-

port and for putting up with my incessant complaints and demands (and occasional

disputes with other students) in regard to the maintenance and administration of the

ECE X-Cluster.

Last but not least, I thank Suzzette Willingham, Jacqueline Trappier, Marilou

Mycko, Christy Ellis, Tammy Scott, Lisa Gardner, and Prof. David Hertling for their

great administrative support that started the day I picked up the phone and asked

Suzzette if she could urgently send me the application forms for Georgia Tech.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

I INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Auditory Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The Speech Recognition Problem . . . . . . . . . . . . . . . 4

1.2.2 Addressing Robustness in Speech Recognition . . . . . . . . 5

1.2.3 Application of Auditory Models to Speech Recognition . . . 8

1.2.4 Yang and Shamma’s Early Auditory Model . . . . . . . . . 10

1.3 Dimension Reduction for Pattern Recognition . . . . . . . . . . . . 14

II SPEECH ANALYSIS IN A MODEL OF THE CENTRAL AUDITORY
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 The Auditory Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 The Auditory Spectrum . . . . . . . . . . . . . . . . . . . . 23

2.1.2 The Cortical Response . . . . . . . . . . . . . . . . . . . . . 24

2.2 Cross-Validation With the MFCC . . . . . . . . . . . . . . . . . . . 29

2.2.1 The Auditory Spectrum and the MFCC . . . . . . . . . . . 30

2.2.2 The Cortical Response and the MFCC . . . . . . . . . . . . 32

2.2.3 Quantitative Assessment . . . . . . . . . . . . . . . . . . . . 35

2.3 Speech Information in the A1 Model . . . . . . . . . . . . . . . . . 37

2.3.1 Matched Filtering and Signal-Respondent Neurons . . . . . 38

2.3.2 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Class Dependent Encoding of Speech Information . . . . . . 48

vi



2.3.4 Clustering and Feature Selection . . . . . . . . . . . . . . . 51

2.3.5 Quantitative Assessment . . . . . . . . . . . . . . . . . . . . 55

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III CATEGORY-DEPENDENT FEATURES AND HIERARCHICAL CLAS-
SIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Overview of Terms and Notation . . . . . . . . . . . . . . . . . . . 60

3.2 Category-Dependent Feature Selection . . . . . . . . . . . . . . . . 62

3.2.1 Dimension Expansion and Class Dependence in the Auditory
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Discriminative Dimension Reduction . . . . . . . . . . . . . 63

3.2.3 Category-Dependent Feature Selection from the A1 Model . 66

3.2.4 Phoneme categorization . . . . . . . . . . . . . . . . . . . . 68

3.2.5 A composite phoneme classifier . . . . . . . . . . . . . . . . 69

3.3 Hierarchical Classification . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 A Brief Overview of CART . . . . . . . . . . . . . . . . . . 73

3.3.2 The Bayesian Decision and Hierarchical Classification . . . . 75

3.3.3 Constructing the Categories . . . . . . . . . . . . . . . . . . 80

3.3.4 MCE-Based Training of Category and Class Models . . . . . 82

3.3.5 Hierarchical Classification . . . . . . . . . . . . . . . . . . . 87

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

IV CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 92

APPENDIX A DETAILS ON IMPLEMENTATION AND EXPERIMENTS 96

APPENDIX B MATHEMATICAL PROOFS . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vii



LIST OF TABLES

1 Approximate center frequencies (Hz) and bandwidths (Hz) of MFCC
filterbanks (implemented by HTK software [1] with the number of fil-
ters set to 26) and equivalent cochlear filters [2] in the early audi-
tory model. Because of the reduced range of center frequencies in the
cochlear filters, only 23 MFCC filters have an equivalent cochlear filter. 33

2 MFCC-equivalent features drawn from cortical response. . . . . . . . 36

3 Phoneme classification accuracy(%) for varying feature types and SNR;
p1: MFCC-equivalent feature derived from auditory spectrum; c1,a,
c1,b, c2: MFCC-equivalent features derived from cortical response (1-
to-1 mapping, 1-to-1 mapping with gain-normalization, integration);
r1, r2: features derived from cortical response based on source and en-
vironment invariance (12 clusters, principal components of 3000 neurons). 55

4 Categorization of 48 phonemes obtained by clustering the phonemes
according to the similarity of their variances. . . . . . . . . . . . . . . 69

5 Phoneme classification rates for varying feature sets, SNR, and num-
ber of Gaussian mixture components (2 ∼ 40) in each HMM output
probability function. A substantial increase in classification accuracy
can be observed when category-dependent features are used instead of
category-independent features. . . . . . . . . . . . . . . . . . . . . . . 72

6 Categorization of 48 phonemes, obtained by searching a list of can-
didates for the categorization with highest overall classification rate
for the training data (using initial models). The list was obtained by
combining the nodes in phoneme trees like the one in Figure 31 . . . 83

7 Phoneme classification accuracy(%) of each category in Table 6 (C1

∼ C9) using different category-dependent features (x1 ∼ x9) and ML-
estimated HMMs. Ideally, the (bold-face) diagonal entries should be
highest for each row, since it is always feature vector xm that “special-
izes” in discriminating the classes in Cm. . . . . . . . . . . . . . . . 89

8 Phoneme classification accuracy (%) of each category in Table 6 us-
ing the corresponding category-dependent features (i.e., the bold-face
diagonal entries in Table 7) after varying degrees of within-category
MCE training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Phoneme class and category classification rates(%) for clean speech
(using 48 phoneme classes, 9 categories in Table 4) . . . . . . . . . . 89

viii



10 Phoneme classification accuracy(%) of 48 phoneme classes under vary-
ing SNR, features, and classifier configurations. SL: Single-layer classi-
fier; TL:Two-layer (hierarchical) classifier, CI: Category-independent
features from A1 model; CD:Category-dependent features from A1
model; *74.51 when the 48 phoneme classes are mapped to 39 as in [58]. 89

ix



LIST OF FIGURES

1 Performance of humans and of a high-performance HMM recognizer
with noise compensation for Wall Street Journal sentences with addi-
tive automobile noise. Reproduced from Lippmann [61]. . . . . . . . . 5

2 Some common causes of speech distortion. . . . . . . . . . . . . . . . 6

3 Schematic overview of the early auditory model proposed by Yang and
Shamma [95]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Illustration of the single cell model proposed by Shamma [82]; zj(t):
instantaneous firing rate of spikes of jth neuron; yi(t): post-synaptic
potential at ith neuron; fij(t): LTI transfer function between firing
rate and potential; ej : external inputs; vij: weight of external input j
onto neuron i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Example showing how adding another dimension to the observation
decreases the Bayesian probability of error. . . . . . . . . . . . . . . . 16

6 Example showing how misestimating the probability density can in-
crease the misclassification probability (horizontal axis is the probabil-
ity space x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Example showing two pattern classes, each with two-dimensional dis-
tributions (horizontal axis is x and vertical axis is y). The true distri-
butions are parameterized by λ1, while the estimated distributions are
parameterized by λ2. The densities are illustrated by ovals representing
points with equal values (lighter shading indicates higher values). . . 18

8 The pattern classes in Figure 7 are now plotted with the first dimension
(x) removed. The horizontal axis is now the y dimension. . . . . . . . 18

9 The magnitude of the Fourier transform (obtained by applying a 25ms
Hamming window to a pre-emphasized version of the signal and com-
puting the magnitude of a 512-point FFT, where the sampling fre-
quency is 16kHz), auditory spectrum (sampled at the center of the
window used for (a)), and the cortical response represented by a(x, s)
and ψ(x, s) for a steady-state /ae/ vowel. The ordinate axis of the
auditory spectrum is arbitrary. Details on how the auditory models
were implemented can be found in Appendix A.1 . . . . . . . . . . . 25

x



10 The box in this figure is a conceptual representation of the primary
auditory cortex, and can be seen as filled with neurons, each neuron
having its own (x,s,φ) coordinates that define its response area. The
response areas of three neurons on the φ = 0 plane are shown. All three
response areas are symmetric since their phases(φ) are 0, differing only
in bandwidth(s) and BF(x). The response areas are defined on the
tonotopic frequency domain y, and their magnitudes are not plotted
to scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Response areas of varying symmetry (φ) for αs = 1 and x = 0. The
vertical axis has arbitrary units that reflect response magnitude. Note
that in our implementation, the excitatory peak of each response area
is aligned to its BF, whereas in [92], they deviate from the BF for
increasing asymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12 Computation of the MFCC, and an equivalent process using the audi-
tory spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

13 Example plots showing various stages of the feature extraction pro-
cesses in Figure 12 for a steady state vowel “aa.” For the MFCC, the
magnitude of the discrete-time Fourier Transform (a) is integrated by
a set of 26 triangular filterbanks to produce 26 energy values (c) (only
23 points are shown here because the range of the frequency axis has
been limited to that of the auditory spectrum to allow visual com-
parison), to which the DCT in equation (31) is applied to obtain the
MFCC coefficients (e). For the MFCC-equivalent feature p1, 23 points
in the auditory spectrum (b) that most closely match the CF’s of the
MFCC’s filterbanks are taken (d), and we apply the DCT to obtain
(f). The center frequencies and bandwidths of the filters used for (c)
and (d) are shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . 31

14 (a) Example MFCC filters and corresponding response areas. Solid
lines represent MFCC filters while dotted lines represent response ar-
eas. Only four filters are shown here to enhance visibility. (b) Location
of response areas on the φ = 0 plane corresponding to 23 MFCC filters
with center frequencies equally distributed on the Mel-frequency scale
(from 226 Hz to 6,519 Hz on the linear frequency scale). . . . . . . . 34

15 (a) Viewed in close range, an analysis filter obtained by linearly com-
bining a set of response areas to more closely match its corresponding
MFCC filter. Solid lines indicate the MFCC filter while dotted lines
indicate the combined analysis filter. (b) Location of response areas
on the φ = 0 plane that are used to construct the analysis filters for
c2. The bold points on each dotted line indicate the response areas
used for one analysis filter, and the unfilled circles mark the filters in
Figure 14(b) that set the center frequencies. Compared to c1,a, we are
now using a broader range of response areas to derive our features. . . 36

xi



16 a′ (x, s) = max
φ

|r (x, s, φ)| of a steady state “aa” phone. Dark is high.

Four neurons with locally high responses are arbitrarily chosen and
labeled (a) to (d). The response areas of these neurons are shown in
Figure 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

17 The auditory spectrum of a steady “aa” phone, and response areas
corresponding to components labeled in Figure 16. Units for x, s, and
φ are Hz, cyc/oct, and degrees, respectively. The y-axis has arbitrary
units indicating the magnitude of the response areas and the auditory
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 a′ (x, s) = max
φ

|r (x, s, φ)| of the averaged distortion of the “aa” phone

in Figure 16 for input SNR 5 dB. Two neurons with locally high re-
sponse are chosen and labeled (a) and (b). Their response areas are
shown in Figure 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

19 Response areas of key components in Figure 18. Units for x, s, and
φ are Hz, cyc/oct, and degrees, respectively. The y-axis has arbitrary
units indicating the magnitude of the response areas and the auditory
spectrum. Comparing the (x, s, φ) coordinates of the responses here
with those in Figure 17, it is evident that most of the noise energy is
mapped to cortical regions that are separate from the signal-respondent
regions in Figure 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

20 Mean ratios Sr(Ai)/Sp (marked by ◦) and Sr(Ai)/Sr(U) (marked by
×) for varying input SNR with error bars showing standard deviation.
The dotted horizontal line indicates 1. For each input SNR, horizontal
spacing has been added between each ratio to enhance visibility. . . . 46

21 Variance (dark is high) of cortical response at φ = 0. Low variance is
conjectured to be more relevant to cognition. Here, unvoiced phonemes
also seem to have high variance in the pitch-related regions, but this
comes from the continuous speech context from which the phone ut-
terances were extracted. . . . . . . . . . . . . . . . . . . . . . . . . . 49

22 Mean (dark is high) of absolute cortical response at φ = 0. High mean
implies greater noise robustness. . . . . . . . . . . . . . . . . . . . . . 50

23
∑
ui (λ), the sum of the normalized class-wise absolute means, and∑
vi (λ), the sum of the normalized class-wise variances, at φ = 0.

Dark is high. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



24 Stages of feature selection from the cortical response. Numbers in
parentheses indicate the number of data points (features) at each stage
of processing, where the interval of raw speech involved in the compu-
tation of each auditory spectrum frame is estimated to be around 25ms,
or 400 points when the sampling frequency is 16kHz. Note that the
low variance filter, high activation filter, and neuron clustering are pre-
pared offline using training data, and can be all lumped into a single
neuron selection stage when training and testing the recognizer. . . . 54

25 Selection of category-independent features, identical to the feature se-
lection for r2 in Figure 24. . . . . . . . . . . . . . . . . . . . . . . . . 63

26 Selection of category-dependent features. We now have M parallel fea-
ture transformations like the one in Figure 25, but each transformation
process is constructed using a specific category of phonemes rather than
all phonemes. “LVFm” stands for Low Variance Filter for category m
and “HAFm” stands for High Activation Filter for category m. . . . 63

27 Summed normalized variance (dark is high)
∑

i, wi⊂Cm

vi (λ) of cortical

response at φ = 0 for the categories in Table 4. . . . . . . . . . . . . . 70

28 An arbitrary example of a decision tree that classifies an animal as an
insect, scorpion, spider, dolphin, porpoise, or shark. . . . . . . . . . . 74

29 The Bayesian decision rule reinterpreted as a binary decision tree . . 78

30 Hierarchical classification as a binary decision tree . . . . . . . . . . . 79

31 A phoneme tree obtained by the CART-style splitting algorithm ap-
plied on a fixed ordering of phonemes with “th” as the “seed” phoneme. 82

32 The category search procedure. The phoneme class-wise variances are
used to produce N orderings of the N phonemes, where each ordering
starts with a different seed phoneme. CART-style splitting using the
impurity function in (113) is used to generate a phoneme tree out of
each ordering, and a list of candidate categorizations is created by com-
bining the nodes. A search for the “best” categorization is performed
over the N lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



33 The model training procedure. The category-independent features
and category-dependent features are obtained using the method illus-
trated in Figure 25 and 26. Class models are initialized using standard
maximum-likelihood estimation (Baum-Welch) methods. The category
models are initialized by applying uniform αi values to the mixed-

HMM models in rn

(
X

∣∣Θ, α(n)
)

=
∑

i,wi⊂Cn

αiq (X|Θi). MCE training

is then used to refine the αi’s and HMM parameters. For the category-
dependent features, within-category MCE training is performed to re-
fine the ML-estimated HMM parameters. . . . . . . . . . . . . . . . . 86

34 The testing procedure (hierarchical classification). First, category-
independent feature selection is done on each test token to create the
category-independent feature set X. Category mixed-HMM models
are used to decide on the category Cn. Category-dependent feature
selection on the test data is done to create feature set Xn, which is
used with the within-category class models to produce the final class
decision wi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

35 (a) Demonstration of the approximation in (139), where p(y) has been
arbitrarily scaled and biased. Here, the rangeR(λ) is the y-axis roughly
below 4kHz. (b) Ratio of squared SNR’s as a function of b . . . . . . 100

xiv



SUMMARY

It is well known that machines perform far worse than humans in recognizing

speech and audio, especially in noisy environments. One method of addressing this

issue of robustness is to study physiological models of the human auditory system

and to adopt some of its characteristics in computers. As a first step in studying the

potential benefits of an elaborate computational model of the primary auditory cortex

(A1) in the central auditory system, we qualitatively and quantitatively validate the

model under existing speech processing recognition methodology. Next, we develop

new insights and ideas on how to interpret the model, and reveal some of the ad-

vantages of its dimension-expansion that may be potentially used to improve existing

speech processing and recognition methods. This is done by statistically analyzing the

neural responses to various classes of speech signals and forming empirical conjectures

on how cognitive information is encoded in a category-dependent manner. We also

establish a theoretical framework that shows how noise and signal can be separated

in the dimension-expanded cortical space. Finally, we develop new feature selection

and pattern recognition methods to exploit the category-dependent encoding of noise-

robust cognitive information in the cortical response. Category-dependent features

are proposed as features that “specialize” in discriminating specific sets of classes,

and as a natural way of incorporating them into a Bayesian decision framework, we

propose methods to construct hierarchical classifiers that perform decisions in a two-

stage process. Phoneme classification tasks using the TIMIT speech database are

performed to quantitatively validate all developments in this work, and the results

encourage future work in exploiting high-dimensional data with category(or class)-

dependent features for improved classification or detection.

xv



CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Motivation and Objectives

Speech and audio signal processing technology often incorporates knowledge on the

mammalian auditory system to draw on the highly evolved ability of humans to per-

ceive and recognize speech and sound. In the case of speech recognition, for example,

the Linear Predictive Coding (LPC) model spectrum is based on an all-pole model

of the resonances in the vocal tract, while the Mel-Frequency Cepstral Coefficients

(MFCC) are based on an approximation of critical bands. Most of these considera-

tions, however, are only very crude approximations of the peripheral auditory system,

and machines under currently-existing technology lag far behind the performance of

humans in recognizing speech, especially when the signal is corrupted by noise or

other interfering signals [61, 65]. Hence, one approach to addressing the problem of

robustness in speech and audio processing is to incorporate more extensive knowl-

edge on the human auditory system, under hopes that some of its successes may be

replicated in a computational system. This approach is further motivated by the

vast growth of computation power that facilitates the use of elaborate, computation-

intensive physiological models.

Two limitations can be identified in the literature concerning the application of

auditory models to speech processing. First, most work focuses on signal transforma-

tions in the peripheral auditory system with little or no considerations on the latter

processing stages in the central auditory system. Second, most work employs audi-

tory models as alternative frontends for speech processing without considering how

the pattern recognition methodology itself should also change to better simulate the

1



human auditory apparatus.

Hence, in this dissertation, we address these two limitations by employing a phys-

iological model of the mammalian auditory system that was originally developed by

Yang, Wang, and Shamma [95, 92], and investigate its application to the speech anal-

ysis and classification. The auditory model consists primarily of two components: an

early auditory model model [95] that simulates the processing at the auditory periph-

ery and produces an auditory spectrum, and a model of the primary auditory cortex

(A1) [92] in the central auditory system that produces a representation of neural firing

activity called a cortical response.

Our work can be divided into three key parts:

• We qualitatively and quantitatively validate a physiology-based model of the

primary auditory cortex (A1) in the mammalian central auditory system under

existing speech processing and recognition methodology.

• We develop new insights and ideas on how to interpret the model, and reveal

some of the advantages of its dimension-expansion that may be potentially used

to improve existing speech processing and recognition methods.

• We develop new feature selection and pattern recognition methods that make

use of the category-dependent encoding of cognitive information in the cortical

space. In particular, we propose the use of category-dependent features and

explore some ways of exploiting them for speech classification.

Although the term “cognition” used in the title of this dissertation can be very

generally defined as “the mental process of knowing, including aspects such as aware-

ness, perception, reasoning, and judgment” [21], we focus mainly on the classification

aspect of speech processing in this work. We hope, however, that many of the funda-

mental ideas we present, such as low-variance regions, category-dependent features,

2



and hierarchical classification opens new directions in which broader notions of cog-

nition may be explored in the future.

While the model used in this study is a limited and myopic approximation of one

stage in the mammalian cortex and is not definitive, we choose this model because it

is mathematically well-defined and suited for some unconventional notions of speech

analysis for better understanding of human auditory functions. In our study, we are

particularly interested in the fundamental notion of dimension expansion where the

frequency components of input signals encoded at the peripheral auditory system are

mapped onto a more redundant set of neurons in the central auditory system. By

studying the role of the dimension expansion and the potential benefits it can provide

at this intermediate stage of auditory processing, we hope to gain some fundamen-

tal insight without being marred by whatever inaccuracies the specific model may

have. Our ideas on the engineering applications of the auditory model are based on

hypotheses, most of which are also inspired by reports in physiology literature. Our

intent is thus not in articulating for any particular physiological model, and therefore

we deem a comprehensive survey of physiology literature unnecessary. Also note that

we ignore time-domain processing in the central auditory model, as our primary focus

in this study is the spectral analysis and dimension expansion aspects.

To provide some context to our work, in this introductory chapter we will provide

an overview of some of the issues involved in speech recognition, and how researchers

in the past have tried to make speech recognition more robust. This will be followed

by a discussion on past applications of physiological models. Due to the broad range

of subjects touched on by this thesis, we do not conduct a comprehensive literature

survey on all areas involved. Instead, we highlight some of the key aspects of pattern

recognition that is most relevant to our work in feature selection. Further discussion

on literature related to category-dependent features and hierarchical classification will

be provided in Chapter 3.
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1.2 Auditory Modeling

1.2.1 The Speech Recognition Problem

Automatic Speech Recognition (ASR) can be simply stated as the automatic con-

version of speech sound waves to text. Given an input wave form x(t), how do we

recognize the utterances it contains to write out in text form the intended message

of the source? This has been an increasingly interesting problem for many years due

to its vast potential in facilitating interaction between man and machine to conduct

automated tasks, be it voice-dialing a number on a cell phone, conducting a bank

transaction with a computer, or dictating letters to word-processing software.

The current speech recognition paradigm bases itself on Bayesian decision theory.

Given an arbitrary input observation x (in vector form), we classify x into 1 of N

known pattern classes {w1, w2, · · · , wN} by the maximum a posteriori (MAP) decision

rule that minimizes a Bayesian risk function [20]. While the MAP rule may not always

result in the correct decision, it is the most statistically optimal decision in that it

allows the lowest probability of misclassification. The MAP rule is written as:

wj = arg max
i
P (wi |x) = arg max

i
P (x |wi )P (wi) (1)

Here, the class wj becomes the class to which we assign x. In speech recognition,

this can be a word (e.g., “yes” or “no” when interacting with an automated phone

service), a phoneme (e.g., “aa,” “iy,” or “ae”), or even a sentence (e.g., “Check my

balance,” or “Make a wire transfer”) depending on the complexity of the task.

Assuming a uniform distribution for P (wi), the problem is to compute the like-

lihood P (x |wi ). In order to compute this quantity, the observation x must first be

in an appropriately transformed form such that its probability distribution can be

easily computed. For example, if we were to use a time frame of the raw speech

signal as x, it would be nearly impossible to properly model the distribution. Hence,

it is common practice to transform x into an intermediate form, a set of features that
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Figure 1: Performance of humans and of a high-performance HMM recognizer with
noise compensation for Wall Street Journal sentences with additive automobile noise.
Reproduced from Lippmann [61].

capture the essential discriminating characteristics of the original signal and whose

statistical properties are also easier to model. The Mel-Frequency Cepstral Coef-

ficients (MFCC’s) [16], for example, are a very well-known set of features used in

speech recognition.

Next, an appropriate model for the likelihoods of x must be generated. While

many ways of parametric and non-parametric density estimation exist [20], a common

method of probability modeling in speech recognition is to use Hidden Markov Models

(HMM’s) with Gaussian mixture models defining the observation probabilities of each

state [73].

1.2.2 Addressing Robustness in Speech Recognition

Despite decades of research in speech recognition, it is a widely accepted fact that

machines are still far from approaching the ability of humans to distinguish and

recognize sound in the presence of noise and other interfering signals [61]. A good

example illustrating this effect are the recognition results from the Wall Street Journal
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corpus [72] shown in Figure 1. Similar results have also been reported more recently

in [65].

The occurrence of errors in ASR can be understood in the context of the formu-

lation (1) in Section 1.2.1. If our calculation of the likelihood P (x |wi ) is inaccurate,

the MAP decision will be made based on erroneous data, and hence the true Bayesian

risk function will not be minimized. Such model errors can occur if, for example, the

probability models are not appropriately structured to fully represent the statistics

of the observations.

Of major concern is the occurrence of model mismatch. If the model for P (x |wi )

was developed using a set of training data, the decision rule in (1) will only provide

the correct classification of testing data if the model for P (x |wi ) is valid for the

testing data as well. Unfortunately, a mismatch can often occur if the testing data is

not statistically similar to the training data. This mismatch can occur from a variety

of factors, as shown in Figure 2, including ambient background noise and channel and

microphone variations, as well as speaker-dependent dialect, age and sex.

A taxonomy of methods used in the past to address noise robustness is provided

by Sankar et al. [78], and additional overviews are provided by Stern et al. [86] and

Gong [33]. The methods can be generally divided into three categories [78]. First,

robust signal processing methods can be used to make the features more resilient
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toward noise. These methods generally have to do with the frontend of the recogni-

tion system, processing the distorted observation to produce a feature vector x that

is statistically closer to the corresponding training samples that were used to train

the model for P (x |wi ). Classic frontend processing methods include cepstral mean

normalization [4] for removing channel distortion, spectral subtraction [7] where sta-

tionary spectral noise bias is calculated using non-speech waveforms and subtracted

from corrupted speech, and cepstral liftering [50], which deemphasizes low and high

order cepstral coefficients that are susceptible to noise and spectral tilt. More recent

methods include acoustic analysis in frequency subbands combined with emphasis

on long-term spectral information and cepstral normalization [36], temporal filtering

of features using optimization criteria like Minimum Classification Error [41], and a

minimum variance distortionless response (MVDR) method of spectrum estimation

for robust feature extraction [19].

The second category of methods is to compensate the distorted speech features

to obtain clean speech features, often by employing statistical models. Codeword-

Dependent Cepstral Normalization (CDCN) [3] is an algorithm for computing the

Minimum Mean-Squared Error (MMSE) estimate of speech in the cepstral domain.

Ephraim et al. [24] used the second-order statistics of cepstral coefficients to estimate

the coefficients of the clean signal from the noisy signal. SPLICE [17] employs a

statistical distortion model to perform MAP estimation of noise-reduced speech. Zhao

[96] proposed an EM algorithm for estimating the speech power spectra and computed

cepstral features based on a Gaussian mixture density model of speech power spectra

and models of channel distortion and additive noise. Cui et al. [14] used a polynomial

regression of utterance signal-to-noise ratio for feature compensation. Kim et al. [53]

applied techniques for decomposing speech and noise to compensate cepstral features.

Adapting the features to reflect speaker-dependent characteristics, such as by vocal

tract length normalization (VTLN) [59, 11], is also a method of improving robustness.
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The third type of approach is to construct or compensate the models to better

match noisy test speech. Varga et al. [90] applied various noise-masking schemes

to HMM-based recognizers. Ephraim [23] used ML estimates of the gain contours

of clean speech to train gain-normalized HMM’s, which were then combined with

ML estimates of the gain contours of test data to perform recognition. Merhav et

al. [63] proposed a minimax framework in which HMM parameters were allowed

to occupy some neighborhood of values to improve robustness. In Parallel Model

Combination (PMC) [28], speech models trained on clean and noisy data are combined

to form models for corrupted speech. Model compensation methods based on Bayesian

predictive density [47, 46] have also been proposed. There are also methods that

attempt to combine both feature enhancement and model enhancement [17, 18].

1.2.3 Application of Auditory Models to Speech Recognition

Preprocessing speech with methods learned from physiological and psychoacoustic

studies of the human auditory system has also been a long-held practice [33]. As

early as 1979, Zwicker et al. [97] approximated the perception of loudness, pitch,

roughness, and subjective duration with a system consisting of bandpass filters fol-

lowed by nonlinear processing and transformations. Searle et al. [81] implemented

a system for discriminating stop consonants using a filterbank simulating auditory

tuning curves and a bank of envelope detectors. Ghitza [32] employed a closed-loop

Ensemble-Interval-Histogram (EIH) model that tried to model the neural feedback

mechanism of the auditory periphery, resulting in improved recognition accuracy un-

der noisy conditions. Cohen [12] presented an auditory model as a frontend for a

speech recognition task, which employed critical band filtering followed by compres-

sive power-law transformations to approximate loudness scaling, and an adaptation

phase to model neural firings. Although not explicitly tested in a speech recognition

task, a computational model of the cochlea was also presented by Lyon [62]. Hunt
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[43] showed that auditory frontends could give better recognition accuracy than cep-

stral methods under noisy environments. Gao et al. [30] used a peripheral auditory

model to obtain representations of the nerve firing probabilities of the hair cells, and

extended this work in [31] where a temporal and spatial processing model was used

to simulate some of the central auditory processing stages following the peripheral

system. The Relative Spectra (RASTA) processing method [38] involves bandpass fil-

tering of time trajectories of speech to suppress the slowly-varying characteristics of

the signal, which is also motivated by human audition. More recently, Kleinschmidt

et al. [55] combined auditory features with speech enhancement techniques, Bu et

al. [10] employed perceptual models to discard irrelevant spectral components and

adjust the magnitude and frequency scales of speech spectra, and Holmberg et al. [39]

incorporated a model of synaptic adaptation to MFCC feature extraction to obtain

improved robustness in recognition.

For the most part, auditory frontends have been shown to improve speech recog-

nition performance over conventional frontends in noisy environments [39, 42, 45,

77, 84, 87]. It is not clear, however, how feasible they are when considering their

increased computational costs compared to other non-physiological adaptation tech-

niques. Ohshima [69], for instance, showed that the use of a model of the auditory

periphery as a frontend did not improve the performance as much as CDCN [3].

Furthermore, most research in this area involve simulation of the peripheral audi-

tory system, with little or no regard to the latter processing stages. Not many studies

that extensively consider central auditory processing for speech recognition or other

general audio processing tasks exist in the literature. Some examples include Gao et

al. [31], who proposed temporal and spatial processing models of the central audi-

tory system, and Kleinschmidt [54], who studied the use of localized spectro-temporal

features. Mesgarani et al. [64] also used multiscale spectro-temporal modulation fea-

tures for audio classification, Ravindran et al. [76] used multi-dimensional features
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from a model of the primary auditory cortex for audio classification, and Elhilali et

al. [22] simulated the receptive field selectivity and adaptation in the auditory cortex

for auditory stream segregation.

The other limitation of most existing studies is that they focus on incorporating

auditory models as the speech processing frontend only, without investigating how

the fundamental pattern recognition methodology itself should also change to better

simulate human perception and recognition.

In summary, comprehensive re-examinations of both acoustical processing and

pattern recognition methodology based on more elaborate models of the auditory

system going beyond the peripheral stages are pending.

1.2.4 Yang and Shamma’s Early Auditory Model

The early auditory model proposed by Yang and Shamma [95] simulates the signal

transformations from the ear to the cochlear nucleus of the central auditory system.

Since it is an essential pre-processing stage for the central auditory model we use in

this thesis, some of its key aspects will be introduced here. A schematic overview of the

early auditory model is shown in Figure 3. At the cochlear stage, sound pressure waves

hit the eardrum of the outer ear, causing vibrations transmitted through the middle

ear to the fluids of the cochlea of the inner ear. Pressure waves produce mechanical

displacements in the membranes of the cochlea, i.e. the basilar membrane. The

spatial distributions of the displacements correspond to the frequency distribution of

the input signal – lower frequencies propagate further toward the apex of the cochlea,

while high frequencies stop at the base. The cochlea can be viewed as a parallel

bank of bandpass filters, each tuned into a specific center frequency. They maintain

a constant Q factor above 800 Hz, while progressing in a more linear fashion below

500 Hz.

At the transduction stage, membrane displacements cause a local fluid flow which
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Figure 3: Schematic overview of the early auditory model proposed by Yang and
Shamma [95].

bends small filaments (cilia) that are attached to transduction cells called the in-

ner hair cells. The bending effects are represented by the velocity at which the

displacements occur. Thus, this action can be modeled by a time derivative. The

bending controls the flow of ionic currents through nonlinear channels into the hair

cells (around 3000). The opening and closing of the channels can be modeled by a sig-

moidal nonlinearity. This ionic flow in turn generates electrical potentials across the

hair cell membranes, which are then conveyed by the auditory nerve fibers (around

30,000) to the central auditory system. The ionic leakage can be modeled by a low-

pass filter with a time constant of less than 0.3 ms. The intracellular potentials are

then converted into stochastic trains of electrical impulses (firings) on the auditory

nerve and transmitted to the cochlear nucleus, the first station of the central audi-

tory system. The instantaneous firing rates of these nerves become representations of

the potentials. Information about various attributes of the stimulus, such as timbre,

pitch, temporal character, and location in space are then extracted and processed
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neuron; fij(t): LTI transfer function between firing rate and potential; ej : external
inputs; vij: weight of external input j onto neuron i.

along parallel pathways. A spectral estimate of the stimulus can also be formed via a

lateral inhibitory network (LIN), which is the last stage in the early auditory model

in Figure 3.

The process of LIN reduction in the auditory spectrum is described in [95] as

follows:

y3 (t, s) = ∂sy2 (t, s) ∗s v (s) (2)

y4 (t, s) = max {y3 (t, s) , 0} (3)

y5 (t, s) = y4 (t, s) ∗t Π (t) (4)

The LIN can be better understood by first studying the single-cell neuron model

proposed by Shamma in [82], illustrated here in Figure 4. It is not completely clear in

[95] nor [82] how this formulation of the single-cell neuron leads to the LIN equations

in the early auditory model, so a derivation will be presented here, made possible in

part by private interaction with Shamma[83]. The general operation of the single cell

neuron can be expressed by the following equation [82]:

yi (t) =

N∑

j=0

fij (t) ∗ zj (t) +

M∑

j=0

vijej (5)

12



where yi(t) represents the post-synaptic potential at the ith neuron, fij(t) is a linear

and time-invariant (LTI) transfer function between the input firing rates and the

cell potential, ej is an external input, and vij is the weight of the external input j

onto neuron i. In particular, fij(t) models the influence of the arriving spikes at

the postsynaptic cell, including the efficacy, sign, temporal properties of the synaptic

response, the time constants of the cell membranes, effective spatial transformations

due to dendritic branching and the location of the synapse relative to the cell body.

The synaptic inputs are assumed to not interact with each other and to behave

mostly in a linear fashion. The instantaneous firing rate of the postsynaptic cell is a

monotonically increasing function of the intracellular potential with saturation and

threshold nonlinearities, modeled by the function g(·) as follows [82]:

zj (t) = g (yj (t)) =
zmax

1 + exp {−b (yj (t) − y0)}
(6)

For the transfer function, one can use [82]

fij (t) = wij ·
1

τ
e−t/τ (7)

This results in

τ
dyi

dt
+ yi =

N∑

j=0

wijzj +

M∑

j=0

vijej (8)

which is Equation (11.16) in [82]. We commonly assume wij = wi−j , vij = vi−j. Also

assuming that the neuronal profile is continuous, we have

τ
dy (x, t)

dt
+ y (x, t) = w (x) ∗x z (x, t) + v (x) ∗x e (x, t) (9)

For the auditory spectrum, we assume a “non-recurrent LIN,” i.e., w(x) = 0. Taking

the Fourier Transform of (9), we have

Y (x̃, ω) =
1

1 + jωτ
· V (x̃) · E (x̃, ω) (10)

where x̃ and ω represent the transformed-domain of x and t, respectively. Now, let us

use y2 (t, s) in (2) as e(x, t) in (9). We filter y2(x, t) with the interconnection profile
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function v(x), do low-pass filtering (leaky temporal integration) with time constant

τ , then apply the nonlinearity function g(·) in (6) to obtain y4(x, t). Now, we also

assume that the coupling in the LIN cells is fast enough so that τ ≈ 0 [83]. For the

interconnection profile v(x) we use a leaky derivative, i.e., a pure derivative followed

by spatial smoothing to account for the finite spatial extent of the lateral interactions

and/or the convergence of input fibers. As for the nonlinearity g(·), we use a half-wave

rectifier instead of the sigmoid in (6). At the final stage, we add a leaky temporal

integrator simply to smooth out the half-wave rectified result to mimic loss of faster

phase-locking in the midbrain [83]. The end result is equations (2), (3), and (4).

Further discussion on the early auditory model will be provided in Section 2.1.

1.3 Dimension Reduction for Pattern Recognition

While a comprehensive overview of pattern recognition theory is beyond the scope of

this dissertation, some of the key points that are most relevant to our work will be

highlighted in this section.

As already mentioned, the Bayesian Decision Rule in (1) forms the foundation of

not only speech recognition but many other pattern recognition methods in general

[20]. When the true probability distributions are known, use of the Bayesian Decision

Rule results in the minimization of the probability of error. Assuming a single feature

x and two pattern classes w1 and w2, the probability of error is

Pe = P (w2)

∫

R1

p (x |w2 ) dx+ P (w1)

∫

R2

p (x |w1 ) dx (11)

where R1 is the range of x for which we decide w1, and R2 is the range of x for which

we decide w2. If we assume equal priors, i.e., P (w1) = P (w2), we have

Pe =
1

2

∫

R1

p (x |w2 ) dx+
1

2

∫

R2

p (x |w1 ) dx (12)

Now, suppose we added another feature y to our observation. In other words, we

now deal with a two-dimensional feature vector (x, y) instead of the one-dimensional
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feature x. The probability of error in this case is

P ′
e =

1

2

∫ ∫

R′

1

p (x, y |w2 ) dxdy +
1

2

∫ ∫

R′

2

p (x, y |w1 ) dxdy (13)

where R′
1 is the range of (x, y) for which we decide w1, and R′

2 is the range of (x, y)

for which we decide w2. Note that we can also rewrite (12) as

Pe =
1

2

∫

R1

∫

R

p (x, y |w2 ) dxdy +
1

2

∫

R2

∫

R

p (x, y |w1 ) dxdy (14)

where R is the entire range of y. Now, it is easy to see that

P ′
e ≤ Pe (15)

This is because in (13), the ranges R′
1 and R′

2 are “optimized” such that one always

chooses the class with the higher conditional density, hereby ensuring that it is always

the class with the lower conditional density that will be integrated over R′
1 and R′

2. In

(14), on the other hand, R1 and R2 are based only on the probability distribution of

x, with no additional considerations for the y dimension. The effect can be visualized

in Figure 5. On the left side, the decision scheme of the 1-d case is shown augmented

onto a 2-d space. Since the y-dimension is not considered in the decision, the decision

depends only the x-dimension. On the right side, the decision scheme takes into

account both the x-dimension and the y-dimension. The space is now partitioned

such that one always selects the class with the higher conditional probability at any

given (x, y) point. Therefore, the integrations in (13) and (14) results in P ′
e ≤ Pe.

Hence, one can conclude that the classification accuracy is non-decreasing as the

number of dimensions in the observations increases. This, however, is under the

assumption that the true conditional probabilities are perfectly known. In reality, it is

almost always impossible to perfectly estimate the probability densities.

Consider another two-class case where p (x |w1 ) = N (0, 12) and p (x |w2 ) = N (1, 12)

where we have used the short-hand notation N (µ, σ2) to indicate a Gaussian distri-

bution with mean µ and variance σ2. The two distributions are shown in the top
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Figure 5: Example showing how adding another dimension to the observation de-
creases the Bayesian probability of error.

diagram of Figure 6. The thick dark line indicates the optimum decision boundary,

and the shaded region is twice the probability of error according to (12), assuming

equal priors. Now, assume we incorrectly estimated p (x |w2 ) as p′ (x |w2 ). The de-

cision boundary is set as the thick dark line shown in the middle figure. When this

incorrect decision boundary is applied, the actual probability of error increases by

∆Pe, as shown in the bottom figure. We can extend this example to show that when

dealing with more than one dimension of data, improper estimation of the densities

can lead to increased probability of error, contrary to the ideal case illustrated in

Figure 5. Let us assume a two-class, two-dimensional case where the distributions

under w1 and w2 are 2-d Gaussians and the priors are equal. The set of parameters

is called λ1:

λ1 :





w1 : N







0

0


 ,




0.5 0

0 0.5







w2 : N







0.5

1.5


 ,




1 0

0 0.5







(16)

Again, we have used the short-hand notation N (µ,Σ) to indicate a 2-d Gaussian

distribution with mean vector µ and covariance matrix Σ. Now, assume we incorrectly
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Figure 6: Example showing how misestimating the probability density can increase
the misclassification probability (horizontal axis is the probability space x).

estimate the distribution parameters as the following set λ2:

λ2 :






w1 : N







0.1

0.1


 ,




0.5 0

0 0.5







w2 : N







1.5

1.5


 ,




2 0

0 0.5







(17)

The two cases under λ1 and λ2 are illustrated in Figure 7, with ovals representing

points with equal density values. The error probability in (13) can be numerically

computed to be Pe = 0.1309. When the decision boundary obtained from the esti-

mated parameters in λ2 are used, however, the error probability is 0.1471. Hence,

the error probability increases by ∆Pe = 0.0162 due to estimation error. Now, let us

discard the first dimension x and use only the second dimension y in the data. Hence,
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Figure 8: The pattern classes in Figure 7 are now plotted with the first dimension
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we now have

λ1 :






w1 : N (0, 0.5)

w2 : N (1.5, 0.5)

λ2 :





w1 : N (0.1, 0.5)

w2 : N (1.5, 0.5)

(18)

The distributions are plotted in Figure 8. In this case, the ideal probability of er-

ror under λ1 can be computed to be 0.1444. As expected, this is higher than the

probability of error when using two dimensions, 0.1309. The “actual” probability of

error that occurs when using the decision boundary obtained from λ2, however, is

0.1449, which is lower than the “actual” probability of error in the 2-d case, 0.1471.

This example shows that in reality, increasing the number of dimensions does not

necessarily help us better classify data.

While the example shown above is somewhat contrived, the problem can be serious

when the number of dimensions is very high. The curse of dimensionality [20] is

often stated as a reference to the fact that when the number of dimensions increases

linearly, the amount of training data required to estimate any arbitrary probability

density increases exponentially. This effect can be intuitively understood if we think

of density estimation as constructing histograms. For a 1-d histogram, let us assume

that each histogram bin requires an average k data points in order for the histogram

to reasonably resemble the true distribution. If there were a total of B bins, we would

need kB data points. Now, if the data were two-dimensional, a 2-d histogram would

have to be constructed. In order to retain the same degree of resemblance as in the

1-d case, we would have to fill B2 bins with kB2 points. For an n-d histogram, Bn

bins would have to be filled with kBn points. For example, if we had k = 20 and

B = 50, the 1-d case would require 1000 data samples, the 2-d case would require

50, 000 samples, and the 10-d case would require 1.953 × 1018 samples.
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Some of the harmful effects that high dimensionality has on classification per-

formance was illustrated as a “peaking effect” in [44], where under certain scenarios

with a fixed amount of training data the classification accuracy was shown to improve

when a small number of features was added to the observations, then continue to drop

as the number of features increased. Another point to consider is that even if we did

have enough training data to estimate the probability densities, the contribution to

the classification rate may not be enough to justify the added computational costs.

Last but not least, it is also shown in [26] that density estimation error and classifi-

cation error do not necessarily follow the same trends. As such, we cannot even use

density estimation accuracy as a criterion to predict how well the class models will

actually perform in classifying the data.

It is therefore common practice to project high-dimensional data onto a lower-

dimensional space, also know as feature selection, as a way of circumventing classi-

fication errors due to gross density estimation errors. A variety of motives can be

involved in the feature selection method. For example, one could try to choose only

those dimensions for which the densities can be estimated more reliably (such as

dimensions that exhibit the strongest Gaussianity). Another approach would be to

choose only those dimensions that contribute the most to the classification accuracy.

The purpose is to obtain a reduced number of features (hence, more reliable den-

sity estimates) while sacrificing the least amount of class discriminative information

contained in the original data as possible.

Linear Discriminant Analysis(LDA)[20] is one of the most well-known methods of

discriminative feature selection. In LDA, one attempts to find a projection of the data

that will maximize the ratio between the between-class scatter and the within-class

scatter of the data. It is known to have optimality properties for Gaussian distribu-

tions with equal covariances, but is usually applied heuristically without assuming a

specific underlying model. A variety of extensions to LDA exist. Mika et al. [66]
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and Baudat et al. [6] proposed the application of kernels to project the data onto

a nonlinear space before applying LDA, hence allowing more effective separation of

data with more complex boundaries. Heteroscedastic LDA [56] accommodates mod-

els with different covariances by numerically optimizing a likelihood function. To

address the problem of singular scatter matrices, Raudys et al. [75] replaces the ma-

trix inverse operator involved in the solution to LDA with the pseudo-inverse operator

obtained from Singular Value Decomposition, and Friedman [25] adds a multiple of

the identity matrix to the within-class scatter matrix to make it positive definite and

therefore nonsingular. Swets et al. [89] uses Principal Component Analysis (PCA) to

reduce the dimensions to an intermediate size and reduce the singularity of the scat-

ter matrices before applying LDA. Further discussion on LDA and its relation to the

category-dependent feature selection we propose is provided in Section 3.2.2 and 3.2.3.

Another approach to discriminative feature selection is Classification-Constrained Di-

mension Reduction (CCDR)[13, 74], where high-dimensional data is assumed to lie on

manifolds of reduced dimensions, and the class labels of the data are used to constrain

the manifold embedding in order to preserve discriminative information.
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CHAPTER II

SPEECH ANALYSIS IN A MODEL OF THE CENTRAL

AUDITORY SYSTEM

In this chapter, we study and propose new insights into a physiological model of

the mammalian auditory system that was originally developed in [95] and [92]. The

auditory model consists of two primary components: first, an early auditory model

[95] that simulates the processing at the auditory periphery and produces an auditory

spectrum that is similar to a short-time amplitude spectrum but with more percep-

tually relevant characteristics; and second, a model of the primary auditory cortex

(A1) [92] in the central auditory system where each neuron assumes a response area

tuned to a specific range of tone frequencies and intensities, producing a dimension-

expanded representation termed cortical response. A brief overview of the model,

along with some modifications we made, will be presented in Section 2.1.

In Section 2.2, we first study the model by comparing it to the computation of the

well-known MFCC, and see how the MFCC fits into its context. This would not only

serve as a reverse-validation of the model in connection to existing speech processing

methods, it would open new insights into how the auditory model differs and how

it can be used. Next, in Section 2.3, we develop some hypotheses on how speech

information is mapped onto the cortical response, along with a theoretical framework

for analyzing its noise robustness, and propose a method of reducing the dimensions

of the cortical response for use in a conventional recognition task to quantitatively

evaluate the validity of both the model and our ideas. Further analysis and insights

on the auditory model are provided in Section 2.4, where our framework in Section

2.3 is used to explain some of the results from the MFCC-related features in Section
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2.2.

Note that the conventional HMM-based recognition framework is a strictly sta-

tistical method. Our application of features derived from the auditory model on

such recognizers is only one way of quantitatively studying the model under existing

recognition framework, and no specific attempt is made here to address the possi-

ble hindrance imposed on the physiological model. The existing speech recognition

methodology is probably insufficient for fully exploiting the cortical model. The pur-

pose of our phoneme classification experiments is to empirically validate the notion

of dimension-expansion and its relationship to robustness in speech recognition, and

to provide additional insight on the auditory model by quantitative comparison. It

is not the goal of this work to optimize a speech recognition system design nor to

develop features to compete with prevalent feature representations.

2.1 The Auditory Model

The auditory model employed in this study consists of two parts: an early auditory

model [95] simulating the auditory periphery, and a central auditory model [92] sim-

ulating the neuronal impulses in the primary auditory cortex (A1). In this section,

we will provide a brief overview of the two components along with some details on

how the central auditory model was modified for this study.

2.1.1 The Auditory Spectrum

The auditory spectrum [95] is a spectral representation produced by the early auditory

model discussed in Section 1.2.4 and shown in Figure 3. The early auditory model

takes raw time-domain audio signals as its input and filters it through a bank of

cochlear filters. The output of each filter undergoes nonlinear compression, lowpass

filtering, spatial differentiation and smoothing, half-wave rectification, and leaky time-

domain integration. These transformations are based on a model of cochlear filtering,

hair cell transduction, and lateral inhibitory reduction as proposed in [95]. The
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resulting signals from all frequency channels are sampled at time t to produce the

auditory spectrum p(y) defined on the tonotopic frequency axis y.

Figure 9 shows the auditory spectrum and the Fourier spectrum of a steady-

state /ae/ vowel. The auditory spectrum consists of 128 logarithmically-distributed

frequency channels (see Appendix A.1 for detailed specifications). Compared to con-

ventional power spectra, the auditory spectrum tends to enhance spectral peaks and

suppress troughs [91] as evident in Figure 9(a) where the pitch-related harmonics are

accentuated below 1 kHz. It has also been analytically shown [91] that the spectrum

itself is resistant against scaling effects in the time-domain and is able to suppress

noise components.

2.1.2 The Cortical Response

In the primary auditory cortex (A1), the auditory spectrum is encoded by a popula-

tion of cortical cells, each of which is characterized by a neural response area [92] that

represents the amount of excitation induced by different tone frequencies. The neuron

fires at its maximum rate for input tones at its best frequency (BF), and its excitation

range is usually flanked by inhibitory ranges where input tones suppress neural ac-

tivity. The resulting set of neural firing rates is termed the cortical response[92]. The

response areas are organized along three dimensions: best frequency x, scale (band-

width) s, and phase (symmetry) φ. The scale denotes the amount of spread of each

response area along the tonotopic frequency axis, while the phase parameterizes the

symmetry. In this study, the domain y of the auditory spectrum is assumed identical

to the BF domain x of the cortical response.

Conceptually, the box in Figure 10 can be viewed as containing the A1 neurons,

each of which has its own (x, s, φ) coordinates. On the shaded x-s plane where

φ = 0, all neural response areas are perfectly symmetric, but their best frequency and

bandwidth depend on their x and s locations. Response areas for other values of φ
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(d) ψ(x, s) = arg maxφ r(x, s, φ) (no shading: −π/4 ∼ π/4, light
shading: π/4 ∼ π/2, dark shading: −π/2 ∼ −π/4)

Figure 9: The magnitude of the Fourier transform (obtained by applying a 25ms
Hamming window to a pre-emphasized version of the signal and computing the magni-
tude of a 512-point FFT, where the sampling frequency is 16kHz), auditory spectrum
(sampled at the center of the window used for (a)), and the cortical response repre-
sented by a(x, s) and ψ(x, s) for a steady-state /ae/ vowel. The ordinate axis of the
auditory spectrum is arbitrary. Details on how the auditory models were implemented
can be found in Appendix A.1
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Figure 10: The box in this figure is a conceptual representation of the primary
auditory cortex, and can be seen as filled with neurons, each neuron having its own
(x,s,φ) coordinates that define its response area. The response areas of three neurons
on the φ = 0 plane are shown. All three response areas are symmetric since their
phases(φ) are 0, differing only in bandwidth(s) and BF(x). The response areas are
defined on the tonotopic frequency domain y, and their magnitudes are not plotted
to scale.

can be seen in Figure 11. As φ increases above 0 rad, there is more inhibition below

the BF than above, and as it decreases below 0 rad, there is more inhibition above

the BF than below.

The response areas are mathematically modeled in [92] by defining a symmetric

“Mexican Hat” mother function hm (y) on the tonotopic frequency domain y.

hm (y) =
(
1 − y2

)
e−y2/2 (19)

Its Fourier Transform is:

Hm (k) =
√

2πk2e−k2/2 (20)

As in [92], scaled versions of hm (y) are denoted by h (y; s):

h (y; s) = αshm (αsy) (21)

with Fourier Transform:

H (k; s) = Hm (k/αs) (22)

Each response area in [92], which we represent as w′(y; x, s, φ) defined on the tonotopic

domain y, is modeled as a sinusoidal interpolation between h (y − x; s) and its Hilbert
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transform ĥ (y − x; s):

w′ (y; x, s, φ) = h (y − x; s) cosφ+ ĥ (y − x; s) sinφ (23)

Although this leads to an efficient means of computing the cortical response[92],

it has the effect of the excitatory peak of each response area deviating from the

best frequency x. Hence, in our model, we modified the response areas by adding

a translation factor c(s, φ) such that each excitatory peak is aligned to x, forming

w(y; x, s, φ) as follows:

w(y; x, s, φ) = h (y − x+ c(s, φ); s) cosφ+ ĥ (y − x+ c(s, φ); s) sinφ (24)

The Fourier Transform then becomes:

W (k; x, s, φ) = H (k; s) e−jxke−jφ sgn(k)e+jc(s,φ)k (25)

The translation factors for zero scale, c(0, φ), can be found numerically:

c (0, φ) = arg max
y
w′ (y; 0, 0, φ) (26)

This allows us to find c(s, φ) by:

c (s, φ) = c (0, φ)/αs (27)

One can notice in Figure 11 that the excitatory peaks of the response areas are now

aligned to the best frequencies.

For notational simplicity, we represent the parameters of each neural response

area by λ = {x, s, φ} ∈ U where U is the set of all neurons in the A1 model (each

response area corresponds to a unique neuron, so we also let λ represent the neuron

itself). The cortical response r (λ) is modeled as the inner product[92] between the

auditory spectrum and the response area over the frequency domain R :

r (λ) =

∫

R

p (y)w (y;λ) dy (28)
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Figure 11: Response areas of varying symmetry (φ) for αs = 1 and x = 0. The
vertical axis has arbitrary units that reflect response magnitude. Note that in our im-
plementation, the excitatory peak of each response area is aligned to its BF, whereas
in [92], they deviate from the BF for increasing asymmetry.

This can be efficiently implemented by formulating it as a linear convolution:

r (λ) =

∫

R

p (y)w (y − x; 0, s, φ) dy = p (x) ∗ w (−x; 0, s, φ)

= p (x) ∗ w (x; 0, s,−φ) = F−1 {P (k)W (k; 0, s,−φ)} (29)

where P (k) is the Fourier Transform of p(y), and F−1 denotes the Inverse Fourier

Transform. In actual implementation, the Fast Fourier Transform(FFT) with zero-

padding allows efficient computation of this linear convolution in the discretized y-

domain [70].

When visualizing the cortical response in two dimensions, we can look at two

measures: the maximum response along each φ-axis, and the corresponding value of

φ.

a (x, s) = max
φ

r (x, s, φ) , ψ (x, s) = arg max
φ

r (x, s, φ) (30)

The phase is restricted to the range −π
2
≤ φ ≤ π

2
, as this range seems to provide
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sufficient redundancy and allows easy interpretation of the response. The resulting

measures are shown in Figure 9(c) and 9(d), and they effectively indicate the magni-

tude and phase of the response area that has the most resemblance to the auditory

spectrum among all those response areas with BF x and scale s. This is because the

inner product in (28) is maximized when p(y) is a constant multiple of w(y;λ) assum-

ing a normalization constraint (to be extensively discussed in Section 2.3). Hence,

a(x, s) and ψ(x, s) are effectively representations of the local shape of the auditory

spectrum for varying x and s. An example of this effect can be seen in Figure 9(d),

along the line drawn at around 1.5 kHz. We can see how ψ (x, s) is in the “symmet-

ric” range when the scale is fine, then enters the “positive” range (indicating more

spectral components above the BF than below) when the scale becomes broad enough

to integrate the spectral peak at around 2 kHz, then swings toward the “negative”

range (indicating more spectral components below the BF than above) as the range of

integration becomes wide enough to include the harmonics at the lower frequencies.

As such, the cortical response is a projection of the auditory spectrum onto a

dimension-expanded space that encodes the shape of the spectrum at various lo-

calities. This explicit encoding of spectral components is an important property of

the central auditory model for representing speech information and providing noise

robustness, as we will see in the following sections.

2.2 Cross-Validation With the MFCC

The well-known MFCC [15] feature set is widely used for speech recognition, and,

its rough approximation notwithstanding, is inspired by two key psychoacoustic phe-

nomena [16]. First, it employs a warped mapping between actual frequency and

perceived frequency (termed “Mels”), which is roughly linear below 1 kHz and loga-

rithmic above. Second, the MFCC simulates the integration of the power spectrum
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in critical bands [67] by a set of triangular filters. The calculation of the MFCC, as il-

lustrated in Figure 12 (upper portion), is accomplished by taking the Discrete-Cosine

Transform (DCT) of the log-energy outputs of the triangular filters[15]:

MFCCn =

L−1∑

k=0

Xk cos

[
n

(
k +

1

2

)
π

L

]
n = 1, 2, · · · ,M (31)

Here, MFCCn is the n’th MFCC coefficient (out of a total of M coefficients) and

Xk(k = 0, 1, · · · , L− 1) represents the log-energy output of the k’th triangular filter,

where L is the number of filters. The use of the DCT in (31) is originally motivated

from the Inverse Fourier Transform used for the cepstrum[16], and has the effect of

transforming the Xk’s onto a space where most of the energy can be represented by

a fewer set of coefficients.

Recent physiological studies have resulted in a better understanding of the audi-

tory system, and refined auditory models such as the A1 model used in this study

offer us the opportunity to reinterpret the MFCC within the context of a physiologi-

cal framework. As a comparison, we draw features from the model that parallel the

MFCC, and qualitatively and quantitatively observe their differences. Such a cross-

examination can give us a better understanding of how the auditory model relates to

conventional frontend speech analysis methods and offer a fresh perspective on the

role of dimension expansion in signal representation. In particular, we consider two

viewpoints on the spectral integration of the MFCC: first, as an approximation of

frequency integration in the peripheral auditory system, and second, as an approxi-

mation that includes subsequent integration in the central auditory system.

2.2.1 The Auditory Spectrum and the MFCC

Two key components in the early auditory model [95] parallel the computation of

the MFCC. First, the tonotopic frequency domain is based on a set of cochlear filters

with logarithmically increasing center frequencies(CF’s) following the organization

of the basilar membrane’s mechanical displacement, and is roughly consistent with
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Figure 12: Computation of the MFCC, and an equivalent process using the auditory
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Figure 13: Example plots showing various stages of the feature extraction processes
in Figure 12 for a steady state vowel “aa.” For the MFCC, the magnitude of the
discrete-time Fourier Transform (a) is integrated by a set of 26 triangular filterbanks
to produce 26 energy values (c) (only 23 points are shown here because the range
of the frequency axis has been limited to that of the auditory spectrum to allow
visual comparison), to which the DCT in equation (31) is applied to obtain the
MFCC coefficients (e). For the MFCC-equivalent feature p1, 23 points in the auditory
spectrum (b) that most closely match the CF’s of the MFCC’s filterbanks are taken
(d), and we apply the DCT to obtain (f). The center frequencies and bandwidths of
the filters used for (c) and (d) are shown in Table 1
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the warped Mel-frequency scale. Second, the cochlear filters used in the auditory

spectrum perform a significant amount of spectral integration that is analogous, albeit

very roughly, to the spectral integration done by the MFCC’s triangular filters.

Based on these similarities, a feature equivalent to the MFCC can be derived

from the auditory spectrum via the process depicted in Figures 12 and 13. Since

each point on the auditory spectrum is the result of a cochlear filter that performs

spectral integration, we retain the auditory spectrum at only L frequency channels

that approximate the center frequencies of the MFCC’s L triangular filter, and discard

the rest. This is roughly equivalent to the reduction of the power spectrum to L points

representing the output energies of the MFCC’s L filters. The center frequencies and

bandwidths of the filters are shown in Table 1 (note that we actually retain less than

L points on the auditory spectrum because of its limited frequency range). We used

the popular value L = 26 for the number of filters in (31) for this implementation.

The DCT is then applied on the sampled channels, as is done for the MFCC, to obtain

the feature vector p1.

Note that the cochlear filters used in our model are designed to be significantly

asymmetric in the frequency domain with steep roll-offs above the center frequencies.

The MFCC filterbanks, on the other hand, are extremely simplified approximations

of the critical band, shaped as symmetric triangles on the Mel-frequency scale. The

approximate center frequencies and bandwidths of both filter types are shown in Table

1. Clearly, in our model the cochlear filters alone cannot account for all the spectral

integration effects emulated by the MFCC.

2.2.2 The Cortical Response and the MFCC

Evidence in the literature suggests that it is not only cochlear filtering that leads to

critical band phenomena, but also neural processing in parts of the central auditory

system such as the inferior colliculus[79]. Given that the cortical response is a lumped
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Table 1: Approximate center frequencies (Hz) and bandwidths (Hz) of MFCC fil-
terbanks (implemented by HTK software [1] with the number of filters set to 26)
and equivalent cochlear filters [2] in the early auditory model. Because of the re-
duced range of center frequencies in the cochlear filters, only 23 MFCC filters have
an equivalent cochlear filter.

MFCC p1 MFCC p1 MFCC p1

fc b/w fc b/w fc b/w fc b/w fc b/w fc b/w
68 144 n/a n/a 1080 333 1077 136 3423 771 3420 453
144 158 n/a n/a 1254 365 1245 157 3827 846 3839 513
226 173 226 28 1445 401 1438 183 4270 929 4309 584
317 190 320 40 1655 440 1661 212 4756 1020 4699 645
416 209 415 52 1886 483 1865 238 5289 1120 5274 738
525 229 523 65 2139 531 2154 278 5875 1229 5920 848
645 251 640 80 2416 583 2418 313 6519 1349 6456 944
777 276 784 98 2721 640 2714 354 7225 1481 n/a n/a
921 303 932 117 3056 702 3047 400

representation of the neural coding in the central auditory system, we can use it to

parallel the MFCC in a more explicit manner by establishing an equivalence between

each MFCC filter and one or more response areas in the A1 model. For each triangular

filter with edges flo and fhi, the scale factor in (22) of the corresponding response area

can be computed as

αs = 2

[
log2

(
fhi

flo

)]−1

(32)

Figure 14(a) shows four examples of MFCC filters and their corresponding response

areas. We can identify symmetric response areas corresponding to 23 MFCC filters

with CF’s equally distributed on the Mel-frequency scale from 226 Hz to 6,519 Hz,

and plot their (x, s) locations on the φ = 0 plane in the cortical space, as shown in

Figure 14(b). Applying the DCT on the responses of these neurons, we obtain the

MFCC-equivalent feature vector c1,a. Note in Figure 14(a) that broadband response

areas have smaller gain than narrowband response areas. As an alternative to c1,a,

we also construct c1,b where all response areas are gain-normalized before applying

the DCT.

While the cortical response areas have inhibitory regions that subtract spectral
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Figure 14: (a) Example MFCC filters and corresponding response areas. Solid lines
represent MFCC filters while dotted lines represent response areas. Only four filters
are shown here to enhance visibility. (b) Location of response areas on the φ = 0
plane corresponding to 23 MFCC filters with center frequencies equally distributed
on the Mel-frequency scale (from 226 Hz to 6,519 Hz on the linear frequency scale).

components, the MFCC filters allow only positive integration. To more closely ap-

proximate the MFCC filters, we can also add extra responses to cancel out these

inhibitory regions. By differentiating (21), one can show that the inhibitory minima

of h(y; s) are located in:

y = ±
√

3

αs
(33)

For each center response area w (y; xk, s, 0) corresponding to the k’th MFCC filter,

we can add response areas with BF’s given by (33) to cancel out its inhibitory lobes.

This, however, will give rise to new inhibitory regions at around y = ±2
√

3
/
αs, so

another set of response areas with BF’s at these locations must be added. The end
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result is to find a set of symmetric response areas wk,i (y; xk,i, s, 0) where the BF’s

are:

xk,i = xk ± i

√
3

αs
(i = 1, 2, · · · , n) (34)

where n is limited by the frequency range R. The weights of the response areas are

computed by performing a least-squares fit of the response areas to zero over the range

outside the excitatory lobe of the center response area. Since the original magnitudes

of the response areas are lost by the linear combination, we normalize the combined

analysis filter to have uniform magnitude. Figure 15(a) shows one such analysis filter

and its corresponding MFCC filter in close range. Note that the inhibitory region

cannot be completely removed, and is replaced by small ripples. As done for c1,a and

c1,b, we apply the DCT to the outputs of all such analysis filters to obtain c2. Table

2 shows the equational forms of the filters used for all three feature types.

Figure 15(b) shows the (x, s) locations of the symmetric response areas on the

φ = 0 plane used to calculate c2. The weights of the surrounding response areas de-

cay as their BF’s move farther away from the BF of the center response areas. While

more response areas have been used to construct the analysis filters compared to c1,a

and c1,b, it is clear that only a very small subset of U , the set of cortical neurons,

has been used. All three cases conceptually show that the dimension-expanded cor-

tical response encompasses the essential information in the MFCC, and as discussed

in [80], the frequency integration by cortical neurons go beyond critical bandwidth

phenomena, allowing for more mechanisms responsible for the analysis of complex

sound[8].

2.2.3 Quantitative Assessment

To further quantify the relationships drawn between the auditory model and the

MFCC, we used the features in a conventional phoneme classification task described
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Figure 15: (a) Viewed in close range, an analysis filter obtained by linearly com-
bining a set of response areas to more closely match its corresponding MFCC filter.
Solid lines indicate the MFCC filter while dotted lines indicate the combined analysis
filter. (b) Location of response areas on the φ = 0 plane that are used to construct
the analysis filters for c2. The bold points on each dotted line indicate the response
areas used for one analysis filter, and the unfilled circles mark the filters in Figure
14(b) that set the center frequencies. Compared to c1,a, we are now using a broader
range of response areas to derive our features.

Table 2: MFCC-equivalent features drawn from cortical response.
Feature Filter Form Notes

c1,a w (y; xk, sk, 0) xk and sk correspond to the center frequency and
bandwidth of k’th MFCC filterbank.

c1,b Akw (y; xk, sk, 0) Same as c1,a but all filters are normalized to have
equal gain.

c2 Ak[w(y; xk, sk, 0)+∑
ai{w(y; xk,i, sk,i, 0)

+w(y;−xk,i, sk,i, 0)}]

Extra response areas are added to each center
response area to compensate for inhibitory lobes.
All resultant filters are normalized to have equal
gain.
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in Appendix A.2. Table 3 shows the recognition rates. The comparatively high per-

formance of the MFCC under clean conditions is probably due to the heavy spectral

smoothing involved in the auditory spectrum and the cortical response, resulting in

the loss of discriminative information. Note, however, that as the SNR decreases,

the MFCC sustains heavy penalties and gives the lowest performance at 10 dB SNR

and below. p1 is the most crudely-developed feature, as it is a simple sampling of 23

channels in the auditory spectrum. The noise robustness of p1 relative to the MFCC

can be attributed to the spectral enhancement and noise suppression in the auditory

spectrum [91]. While c2 has a trend similar to c1,b, all rates are a few points higher.

This may be because the lower frequency range in the cortical space for c1,b is encoded

by only a few wideband response areas, and large amounts of discriminative informa-

tion are cancelled out between the excitatory and inhibitory regions that cannot be

recovered elsewhere. More interesting, however, is the trend difference between c1,a

and c1,b, when the two feature types are identical except for the gain-normalization of

response areas in c1,b. Further discussion will be saved for Section 2.4, as our studies

on the noise-robustness of the A1 model in the next section provide some useful tools

for interpreting these features.

2.3 Speech Information in the A1 Model

Compared to the peripheral auditory system, much less is known on the latter pro-

cessing stages in the central auditory system, and it is natural that little biological

considerations on these cortical stages are included in existing speech processing meth-

ods. While the A1 model employed in this study may not necessarily be completely

accurate and correct, certain fundamental aspects of it point us to some enlightening

directions in improving the existing framework. Most important, as alluded earlier,

is the dimension expansion of the cortical transformation, which facilitates the sep-

aration or place-coding of the spectral features of audio signals. Intimately related
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is the localized nature of the response areas, i.e., each response area is non-zero over

only a specific section of the frequency axis. This allows the response areas to encode

spectral components in a divide-and-conquer like manner. In this section, we will

explore these notions and the benefits they provide, and present a feature selection

method for quantitative assessment.

2.3.1 Matched Filtering and Signal-Respondent Neurons

One observation that can be made on the cortical response, as briefly mentioned in

the original development [92], is that the response is highest for neurons with response

areas that approximate the local shape of the auditory spectrum. Formalizing and

developing this observation mathematically leads to some key viewpoints for under-

standing the cortical response.

First, we assume that each response area satisfies the following normalization

condition: ∫

R(λ)

w2 (y;λ)dy = K (35)

where R(λ) is the non-zero range of w(y;λ) and K is some constant. By applying

this constraint and the Cauchy-Schwarz Inequality to the cortical transformation in

(28), we obtain:

r2 (λ) =

[∫

R(λ)

p (y)w (y;λ) dy

]2

≤
[∫

R(λ)

p2 (y) dy

]
·
[∫

R(λ)

w2 (y;λ) dy

]
(36)

= K

∫

R(λ)

p2 (y)dy (37)

where the maximum occurs when the response area is a constant multiple of the

spectrum in R(λ):

w (y;λ) = c · p (y) (38)

That is, the square of the cortical response is highest when the response area has a

shape similar to the auditory spectrum in its local range. This is, in fact, a reflection
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of the well-known matched filter[52] phenomenon used primarily for detecting signals

in telecommunications.

Note that the response areas in (24) do not unconditionally satisfy the normal-

ization constraint (35). However, if each response area in (24) is multiplied by the

factor 1
/√

αs, we have:

∫ +∞

−∞

1

αs
w2 (y;λ)dy =

1

2π

∫ +∞

−∞

1

αs
|W (k;λ)|2 dk =

1

2π

∫ +∞

−∞

H2
m (k) dk = K (39)

where we have applied Parseval’s Relation [71], (25), and (22). This means that the

cortical response areas deviate from (35) only in that they contain a bias that favors

narrowband (high s) response areas more than wideband response areas. However,

experimental illustrations show that this bias is not so significant.

Figure 16 shows the maximum absolute cortical response along each φ-axis for a

steady state vowel, i.e.,

a′ (x, s) = max
φ

|r (x, s, φ)| (40)

Four locally high absolute response points, arbitrarily chosen, are indicated in Figure

16, and the corresponding response areas are plotted in Figure 17 along with the

auditory spectrum. One can see that these response areas “trace out” the shape of

the spectrum, as in Figures 17(a), (b), or (d). In Figure 17(c), the response area

traces the mirror of the spectrum, in which case c < 0 in (38). Also note that it

is often the response area that traces the envelope of the auditory spectrum that

yields high response, as in the case of Figures 17(b) and (c). It is shown in Appendix

B.1 that this can occur when the range of integration includes a sufficient number of

peaks. In this case, the signal-respondent neuron’s response area can be written as:

w (y;λ) =





c · v (y)

0

y ∈ R (λ)

y /∈ R (λ)
(41)

where v(y) is the envelope of the signal spectrum.
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Figure 16: a′ (x, s) = max
φ

|r (x, s, φ)| of a steady state “aa” phone. Dark is high.

Four neurons with locally high responses are arbitrarily chosen and labeled (a) to (d).
The response areas of these neurons are shown in Figure 17.
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Figure 17: The auditory spectrum of a steady “aa” phone, and response areas
corresponding to components labeled in Figure 16. Units for x, s, and φ are Hz,
cyc/oct, and degrees, respectively. The y-axis has arbitrary units indicating the
magnitude of the response areas and the auditory spectrum.
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Figure 18: a′ (x, s) = max
φ

|r (x, s, φ)| of the averaged distortion of the “aa” phone

in Figure 16 for input SNR 5 dB. Two neurons with locally high response are chosen
and labeled (a) and (b). Their response areas are shown in Figure 19.
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Figure 19: Response areas of key components in Figure 18. Units for x, s, and φ
are Hz, cyc/oct, and degrees, respectively. The y-axis has arbitrary units indicating
the magnitude of the response areas and the auditory spectrum. Comparing the
(x, s, φ) coordinates of the responses here with those in Figure 17, it is evident that
most of the noise energy is mapped to cortical regions that are separate from the
signal-respondent regions in Figure 16.
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Hence, the cortical response can be interpreted as a system of matched filters,

each of which tries to mimic the shape of the auditory spectrum in some locality.

Neurons that have strong absolute response |r (λ)| to a given signal spectrum p(y)

are called signal-respondent neurons. Signal spectra of different shapes will tend to

have different sets of signal-respondent neurons, i.e., the cortical response acts as

a place-coding mechanism that maps different spectra to different locations in the

cortical space.

Now, consider some distortion component d(y) that is added to the auditory

spectrum p(y) as a result of the noise in the input signal, resulting in a distorted

spectrum p′(y).

p′ (y) = p (y) + d (y) (42)

Similar to the signal-respondent neuron, if the distortion component d(y) alone is

the input to the A1 model, the absolute cortical transformation over the region R(λ)

will be maximum for the noise-respondent neuron, if any, with the following response

area:

w (y; θ) =





c · d (y)

0

y ∈ R (θ) = R (λ)

y /∈ R (θ) = R (λ)
(43)

Hence, as long as v(y) in (41) and d(y) in (43) are different, the signal component

and noise component will each have its own distinct maximally-respondent neuron.

Since surrounding neurons have similar response areas, the signal and noise will tend

to have different areas of activation in the cortical space.

This is demonstrated in Figures 16, 17, 18, and 19. Here, the distortion d(y) of the

auditory spectrum is obtained by averaging the distorted spectrum p′(y) over many

instances of a corrupted vowel segment to eliminate statistical variations, and then

subtracting the uncorrupted spectrum p(y). The signal-respondent components and

the noise-respondent components are mapped to distinct regions in the 3-d cortical

space. Note that parts of the response of the distortion in Figure 18 seem to resemble
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the response of the signal in Figure 16. This is because the nonlinearities in the

auditory spectrum introduce correlation between signal and noise. Nevertheless, one

can see that most of the energy in the distortion are mapped to locations in the

cortical space that are different from the signal-related locations.

Note that it is the localized nature of the response areas that allow this mechanism.

If, for example, p(y) were a log Fourier power spectrum and the w(y;λ)’s were the

pure sinusoids in the Discrete Cosine Transform[16], r(λ) in (28) would be equivalent

to the well-known cepstrum[16]. However, in this case the response areas span the

entire frequency region and r(λ) is merely a sinusoidal decomposition of the auditory

spectrum, which is fundamentally different from the dimension-expanded cortical

response that spatially encodes the shape of the spectrum.

2.3.2 Noise Robustness

The noise robustness of the auditory spectrum is shown in [91] by decomposing the

spectrum into a linear combination of orthogonal bases and showing that the distor-

tion in the coefficients increase slower than those of a linear power spectrum. Here, we

take advantage of the dimensionality expansion in the cortical response and analyze

its noise robustness in a different framework. As discussed in the previous section,

signal and noise will map to separate locations in the cortical space, as long as they

are shaped differently. When signal and noise are combined to produce a single spec-

trum, however, the effect is not so obvious. The cortical response for the combined

spectrum in (42) is:

r′ (λ) =

∫

R(λ)

p (y)w (y;λ) dy +

∫

R(λ)

d (y)w (y;λ) dy (44)

Due to the linear and additive nature of the cortical transformation, every neuron

contains both a signal component and a noise component. However, we can show that

signal-respondent neurons are noise-robust in that their signal-to-noise ratios(SNR’s)
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tend to be higher than the SNR of noise-respondent neurons. This analysis is facili-

tated by the matched-filter framework, which allows us to approximate the response

areas of signal-respondent neurons as functions of the auditory spectrum, hence avoid-

ing the complex mathematical expressions in Section 2.1.2.

As a tool for studying noise-robustness, we define the signal-to-noise ratio(SNR)

of a single cortical neuron as:

Sr,λ ,
|r (λ)|∣∣r (λ)′ − r (λ)

∣∣ =

∣∣∣
∫

R(λ)
p (y)w (y;λ) dy

∣∣∣
∣∣∣
∫

R(λ)
d (y)w (y;λ) dy

∣∣∣
(45)

The use of absolute value is to remove the discrepancy of sign in representing the

actual “strength” of a response, whether it is excitation or inhibition. The SNR of

the auditory spectrum in the range R (λ) of the corresponding response area is:

Sp,λ ,

∫
R(λ)

p (y)
∫

R(λ)
|d (y)| (46)

Note that when p(y) and d(y) are conventional power spectra of wide sense stationary

signal and noise, Sp is the conventional signal-to-noise power ratio in R (λ). In the

case of the auditory spectrum, d(y) can sometimes be negative, which is why we

include an absolute value sign.

The overall SNR for a set of neurons A = {λi} is defined as:

Sr (A) ,

∑
λi∈A

|r (λi)|
∑

λi∈A

∣∣r (λi)
′ − r (λi)

∣∣ =

∑
λi∈A

∣∣∣
∫

R(λi)
p (y)w (y;λi) dy

∣∣∣
∑

λi∈A

∣∣∣
∫

R(λi)
d (y)w (y;λi) dy

∣∣∣
(47)

where we simply added the absolute responses to obtain total “signal level” and “noise

level” in the cortical response in A. The overall SNR of the auditory spectrum over

the entire frequency range R is:

Sp ,

∫
R
p (y)∫

R
|d (y)| (48)

Also, if w (y;λi) = δ (y − i∆), a train of equally spaced impulses spanning the whole

frequency region R, and the spacing ∆ is small compared to the volume VR of R, we
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have from (47) and (48),

Sr (A) =

∑
i∆∈R

|p (i∆)|
∑

i∆∈R

|d (i∆)|
≈

1
∆

∫
R
|p (y)|

1
∆

∫
R
|d (y)| = Sp (49)

Hence, Sr(A) provides us with a measure of how the integration of the auditory

spectrum via the localized response areas in A can change Sp. We also see from (45)

that any lower bound for Sr,λi
for all λi ∈ A will also be a lower bound for Sr(A):

Sr,λi
≥ b , ∀λi ∈ A→ Sr (A) ≥

∑
λi∈A

b
∣∣r (λi)

′ − r (λi)
∣∣

∑
λi∈A

∣∣r (λi)
′ − r (λi)

∣∣ = b (50)

Now, assuming conventional power spectra and additive stationary white noise, sup-

pose λ is a signal-respondent neuron as in (41) and θ is a noise-respondent neuron as

in (43), both non-zero over the range R(λ). We show in Appendix B.2 that:

Sr,λ ≥ Sp,λ = Sr,θ (51)

This relation holds true as long as the envelope of the auditory spectrum is a good

approximation of the spectrum in R(λ). This does not necessarily mean that the

overall SNR’s in (47) and (48) satisfy Sr (A) ≥ Sp. However, (50) already guarantees

a lower bound on Sr depending on the lower bound of Sr,λ, and in addition, we show

in Appendix B.3 that we can further amplify Sr,λ by considering the cancellation of

distortion by the inhibitory regions of w(y;λ). Therefore, it is likely that Sr(A) ≥ Sp

as long as A is carefully selected.

Note that most of the analysis on SNR separation presented here assumes a Fourier

power spectrum with additive stationary Gaussian noise. It is too difficult to directly

extend this analysis to the auditory spectrum due to its complex nonlinearities. The

auditory spectrum is not additive, so the distortion component d(y) in (42) cannot

be simply regarded as the spectrum arising from the noise alone as was done in the

analysis in Appendix B.2. Even if we did assume the spectrum is additive, the audi-

tory spectrum is not a constant for white noise. Nevertheless, we can experimentally

45



20 15 10 5 0
0

2

4

Input Signal SNR (dB)

R
at

io

(a) Vowel /iy/

20 15 10 5 0
0

2

4

6

Input Signal SNR (dB)

R
at

io

(b) Vowel /uw/

20 15 10 5 0
0

2

4

6

Input Signal SNR (dB)

R
at

io

(c) Fricative /dh/

20 15 10 5 0
0

2

4

Input Signal SNR (dB)
R

at
io

(d) Fricative /z/

20 15 10 5 0
0

2

4

Input Signal SNR (dB)

R
at

io

(e) Affricate /jh/

20 15 10 5 0
0

2

4

Input Signal SNR (dB)

R
at

io

(f) Affricate /ch/

20 15 10 5 0
0

2

4

Input Signal SNR (dB)

R
at

io

(g) Plosive /p/

20 15 10 5 0
0

1

2

3

Input Signal SNR (dB)

R
at

io

(h) Plosive /k/

Figure 20: Mean ratios Sr(Ai)/Sp (marked by ◦) and Sr(Ai)/Sr(U) (marked by
×) for varying input SNR with error bars showing standard deviation. The dotted
horizontal line indicates 1. For each input SNR, horizontal spacing has been added
between each ratio to enhance visibility.
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validate the intuition that as long as d(y), whatever it is (obtained by subtracting

the signal spectrum from the spectrum resulting from the combination of signal and

noise), has a different shape from the signal spectrum p(y), the distortion-related

spectral components will tend to be separated from the signal-related components in

the dimension-expanded cortical space.

For a given class of English phonemes, we postulate that a set of signal-respondent

neurons exists, and as a simple measure of how respondent each neuron is, we take

the average of its absolute response over many uttered instances of the class. Figure

22 shows this average at φ = 0 computed over the TIMIT training database for a

selection of phonemes.

The set of signal-respondent neurons Ai for phoneme class wi is obtained by

thresholding the mean:

Ai =

{
λ :

1

|wi|
∑

r∈wi

|r (λ)| > τi

}
(52)

In our experiment, the threshold τi is set such that |Ai|, the cardinality of Ai, is 20%

of the total number of neurons |U |. Using phoneme segments in the noise-free training

data of the TIMIT database (see Appendix A.2), we obtain Ai for each phoneme class.

We then compute Sr(Ai)/Sp and Sr(Ai)/Sr(U), where U is the set of all neurons, for

all phoneme frames in the testing data set after adding different levels of zero mean

stationary Gaussian noise. Sr(Ai)/Sp shows how the SNR of the signal-respondent

neurons is higher than the SNR of the auditory spectrum, and Sr(Ai)/Sr(U) shows

how the SNR of U can be improved by selecting only the signal-respondent neurons.

While some statistical variation can be seen, the ratios for the most part appear to

be above 1.

Since Gaussian white noise is used in our experiment, one may also consider how

the SNR separation effect would change if other types of noise were used. In particu-

lar, the separation may be severely hampered if the signal spectrum and the distortion

have similar shapes. As much as the peripheral auditory system alone cannot account
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for noise robustness in audition, the A1 model is also probably insufficient to account

for all the sophisticated mechanisms that must be involved. Further processing at

higher levels will have to be studied in the future to attain a more complete emulation

of robust hearing.

2.3.3 Class Dependent Encoding of Speech Information

How the cortical response encodes cognitive information for discriminating speech

signals is still much a subject under investigation. In this study, we approach the

problem by looking at the statistical characteristics of the response for known classes

of sound. In particular, we calculate the response variance for different English

phonemes, using utterances recorded in the TIMIT database. We conjecture that the

neural responses with low variance for a given phoneme class will be more relevant in

identifying the phoneme compared to responses with high variance.

Figure 21 shows the variance at φ = 0 for a selection of phonemes. In particular,

one can see that the upper left regions have high variance for vowels. These areas

were discussed in [92] to usually encode pitch-related harmonics, and the utterances

of vowels can greatly vary in pitch. We also know that pitch has little to do with

the actual identity of the vowel, and therefore this is consistent with our conjecture

that high variance means less relevance in recognition. While similar pitch-related

variances appear for the other non-vowel phonemes as well, this has more to do

with the context from which the utterances were extracted from the database (see

Appendix A.1 to see how the phones were segmented).

Our choice of English phonemes as the denomination by which the variances are

calculated implicitly assumes that the cognitive low-variance regions are signal class-

dependent. The apparent resemblance in the variances between phonemes of similar

types in Figure 21 supports this assumption. Since the two acoustically-similar vowels,

for example, have similar variances that differ from the variances of the affricates or
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Figure 21: Variance (dark is high) of cortical response at φ = 0. Low variance is
conjectured to be more relevant to cognition. Here, unvoiced phonemes also seem to
have high variance in the pitch-related regions, but this comes from the continuous
speech context from which the phone utterances were extracted.
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Figure 22: Mean (dark is high) of absolute cortical response at φ = 0. High mean
implies greater noise robustness.
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plosives, it makes sense that the variances are class-dependent.

These ideas are also inspired by physiological studies that imply that the auditory

system is spatially composed of different processing stations. For example, [85] shows

that distinct regions of the brain process syllables while others process phonemes, and

[48] suggests that the left hemisphere of the brain may be specialized in processing

acoustic transients. Extending this notion of spatialization to speech phonemes, we

hypothesize that the identity of speech signals are encoded in phoneme class-specific

regions in the cortical response. Note that this may also hold true for other com-

plex audio signals in general (e.g., different classes of musical instruments). Here, we

choose phonemes as our signal classes since they are accepted in acoustic-phonetic

theory as one of the basic units of speech. A more rigorous taxonomy may be de-

veloped in the future by simulating the language learning processes of humans that

allow them to distinguish units of speech according to some abstract categorization.

In addition, we notice that the signal-respondent, noise-robust neurons shown in

Figure 22 also exhibit class-dependence. If, for each class, there exist some dominant

components of the auditory spectrum that are common to all instances of the class,

these would manifest themselves as the statistical high-activation (high mean) areas.

This implies that the issue of robustness need not be dealt with in a uniform manner

as is usually done with speech frontends that model the auditory periphery. Rather,

it should be approached in a class-dependent manner. This is also consistent with

conventional wisdom in that the recognition of the phoneme “s,” for example, is

probably less noise-robust than the recognition of “aa” under white noise despite

equal SNR.

2.3.4 Clustering and Feature Selection

Based on the aforementioned ideas, we propose a simple method of feature selection

that will reduce the dimensionality of the cortical response for use in a conventional
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Figure 23:
∑
ui (λ), the sum of the normalized class-wise absolute means, and∑

vi (λ), the sum of the normalized class-wise variances, at φ = 0. Dark is high.

speech recognition task identical to that used for the MFCC and MFCC-equivalent

features in Section 2.2.

First, we identify a set of neurons that, on the whole, are commonly invariant (e.g.

some mid-scale areas in Figure 21) and noise-robust (e.g. some wideband areas in

Figure 22) for all phoneme classes. This is done by computing the sum of the class-

wise means of the absolute cortical response and the sum of the class-wise variances,

and apply thresholding. The class-wise variance is:

σ2
i (λ) ,

1

|wi|
∑

r∈wi

[r (λ) −mi (λ)]2 (53)

where:

mi (λ) ,
1

|wi|
∑

r∈wi

r (λ) (54)

and |wi| is the cardinality of the class set wi. The class-wise absolute mean is:

µi (λ) ,
1

|wi|
∑

r∈wi

|r (λ)| (55)

To impose uniformity in how the statistics of each class contributes to the summations,

we normalize µi (λ) and σ2
i (λ) by scaling them such that their maximum values over

the set of all neurons U are 1, resulting in ui (λ) and vi (λ), respectively. The set Ac

of cognitive and noise-robust neurons is:

Ac =

{
λ :

∑

wi

ui (λ) > τu,
∑

wi

vi (λ) < τv

}
(56)
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The thresholds τu and τv are determined heuristically such that enough neurons are

retained to prevent too much loss of discriminative information.

From an alternate point of view, the variance thresholding is like retaining only

those neurons that are “source”-invariant, i.e., that contain certain constant features

of phonemes that allow humans to recognize them despite speaker-dependent varia-

tions. The mean thresholding is like retaining “environment”-invariant neurons, i.e.,

noise-robust neurons with high SNR.

In practice, Ac is usually still too large for use in a conventional recognition task.

A heuristic way of reducing the number of neurons is to cluster them according to

the similarity of their response areas and to find a single representative neuron for

each cluster. We define the distance between two neurons as the Euclidean distance

between their response areas:

d (λj , λk) =

∫
[w (y;λj) − w (y;λk)]

2 dy (57)

For each cluster B, we define the intra-cluster distance as the sum of distances between

all combined pairs of neurons in B:

δB =
∑

λj ,λk∈B

d (λj , λk) (58)

The algorithm is initialized by denoting each cognitive neuron as one cluster. At each

iteration, the two clusters that result in the minimum intra-cluster distance when

combined are merged into a single cluster. In practice, this can be sped up with little

loss of accuracy by allowing more than one cluster (5∼10% of existing clusters) to be

merged at each iteration. Also, since the response areas vary smoothly throughout the

(x, s, φ) space, the number of combined pairs to consider can be drastically reduced

by limiting them to adjacent neurons. The process is repeated until an arbitrary

number of clusters is reached. From each cluster, we select the neuron with the least
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Figure 24: Stages of feature selection from the cortical response. Numbers in paren-
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summed distance to all other neurons:

λa = arg min
λk∈B

∑

λj∈B

d (λj, λk) (59)

The feature vector r1 is created by gathering the raw responses of all such represen-

tative neurons.

Another method of dimension reduction is to cluster the neurons to an inter-

mediate size and apply Principal Component Analysis (PCA)[20]. PCA is a popu-

lar dimension-reduction technique that projects high-dimensional data onto a low-

dimensional space in such a way that the original data is best represented in a least-

squares sense. Given a set of n d-dimensional observations {x1,x2, · · · ,xn}, each

observation is transformed to a d′-dimension feature vector as follows [20]:

yk = ET (xk −m) (60)

where m is the sample mean and the columns of the matrix E contain the eigenvectors

corresponding to the d′ highest eigenvalues of the scattermatrix.

The vector r2 is obtained by applying PCA to 3,000 neurons obtained from cluster-

ing. Figure 24 illustrates the overall feature selection process for r1 and r2, indicating

the number of features at each stage in the implementation used in this study.
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Table 3: Phoneme classification accuracy(%) for varying feature types and SNR;
p1: MFCC-equivalent feature derived from auditory spectrum; c1,a, c1,b, c2: MFCC-
equivalent features derived from cortical response (1-to-1 mapping, 1-to-1 mapping
with gain-normalization, integration); r1, r2: features derived from cortical response
based on source and environment invariance (12 clusters, principal components of
3000 neurons).

Clean 20 dB 15 dB 10 dB 5 dB 0 dB

MFCC 74.51 67.86 61.52 51.88 37.81 21.50
p1 61.72 60.81 59.41 56.11 48.24 35.55
c1,a 67.95 67.30 65.83 60.32 46.77 29.97
c1,b 62.80 62.25 61.51 59.56 53.70 42.94
c2 66.05 65.38 64.41 61.94 56.28 45.60
r1 67.99 67.18 65.45 60.06 49.32 35.77
r2 68.06 67.36 66.55 64.30 58.42 45.63

2.3.5 Quantitative Assessment

As done for the features in Section 2.2, we use r1 and r2 in the phoneme classifica-

tion task described in Appendix A.2 for quantitative evaluation, with results shown

in Table 3. Although not shown here, we have also observed that the performance

of r1 can significantly vary according to the thresholds in (56). The relatively low

recognition rates of c1,a, c1,b, and r1 suggest that the raw responses of twelve neu-

rons in the cortical space contain insufficient discriminative information and/or are

too statistically complex to model. In comparison, r2, which reflects the principal

components of 3,000 neural outputs, is able to more effectively capture the statistics

of the response, giving the best performance.

2.4 Discussion

Again, the purpose of our phoneme classification experiments in Table 3 is not to

optimize automatic speech recognition performance nor propose a replacement to the

MFCC, but rather to explore and understand how the auditory model can be effec-

tively formulated for speech analysis in the context of speech recognition. Returning

to our former discussion on cross-validation in Section 2.2, the MFCC-equivalent

55



feature vector p1 is obtained by sampling the auditory spectrum, which, from the

viewpoint of the cortical response, is like having response areas that are delta func-

tions. When the delta functions are equally and narrowly spaced, we showed in

Section 2.3.2 that Sr ≈ Sp. Hence, p1 is close to a worst-case scenario compared to

the other cortical response-derived features in terms of noise robustness.

We also recall that the feature set c1,a was obtained by finding response areas

corresponding to the MFCC filterbanks. c1,b is identical to c1,a, but is the result

of normalizing the response area heights. The difference in trend between c1,a and

c1,b can be better understood if we consider that gain-normalizing the response areas

is equivalent to giving greater emphasis on the wideband, low-BF response areas in

Figure 14(b) (since wideband response areas originally have lower gain, as shown

in 14(a)). Notice that these response areas also happen to lie in the dark, signal-

respondent regions (high
∑
ui (λ)) in Figure 23(a), which may be why c1,b is more

noise-robust at low SNR. The added emphasis on smoothed response areas, however,

also has the effect of compromising discriminative information for clean speech signals,

possibly due to reduction in temporal resolution.

Another interesting observation is that the neurons in Figure 14(b) and the center

neurons in Figure 15(b) seem to lie more or less in the low-variance regions of the

cortical response in Figure 23(b). This suggests some consistency between the cortical

model, when interpreted under the proposed framework, and the MFCC, providing a

possible explanation as to why the MFCC has enjoyed success for a long time.

It is not clear why the MFCC is able to distinctively outperform all other fea-

tures under clean conditions. While this may be attributed to the extensive spectral

smoothing in the auditory processing, we may also speculate that the statistical com-

plexity of the features derived from the auditory model, which involves extensive

nonlinear processing for production of the auditory spectrum, is perhaps significantly

more than that of the MFCC, resulting in greater speech model errors.
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In regard to r2, we take note that much of the class-dependencies are lost when

lumping the statistics in (56). In order to fully take advantage of the class-dependent

place-coding in the dimension-expanded cortical space, the feature selection and

decision-making process should be done in a category-dependent manner. Here, we de-

fine “category” as the union of one or more classes. Since the variances and means in

Figures 21 and 22 exhibit similarities among different phoneme categories, we should

create low-variance and high-activation filters unique to each category.

Furthermore, physiological studies also imply that the auditory system is orga-

nized hierarchically. Magnetic Resonance Imaging (MRI) studies in [93], for example,

shows that pure tones primarily activate the core of the human auditory cortex, while

complex sounds such as narrowband noise usually stimulate the belt areas, implying

a hierarchical process of sound being decomposed into basic features and later inte-

grated into more complex stimuli.

Likewise, we speculate that the feature selection and decision-making processes

for the cortical response should be designed such that they occur in multiple stages,

starting with a broad categorization of sound (e.g. vowels vs. consonants or string

vs. brass instruments) followed by more specific cognitive cues and decisions (e.g.

vowel “aa” vs. “iy”, trumpet vs. tuba). We also note that future extensions of the

model should incorporate explicit processing of temporal information, which plays an

important role in the perception of pitch or timbre.
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CHAPTER III

CATEGORY-DEPENDENT FEATURES AND

HIERARCHICAL CLASSIFICATION

In the previous chapter, we studied the advantages of data dimension expansion

in a model of the primary auditory cortex (A1) in the central auditory system[92],

motivated by the fact that most work in computational auditory modeling is limited

to the signal transformations in the peripheral auditory system. In particular, we

recognized the existence of phoneme category-dependent regions in the cortical space

that store information relevant to the speech information, where we define “category”

as the union of one or more phoneme “classes.” To truly exploit the dimension-

expanded, data-redundant information encoding in the A1 model, multiple sets of

features should be extracted such that the category-dependent information can be

better used for classification tasks.

The concept of category-dependent features has been discussed under various con-

texts in the pattern recognition literature. The basic idea is that some features are

more effective in discriminating between a certain group of classes than others, so

we should exploit this property by extracting a multiple set of features rather than

the traditional practice of using only one. In speech processing, [35] proposes the

use of “heterogeneous features” based on standard phonetic theory where phoneme

classes are grouped into six “manner classes”: vowels, nasals/flaps, stops, weak frica-

tives, strong fricatives, and closures/silence. The feature sets are tailored to better

discriminate the classes in their corresponding manner classes by differing in win-

dow length, use of duration or pitch, time resolution, and other measurements of the

phoneme segments. [68] used a measure of the discriminating powers of features to

58



obtain “class-dependent features”, which were then combined by a neural network

for handwriting recognition tasks. A more theoretical development of “class-specific”

features was presented in [5, 51], where it is shown that the probability density func-

tions of the sufficient statistics for the pattern classes can be used to achieve optimal

classification, as long as a normalization condition is satisfied.

Hence, the motivation of this work is twofold: First, we are inspired by previ-

ous findings in a physiology-based auditory model to pursue innovations in some of

the fundamental aspects of feature selection and pattern recognition methodology

to better mimic human auditory recognition, not simply use auditory models as a

mere signal-processing frontend. Second, we wish to explore the concept of category-

dependent features and provide insight as to how they could be used for general

classification tasks.

We will begin with an overview on the terms and notations that we will using

throughout the rest of the work. We will then discuss a method of category-dependent

feature extraction and quantitatively validate it using a simple phoneme classification

system. The category-dependent feature selection method can also be interpreted as

a method of discriminative dimension reduction using the basic principles of Linear

Discriminant Analysis (LDA). Next, we will develop a method of hierarchical classifi-

cation where category-dependence is evoked in not only the feature selection process

but the classification process as well. Some insights will be presented on how hier-

archical classification could work better than conventional classification, and details

will be provided on the building blocks of our hierarchical classifier including Min-

imum Classification Error(MCE)-based mixed Hidden Markov Model(HMM)’s and

Classification and Regression Tree(CART)-style categorization.
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3.1 Overview of Terms and Notation

Assume a set C of d-dimensional observation vectors, where one such vector is rep-

resented by x. C can be partitioned into N sets w1, · · · , wN , where each set also

represents the abstract concept of pattern class, .i.e.,

C = w1 ∪ w2 ∪ · · · ∪ wN , wi ∩ wj = ∅ (i 6= j) (61)

We define a category as the union of two or more classes. For example, we can group

classes w1, w3, and w4 into category C3 as so:

C3 = w1 ∪ w3 ∪ w4 (62)

A categorization is a mapping of the set of all classes onto a set of categories:

g (wi) : {w1, w2, · · · , wN} → {C1, C2, · · · , CM} (63)

This results in M non-overlapping categories, where each category Cj is the union of

one of more classes:

Cj =
⋃

g(wi)=Cj

wi (64)

where ∪M
j=1Cj = C and Cl ∩Cj = ∅ (l 6= j). The |·| operator is used to indicate cardi-

nality (number of elements) of a set. Hence, |C| indicates the number of observation

vectors in |C|. We also use n (·) to indicate the number of classes embodied by a

category. In the example in (62), we have |C3| = |w1| + |w3| + |w4| and n (C3) = 3.

We define a category-dependent feature as the result of a feature transformation

process that emphasizes the discrimination of classes belonging to a specific category.

In contrast, a category-independent feature is from a transformation that does not

explicitly consider category-dependent discrimination. Most features used in the cur-

rent speech recognition paradigm, such as Mel-Frequency Cepstral Coefficients [15] or

Perceptual Linear Prediction Coefficients [38], are category-independent. A category-

dependent feature vector based on category Cm is notated by xm, as opposed to the
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category-independent feature vector x. A set of category-dependent feature vectors

(such as those pertaining to multiple frames of speech signals for a single phone ut-

terance) is denoted by Xm, while a set of category-independent feature vectors is

denoted by X.

Note that our definition of category-dependent feature does not impose any re-

strictions on xm regarding between-category discrimination, i.e., C3 in (62) does not

necessarily contain information relevant to distinguishing C3 from C1, for example.

Also, the definition engenders the question of how to define “class-dependent fea-

ture.” We could not regard “class” as a special case of “category,” since there must

be more than one class in a category in order for us to “discriminate.” While this

is beyond the scope of this paper, we will give some brief insights on the meaning of

“class-dependent features” and how we believe they should be used in Section 2.4.

For classification, the discriminant for class wi is an estimator of the log of the

class conditional probability density:

gj (x) ≈ log p (x |wj ) (65)

In conventional application of the Bayesian decision rule [20], we designate the obser-

vation x as class ŵi where, assuming uniform priors,

ŵi = arg max
wj

gj (x) (66)

We call this the single-layer classification rule. To introduce category-dependent

features, we define the category discriminant that estimates the log of the conditional

probability density for Cm:

fm (x) ≈ log p (x |Cm ) (67)

The category-dependent class discriminant hj is an estimator of the log of the class

conditional probability density of xm given wj and assuming wj ⊂ Cm:

hj (xm) ≈ log p (xm |wj ) , wj ⊂ Cm (68)
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We define the hierarchical classification rule, or two-layer classification rule, as a two-

step process where we first determine the category using the category discriminants,

then the class using the corresponding category-dependent class discriminants:

Ĉn = arg max
Cm

fm (x) → ŵi = arg max
wj⊂Ĉn

hj (xn) (69)

Finally, in the cortical model, each neuron has a response area[92] that determines

its response to a given spectral input and is parameterized by λ = {x, s, φ}, where x is

best frequency, s is scale, and φ is symmetry. Since each response area is also unique,

we sometimes use the set of parameters λ as a convenient symbolic representation of

the neuron itself in this study.

3.2 Category-Dependent Feature Selection

3.2.1 Dimension Expansion and Class Dependence in the Auditory Model

In the previous chapter, we developed a feature selection method that uses neurons

that commonly exhibit low variance and high activation across all phoneme classes,

followed by a neuron reduction process and Principal Component Analysis(PCA),

as depicted in Figure 25 (reproduced here from Figure 24 for the convenience of the

reader). Following our definition in Section 3.1, this is a category-independent feature

selection method.

It can be observed in Figures 21 and 22, however, that the low-variance and high-

activation regions can substantially differ according to phoneme class. Applying a

single common low-variance filter and a single common high-activation filter would

therefore sacrifice a lot of valuable features relevant to the identity of the phonemes.

Hence, we recognize the need to do category-dependent feature selection where

multiple feature sets are extracted from the A1 model, each set corresponding to a

particular category of phonemes. While the original motivation for this method comes

from experimental observations of class-dependent neural activity in the auditory

model, we can also show that the method can essentially be interpreted in a more
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general context of discriminative dimension reduction techniques for high-dimensional

data. In particular, it is similar in spirit to the well-known Fisher Linear Discriminant

Analysis(LDA)[20].

3.2.2 Discriminative Dimension Reduction

The need for discriminative dimension reduction originates from Bayesian decision

theory, which is the foundation of many pattern classification tasks. The theory states

that one can minimize the Bayesian probability of misclassification if, for each given

observation, one finds the pattern class that maximizes the a posteriori probability.

It is also easy to show that the Bayesian probability of error is non-increasing for an

increasing number of dimensions in the data, i.e., adding more features cannot hurt

classification performance. However, this is only under the assumption that we have

full knowledge of the underlying probability distributions, which is almost never true.

A significant amount of errors can result when the distributions are falsely estimated,
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especially when the number of dimensions is high. The “curse of dimensionality”[20]

states that as the number of dimensions in a multivariate distribution increases lin-

early, the amount of training data required for estimating the distribution increases

exponentially. Hence, when training data is limited, the classification performance

degrades rapidly as the number of dimensions increases [44]. Even if enough train-

ing data were available, the added computation cost may be too high compared to

the improvement in accuracy to justify using more features. Furthermore, density

estimation error and classification error do not always follow the same trends [26], so

attempting to achieve more accurate density estimates will not necessarily improve

the classification rate.

Hence, preprocessing the observations to reduce the number of dimensions is a con-

ventional practice in pattern recognition. Principal Component Analysis (PCA)[20]

is a classic example where the data is projected onto a set of dimensions along

which the data has the greatest scatter. In many cases, however, the dimension

reduction is done with explicit consideration of the class labels of the training data

such that there is minimal loss of discriminative information in the dimension reduc-

tion process. Such methods include the classic Fisher Linear Discriminant Analysis

(LDA)[20], Heteroscedastic LDA[56], and Classification-Constrained Dimension Re-

duction (CCDR)[74]. In particular, LDA is a relatively straightforward method of

reducing the dimensions, and has a closed-form solution. Although it is known to

have optimality properties for Gaussian distributions with equal covariances, it is

usually applied heuristically without assuming a specific underlying model. One may

speculate that it generally gives reasonable performance due in part to the stability

of the between-class and within-class statistics[37].

In LDA, we define the total scatter matrix ST as [20]:

ST =
∑

x∈C

(x − m) (x − m)T , m =
1

|C|
∑

x∈C

x (70)

The within-class scatter matrix SW is the sum of the individual class-wise scatter
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matrices Si(1 ≤ i ≤ N):

SW =

N∑

i=1

Si (71)

Si =
∑

x∈wi

(x − mi) (x − mi)
T , mi =

1

|wi|
∑

x∈wi

x (72)

The goal of LDA is to find the transformation W that maximizes the quantity (note

that “Tr” means “Trace”):

J (W ) = Tr
{(
W TSWW

)−1(
W TSTW

)}
(73)

It can be shown that the columns of W can be found by solving the generalized

eigenvalue problem:

STw = λiSWw (74)

where the w’s pertaining to the highest eigenvalues form the columns of W . The

solution is the same [27] if we used the determinant form [20] of the criterion function

instead of the trace form in (73). Also note that one can replace ST with the between-

class scatter matrix SB in [20] and still have the exact same results [27], since ST =

SW + SB.

The problem is that the generalized eigenvalue problem can be impossible to solve

when the number of dimensions are extremely high and computation resources are

limited. The category-dependent dimension reduction method we propose here can be

seen as another heuristic method of discriminative dimension reduction that invokes

the two basic principles behind LDA, i.e., “de-emphasizing” SW while “amplifying”

ST , as a natural way of introducing the notion of class-dependent place-coding in

the cortical response. By decoupling the two operations into separate processes,

and by constraining the transformations such that individual variances rather than

full covariances are used, we avoid computing the scatter matrices and solving the

generalized eigenvalue problem for the A1’s cortical response data, which typically

has more than 200,000 dimensions.
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3.2.3 Category-Dependent Feature Selection from the A1 Model

We define the variance of the x in class wi as the vector of diagonal entries of the

within-class scatter in (72).

σi =
1

|wi|
diag (Si) (75)

The “normalized variance” for class wi is obtained by dividing this vector by its

maximum entry.

vi =
σi

max (σi)
=

diag (Si)

max (diag (Si))
(76)

Now, the set LVm of “low-variance neurons” selected by LVFm (Low Variance Filter

for category m) can be expressed as follows, where we let vi (λ) indicate the entry in

vi corresponding to neuron λ.

LVm =

{
λ :

∑

i, wi∈Cm

vi (λ) < τv,i

}
(77)

We can conceive of the normalized within-category scatter matrix SW,m that is anal-

ogous to the within-class scatter matrix in (71) but defined for category Cm rather

than the entire data C, and where each class scatter Si is normalized by the maximum

diagonal entry.

SW,m =
∑

i, wi⊂Cm

Si

max (diag (Si))
(78)

It is then easy to see that LVFm can be expressed as a matrix Lm satisfying the

following condition where the matrix L is constrained to consist of |LVm| unit vectors.

Lm = arg min
L

Tr
{
LTSW,mL

}
(79)

The resulting dimension-reduced vector after the Low Variance Filtering for category

Cm is

ym = LT
mx (80)
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For example, if we had v = [4, 1, 3, 4, 2, 2] and wanted to select the variance threshold

τv,i in (77) such that |LVm| = 3, then

Lm =




0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




T

(81)

Ignoring the High Activation Filtering stage for now, let us look at what happens when

we reduce the dimension of ym in (80) via Principal Component Analysis (PCA)

[20]. For each category Cm, we compute the following scatter matrix, where the

summations are taken over the samples of ym = LT
mx obtained from the observations

in x ∈ Cm:

ST,m =
∑

x∈Cm

ym=LT
mx

(ym − um) (ym − um)T , um =
1

|Cm|
∑

x∈Cm

ym=LT
mx

ym (82)

Following standard PCA methodology [20], we solve the eigenvalue problem ST,me =

λe and let the columns of Em contain a full set of orthonormal eigenvectors. The

data vector ym is now transformed into a decorrelated(in the ideal case) vector zm

by the operation:

zm = ET
m (ym − um) (83)

Finally, another matrix Fm of unit vectors (like Lm in (81)) is applied to select f

dimensions from ym corresponding to the largest eigenvalues of ST,m, to form the

category-dependent feature vector xm:

xm = F T
mzm = F T

mE
T
m (ym − um) = P T

m (ym − um) (84)

In the equation above, we have let Pm = FmEm. From the derivation of PCA [20],

we know that

Pm = arg max
P

Tr
{
P TST,mP

}
(85)

where P is constrained to have f orthonormal columns.
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Now, considering (79), (80), (84), and (85), it is evident that the category-

dependent feature selection method is similar to the intuitive principles behind LDA

in that it de-emphasizes the within-class scatters, as in (79), and emphasizes the

between-class scatters, as in (84), albeit in separate stages using categories.

3.2.4 Phoneme categorization

There are many ways of defining the mapping function, or categorization, in (63).

Here, we obtain the categories by grouping English phoneme classes with similar low-

variance regions using an iterative, binary clustering algorithm. We first define the

following distance measure between two classes wm and wn, using vi(k) defined in

(76):

di,j = [log (vi) − log (vj)]
T [log (vi) − log (vj)] (86)

Here, the log(·) function is defined for vector variables as simply the element-wise

logarithms arranged in another vector. The log function is heuristically applied to

emphasize the similarity in those dimensions with low variances rather than those

with high variance. We also define the intra-category distance δm for category Cm as

the sum of distances between all possible pairs (combined, not permuted) of classes

contained in the category.

δm =
∑

wi,wj⊂Cm

di,j (87)

For convenience’s sake, let us assume for a moment that, contrary to our original

definition in Section 3.1, a category may contain only one class. The algorithm is

initialized by denoting each phoneme class as a category, where all intra-category

distances are initialized as δm = 0. At each iteration, we search for the two categories

that, when merged, have the least δm compared to other merged pairs, and map

their classes into one category. This procedure is repeated until an arbitrary number

of categories is obtained. Table 4 shows the categorization of 48 phoneme classes

obtained using this iterative method, with the number of categories arbitrarily set to
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Table 4: Categorization of 48 phonemes obtained by clustering the phonemes ac-
cording to the similarity of their variances.

No. Phonemes No. Phonemes

1 aa, ao, er, l, ow, oy, r 6 dh, epi, f, th
2 ae, ah, aw, ax, ay, eh, en, ey, ih, ix, uh, uw 7 el, m, n, ng, w
3 b, d, g, hh, sil 8 iy, y, zh
4 ch, jh, s, sh, z 9 k, p, t
5 cl, dx, v, vcl

9. It is interesting to note that a lot of the grouping also makes intuitive sense, such

as the grouping of the nasals “m”, “n”, and “ng”, and the unvoiced plosives “p”, “t”,

and “k”. Figure 27 shows the summed normalized variance
∑

i, wi⊂Cm

vi (λ) for these 9

categories Cm(1 ≤ m ≤ 9) for λ at φ = 0 in the cortical space.

3.2.5 A composite phoneme classifier

To quantitatively validate the category-dependent features, we conceive of a sim-

ple method of classifying phonemes by combining the likelihood outputs of multiple

speech models. Under the maximum a posteriori(MAP) decision rule, our ultimate

goal is to find

arg max
wi

P (wi|x) = arg max
wi

p (x|wi)P (wi) (88)

where x is an observation vector. Assuming uniform priors, we need only p (x|wi),

which we decompose as follows (wi ⊂ Cj):

p (x|wi) = p
(
yj ,y

c
j

∣∣wi

)
= p

(
yj

∣∣yc
j , wi

)
p
(
yc

j

∣∣wi

)
= p (yj|wi) p

(
yc

j

∣∣wi

)
(89)

=
1

|detEj |
p (zj |wi) p

(
yc

j

∣∣wi

)
(90)

= p (xj |wi) p
(
x′

j

∣∣wi

)
p
(
yc

j

∣∣wi

)
(91)

= p (xj |wi) p
(
x′

j,y
c
j

∣∣wi

)
(92)

= p (xj |wi) p
(
xc

j

∣∣wi

)
(93)

In (89), we assume that the vector random variable yj consisting of the low-variance

dimensions and the vector random variable yc
j consisting of the remaining dimensions
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Figure 27: Summed normalized variance (dark is high)
∑

i, wi⊂Cm

vi (λ) of cortical

response at φ = 0 for the categories in Table 4.
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are independent given class wi. Intuitively, we postulate that the low-variance re-

gions contain information relevant to the identity of the phoneme class, for which the

probability density can be described without dependence on the remaining regions

that are susceptible toward noise and other factors, i.e., p
(
yj

∣∣yc
j, wi

)
= p (yj |wi).

In (90), we apply (83) to transform the pdf’s, and since Ej is an orthogonal

matrix, we have |detEj| = 1. In (91), we assume that the vector xj containing

features corresponding to “high” eigenvalues, as described in (84), is independent of

x′
j containing the remaining features in zj. Although the transformation Ej (ideally)

decorrelates the two variables, we further assume they are independent.

Since we assumed in (89) that yc
j and yj are independent, yc

j and x′
j are also

independent. Combining x′
j and yc

j as the single vector xc
j , we obtain the final de-

composition in (93). In effect, xc
j represents all those dimensions that are discarded

in the entire process of feature selection. However, since it is hard to estimate its

distribution, we make the following assumption that it can be approximated by the

product of likelihoods of all the other category-dependent features.

p
(
xc

j

∣∣wi

)
≈

M∏

m=1,m6=j

p (xm|wi) (94)

This results in the following decision rule:

arg max
wi

p (x|wi) = arg max
wi

M∏

j=1

p (xj |wi) (95)

Hidden Markov Models (HMMs) are used to compute the likelihoods in the equation

above. The phoneme classification method is described in Appendix A.2, and the

results are shown in Table 5

The results show a substantial performance improvement when using the category-

dependent features, especially under low SNR. The results imply that this feature

selection method makes better use of the dimension-expanded cortical response and

its noise robustness compared to the category-independent case where a single low-

variance filter and single high-activation filter incurs heavy penalties on the class
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Table 5: Phoneme classification rates for varying feature sets, SNR, and number
of Gaussian mixture components (2 ∼ 40) in each HMM output probability func-
tion. A substantial increase in classification accuracy can be observed when category-
dependent features are used instead of category-independent features.

MFCC Cat.-Indep. Features Cat.-Dep. Features
2 10 20 40 2 10 20 40 2 10 20 40

Clean 66.02 71.48 73.26 74.51 54.91 63.19 65.71 67.62 59.48 67.21 69.69 71.68
20 dB 60.88 65.20 66.49 67.86 54.21 62.32 65.11 67.10 58.92 66.56 69.07 71.02
15 dB 55.78 59.42 60.62 61.52 53.23 61.49 64.18 66.27 58.16 65.79 68.24 70.17
10 dB 46.89 49.91 50.84 51.88 51.37 59.56 61.84 64.18 56.40 63.77 66.20 67.93
5 dB 34.68 36.43 36.80 37.81 46.85 54.26 56.42 57.98 51.85 58.36 60.30 61.63
0 dB 20.49 20.80 20.78 21.50 38.49 43.99 45.21 46.41 43.05 47.46 48.23 49.46

discriminability as the number of phonemes increases.

Note, however, that so far the concept of category-dependence has only been used

in the feature-selection process and not in the classification process. One can notice

that equation (95) is almost equivalent to stacking all the category-dependent feature

vectors (each with 39 dimensions) into a single category-independent feature vector

(with 39×9=351 dimensions) because the output probabilities of the HMMs employ

diagonal covariances and therefore each feature in each xm is treated independently

anyway. The equivalence would not be perfect because each xm would have its own

state sequence, but conceptually one can see that the notion of category-dependence

is not fully realized in the final classification process. Another problem is that the

composite classification method employed here requires a huge amount of computation

resources, since speech models for all phonemes must be created for all 9 categories,

resulting in 48 × 9 = 432 models with 51, 832 Gaussian mixture components.

Hence, the most natural next step our development is to explore hierarchical

classification such that the category-dependent features are used to make category-

dependent decisions. The basic idea is that we use category-independent features to

determine the category membership of the observation, and then the corresponding

category-dependent features to determine the class membership. This classification

method is more true to our definition of category-dependent features in that they are

72



meant to “specialize” in discriminating the classes of a given category.

3.3 Hierarchical Classification

Hierarchical classification has been applied in a variety of contexts[88, 29, 60, 40], but

its formal roots may be traced back to Classification and Regression Trees(CART)[9].

Although our hierarchical classifier is not an exact embodiment of CART, many of

our developments will be related to or borrow from CART concepts, so we will begin

with a brief overview of some the fundamental principles of CART.

3.3.1 A Brief Overview of CART

A decision tree is a method of classifying a pattern using a sequence of questions, and

is particularly well-suited for dealing with data that does not have a natural ordering

or a uniform basis for determining similarity [20]. For example, in classifying animals,

one may want to use the number of legs as a feature for distinguishing insects from

arachnids, but the same feature could not be used to distinguish sharks from whales.

Hence, it is natural in such a classification problem to employ a conditional chain

of questions that guide the classification task through only those questions that are

relevant. Figure 28 is an arbitrary example of how a decision tree can serve as a both

efficient and intuitive way to distinguish six types of animals. The tree consists of

nodes, each of which contains a question that is used to reroute a give observation

to one of two directions depending on whether the answer is “yes” or “no.” The

root node is displayed at the top of the tree and is connected to other nodes via

links or branches. Terminal or leaf nodes are those that do not have any subsequent

links, and each terminal node is usually designated a class label that is applied to all

observation tokens that fall into the node.

As can be noticed in Figure 28, decision trees are useful in that they can very

efficiently break down a complex decision-making process into a collection of simpler

decisions, and are flexible in that each node can utilize a unique number and/or type
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Lives on ground?

Has six legs?
Has mammory 

glands?

Insect Has venomous 
tail?

Scorpion Spider

Has conical teeth?

Dolphin Porpoise

Shark

yes

yes
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yes

yes

no

no

no no

no

Figure 28: An arbitrary example of a decision tree that classifies an animal as an
insect, scorpion, spider, dolphin, porpoise, or shark.

of features as is appropriate to its decision question. The classifier can make powerful

use of conditional information in handling nonhomogeneous relationships, and has a

simple form that can be compactly stored [9].

CART[9] is a formalized, general framework for producing such decision trees, and

provides methods for deciding how each node should be split (i.e., which question

should be used to split the observation tokens in each node), when a node should

be declared a terminal node, and how a tree should be pruned. In CART[9], the

fundamental idea is to split the data at each node such that the data in each of the

child nodes are “purer” than the data in the parent node. At each node t, we define

a node proportion p(j|t) that represents the proportion of the cases x ∈ t belonging

to class j, such that
N∑

j=1

p (j| t) = 1 ∀t (96)

The impurity i(t) of node t is a nonnegative, symmetric function of p (1| t) , · · · , p (N | t)

such that [9]:

1. i(t) is maximum when p (1| t) = · · · = p (N | t) = 1
N

2. i(t) = 0 when for any j, p (j| t) = 1, p (k| t) = 0 (∀k 6= j)
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If a split s of node t sends a proportion pR of the data in t to child node tR, and the

proportion pL of the data in t to child node tL, the decrease in impurity is defined as:

∆i (s, t) = i (t) − pRi (tR) − pLi (tL) (97)

For a tree T with a set of terminal nodes T̃ , the overall tree impurity I(T ) is defined

as:

I (T ) =
∑

t∈T̃

i (t) p (t) (98)

where p(t) is the proportion of data that lands in node t. It can be shown that at

each node t, choosing a split that maximizes the node-wise decrease in impurity in

(97) is equivalent to minimizing the overall tree impurity in (98).

Once the tree is constructed, a class assignment rule assigns a class j ∈ {1, · · · , N}

to every terminal node t ∈ T̃ . A common class assignment rule is to simply take the

class for which p (j| t) is largest. This is consistent with the aforementioned concept

of impurity, since in the ideal case, each terminal node will have minimum impurity,

containing only observations that pertain to one class and therefore allowing perfect

separation of data.

3.3.2 The Bayesian Decision and Hierarchical Classification

To obtain some insight on hierarchical classification, let us first consider a simple

example of phoneme classification. The details of the implementation and exper-

iment are given in Appendices A.1 and A.2. For a single-layer classifier, we use

the category-independent features from the A1 model and HMM’s estimated using

standard maximum likelihood estimation techniques [73]. For a 48-phoneme classi-

fication task, the classification accuracy over the test data is 61.86%, as shown in

Table 10. Now, assume a hierarchical classifier using the categorization in Table 6.

For the category-dependent class discriminants, we use the same ML-estimate HMMs

used for the single-layer classifier. Each category likelihood is simply modeled as the
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arithmetic mean of the corresponding class likelihood estimates:

fm (x) = log


 1

n (Cn)

∑

j:wj⊂Cm

exp {gj (x)}


 (99)

Using the hierarchical classification rule in (69), we obtain an accuracy of 62.20%,

which is slightly higher than the accuracy of the single-layer classifier. Although the

difference in accuracy is almost negligible, the fact remains that we were able to more

accurately classify the data by some simple recombining of the HMM outputs with

no additional training. From an alternate perspective, the classification rate became

higher by changing the recognizer configuration alone.

The insight to be gained here is that the class discriminants in (65) are not the

true likelihoods, and therefore the Bayesian minimum probability of error is never

achieved in the single-layer classifier. Hence, it is entirely possible for the actual error

probability to decrease by some arbitrary manipulation of the likelihoods. Consider

another example, where the classifier makes completely arbitrary decisions for every

observation. Assume there are a total 150 tokens labeled under 5 classes w1, w2,

w3, and w4 with 10, 20, 30, 40, and 50 tokens, respectively. The accuracy of the

single-layer classifier is 1
5

= 0.200. Now, suppose we let C1 = w1 ∪ w2 ∪ w3 and

C2 = w4∪w5. The category classifier and within-category classifiers also make purely

random choices. The classification accuracy is 1
2
· 1

3
· 60

150
+ 1

2
· 1

2
· 90

150
= 0.217, which

is higher than that of the single-layer classifier. Again, as long as the single-layer

classifier is not optimum, it is always possible to improve the classifier accuracy by

changing the recognizer design alone. Of course, if we chose the categories such that

C1 = w1∪w2 and C2 = w3∪w4∪w5, the accuracy would be 1
2
· 1
2
· 30
150

+ 1
2
· 1
3
· 120
150

= 0.183,

which is now lower.

Hence, whether a given hierarchical classifier can perform better than a single-

layer classifier depends on a number of factors including the prior distributions of the

pattern classes and the statistical behavior of the class and category discriminants.
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By assuming some mathematical models that describe these factors, one may be able

to show analytically how a hierarchy will perform better under certain constraints.

However, this is beyond the scope of our work. Rather, we present some more intuitive

understanding of the problem by re-interpreting the single-layer Bayesian decision rule

in the context of decision trees, which will then allow us to construct a more direct

comparison between single-layer decisions and hierarchical decisions.

As an example, let us consider a four-class scenario, where the set of all obser-

vations C can be partitioned into four non-overlapping class sets w1, w2, w3, and

w4.

C = w1 ∪ w2 ∪ w3 ∪ w4 (100)

The single-layer classifier in (66) can be interpreted as the binary decision tree shown

in Figure 29. At node t1, the data C is split into two sets. All tokens in C satisfying

g1 > g2 are sent to t2, while the others are sent to t3. At t2, the tokens satisfying

g1 > g3 are sent to t4, while the rest are sent to t5. For the sake of convenience, we

ignore the equality case when dealing with the discriminants. All tokens that land in

t8 are designated class w1, and appropriate assignments are also made for tokens in

t9 to t15. It is easy to see that this classification procedure is exactly equivalent to

the single-layer rule in (66). The number of correctly classified tokens belonging to

class w1 can be expressed as

n1 = p (g1 > g2, g1 > g3, g1 > g4|w1) |w1| (101)

= p (g1 > g2|w1) p (g1 > g3| g1 > g2, w1) p (g1 > g4| g1 > g2, g1 > g3, w1) |w1|(102)

Note that p (g1 > g2|w1) is the proportion of tokens in w1 that fall from t1 to t2

in Figure 29, p (g1 > g3| g1 > g2, w1) the proportion of w1 tokens in t2 that fall to

t4, and p (g1 > g4| g1 > g2, g1 > g3, w1) the proportion of w1 tokens in t4 that fall to

t8. For the sake of simplicity, let us assume that all the comparisons between the

discriminants are statistically independent of each other. The number of correctly
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t1

g1 > g2

t2

g1 > g3

t4 t5

t8 t9 t10 t11

g1 > g4 g3 > g4

w1 w4 w3 w4

t3

g2 > g3

t6 t7

t12 t13 t14 t15

g2 > g4 g3 > g4

w2 w4 w3 w4

Figure 29: The Bayesian decision rule reinterpreted as a binary decision tree

classified tokens belonging to class w1 becomes

n1 = p (g1 > g2|w1) p (g1 > g3|w1) p (g1 > g4|w1) |w1| (103)

Now, consider a hierarchical decision structure, where we merge the class sets w1 and

w4 into the category set C1, and the class sets w2 and w3 into the category set C2.

C1 = w1 ∪ w4, C2 = w2 ∪ w3 (104)

We obtain category discriminants fm as defined in (67) and category-dependent class

discriminants hj as defined in (68), and perform the hierarchical classification de-

scribed in (69). Again, for the sake of convenience, we ignore the equality case when

comparing the discriminants. We can construct another binary decision tree that

describes the two-step procedure in (69) as in Figure 30. The number of correctly

classified tokens belonging to class w1 can be expressed as

n′
1 = p (f1 > f2, h1 > h4|w1) |w1| (105)

= p (f1 > f2|w1) p (h1 > h4| f1 > f2, w1) |w1| (106)

= p (f1 > f2|w1) p (h1 > h4|w1) |w1| (107)
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w4

t6

w2

t7
w3

Figure 30: Hierarchical classification as a binary decision tree

where we have again assumed independent decisions in (107). Now, in order to achieve

higher accuracy using the hierarchical classifier, we want n′
1 > n1. This implies:

p (f1 > f2|w1) p (h1 > h4|w1) > p (g1 > g2|w1) p (g1 > g3|w1) p (g1 > g4|w1) (108)

One way of achieving this is to have the following two conditions:

p (f1 > f2|w1) > p (g1 > g2|w1) p (g1 > g3|w1) (109)

p (h1 > h4|w1) > p (g1 > g4|w1) (110)

The simplified assumption of independent decisions notwithstanding, the two condi-

tions above give us some insight as to when the hierarchical case does better than

the single-layer case. The first condition, (109), postulates that the category classi-

fication rate for class w1 is higher than the classification rate of class w1 out of the

set of classes {w1, w2, w3}, i.e., the ability of a single-layer classifier to distinguish w1

from the classes outside its category. The second condition, (110) postulates that

the hierarchical classifier can achieve better within-category classification for class w1

than the single-layer classifier, assuming the category has been correctly classified in

both cases. The first condition addresses the quality of the category classifier, while

the second condition addresses the quality of the within-category classifiers. We can

also derive these equations for the general case. Given N classes and M categories,
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and again assuming independent decisions, we obtain the following two conditions:

M∏

m=1,m6=n

p (fn > fm|wi) >
N∏

j,wj 6⊂Cn

p (gi > gj |wi) , wi ⊂ Cn (111)

∏

j, j 6=i,wj⊂Cn

p (hi > hj |wi) >
∏

j, j 6=i, wj⊂Cn

p (gi > gj|wi), wi ⊂ Cn (112)

Based on these ideas, in the following sections we describe heuristic methods for

constructing a hierarchical classifier. The first is to search for a hierarchy that our

speech models are likely to support well, and to train the category models to enhance

the performance of the category classification stage. The second is to employ category-

dependent features and within-category MCE training to enhance the performance

of within-category classification.

3.3.3 Constructing the Categories

In Section 3.2.4, we obtained the categorization by formulating it as a clustering

problem. In this section, we employ a more flexible CART-style splitting method to

create many possible categorizations from which we can choose the one that performs

the best under some optimality criterion. We formulate the problem as a data splitting

procedure on the set of phonemes {w1, w2, · · · , wN}. At each node, we split the set

of data such that phonemes with similar variance are sent to the same child node.

This can be done by defining an impurity function that is the sum of the squared

Euclidean distance between the log normalized variances of the phonemes in each

node. The use of the log function is to give more emphasis on the low variances that

the high variances. Note that this impurity function is different from the original

CART definition that requires it to be a function of the class ratios p(j|t).

i (t) =

N∑

i,j=1

∑

λ

{log vi (λ) − log vj (λ)}2 (113)

The problem remains, however, of which splits to consider. For a set of n elements,

the total number of possible binary splits is 2n−1 − 1. For 48 phoneme classes, this is
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around 8.8× 1012, which is impractical to deal with. To circumvent this problem, we

first sort the set of classes according to the similarity of their variance, and fix the

resulting order of phonemes, allowing the splits to take place at only n− 1 locations

in the set of n phonemes. All nodes are continuously split until the terminal nodes

contain two or three phonemes. An example is shown in Figure 31. Here, phoneme

“th” is selected as the “seed” phoneme. We search for the phoneme that is most

similar to “th” by using the Euclidean distance between the normalized log variances

in (113) as a distance measure. This phoneme is “f.” We then look for the phoneme

(out of those remaining, excluding “th” and “f”) most similar to “f” using the same

criterion, and the process is repeated until all phonemes are exhausted.

Once the tree is complete, a list of candidate categorizations can be obtained by

finding all possible combinations of nodes. For example, we can use all the termi-

nal nodes to have { {th,f}, {epi,dh}, {en,ax}, {uh,ah}, {aw,ay}, {aa,ow}, {oy,ao},

{l,el,w}, {m,n}, {ng,dx}, {v,vc,cl}, {er,r}, {eh,ae}, {ih,ey}, {uw,ix,hh}, {d,sil,b},

{g,k}, {p,t}, {ch,jh,sh}, {s,z}, {zh,y,iy} }, or we can use some of the higher-level

nodes on the left-hand side of the tree to have { {th,f,epi,dh,en,ax}, {uh,ah,aw,ay},

{aa,ow, oy,ao}, {l,el,w,m,n,ng,dx,v,vc,cl,er,r}, {eh,ae}, {ih,ey}, {uw,ix,hh}, {d,sil,b},

{g,k}, {p,t}, {ch,jh,sh}, {s,z}, {zh,y,iy} }.

Also note that the initial ordering of the phonemes, and therefore the resulting

phoneme tree, is highly dependent on the choice of the “seed” phoneme (in the case

of Figure 31, “th”). Hence, assuming there are 48 phonemes, we create 48 trees,

each obtained by splitting an ordering with a different seed phoneme. A total 62,958

categorizations were obtained from the trees, where the number of categories was

constrained to be between (and including) 4 and 12. The minimum number of 4

was heuristically selected as the minimum number of categories that could be yielded

by the class-wise variances of the cortical response. 12 was set as the maximum to

limit the computational load of the composite recognizer described in the previous
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{th,f,epi,dh,en,ax,uh,ah,aw,ay,aa,ow,oy,ao,l,el,w,m,n,ng,dx,v,vcl,cl,er,r,eh,ae,ih,ey,uw,ix,hh,d,sil,b,g,k,p,t,ch,jh,sh,s,z,zh,y,iy}

{eh,ae,ih,ey,uw,ix,hh,d,sil,b,g,k,p,t,ch,jh,sh,s,z,zh,y,iy}{th,f,epi,dh,en,ax,uh,ah,aw,ay,aa,ow,oy,ao,l,el,w,m,n,ng,dx,v,vcl,cl,er,r}

{eh,ae,ih,ey,uw,ix,hh,d,sil,b,g,k} {p,t,ch,jh,sh,s,z,zh,y,iy}

{eh,ae,ih,ey,uw,ix,hh} {d,sil,b,g,k} {p,t,ch,jh,sh} {s,z,zh,y,iy}

{s,z} {zh,y,iy}{ch,jh,sh}{p,t}{g,k}{d,sil,b}{eh,ae,ih,ey}{uw,ix,hh}

{eh,ae} {ih,ey}

{th,f,epi,dh,en,ax,uh,ah,aw,ay,aa,ow,oy,ao} {l,el,w,m,n,ng,dx,v,vcl,cl,er,r}

{l,el,w,m,n,ng,dx} {v,vcl,cl,er,r}

{v,vcl,cl} {er,r}{l,el,w} {m,n,ng,dx}

{m,n} {ng,dx}

{th,f,epi,dh,en,ax} {uh,ah,aw,ay,aa,ow,oy,ao}

{uh,ah,aw,ay} {aa,ow,oy,ao}

{aa,ow} {oy,ao}{uh,ah}{aw,ay}

{th,f,epi,dh} {en,ax}

{th,f} {epi,dh}

Figure 31: A phoneme tree obtained by the CART-style splitting algorithm applied
on a fixed ordering of phonemes with “th” as the “seed” phoneme.

section. Note that 62,958 categorizations is already a significant reduction from the

total possibilities (8.8 × 1012 for the two-category case, and more for larger numbers

of categories).

Once the candidate categorizations are found, a variety of criteria can be used to

find the “best.” When the number of candidates is relatively small, we can simply

test each candidate with all training tokens to find the one with the highest overall

classification rate. If the number of candidates is extremely high, we could use only the

category classification rate as the criterion for finding a “suboptimal” categorization.

In both cases, the category models in (122) can be initialized arbitrarily. In our study,

we initialized the category models as the mean of the discriminants of the relevant

classes as was already shown in (99). Table 6 shows the categorization obtained by

searching the list of candidates for the one with the highest overall classification rate.

3.3.4 MCE-Based Training of Category and Class Models

We already showed that the classification rate of the hierarchical classifier using the

categories in Table 6 is higher than that of the single-layer classifier. This was by using

an arbitrarily-initialized category model in (99). In this section, we will formulate the

equations necessary to refine the category model using minimum classification error
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Table 6: Categorization of 48 phonemes, obtained by searching a list of candidates
for the categorization with highest overall classification rate for the training data
(using initial models). The list was obtained by combining the nodes in phoneme
trees like the one in Figure 31

No. Phonemes No. Phonemes

1 aa ah ao aw ax ay dh en epi f ow oy th uh
2 dx el l m n ng w 6 b d g k p sil
3 cl er r v vcl 7 ch jh sh t
4 ae eh ey ih 8 s z
5 ix hh uw 9 iy y zh

training.

The basic philosophy of Minimum Classification Error(MCE) [49] training is that

the class conditional probability estimates, i.e. the class discriminants, can never be

accurately estimated to achieve the Bayesian Probability of Error. MCE training

is used to iteratively adjust the HMM parameters obtained via maximum-likelihood

training [73] by considering the actual classification error rather than the density

estimation error. This is accomplished by employing a misclassification measure de-

pendent on the HMM parameters, as follows:

di (X|Θ) = −gi (X|Θ) +Gi (X|Θ) (114)

Here, X corresponds to one training token (containing one or more frames of speech)

belonging to class i, Θ is the set of parameters of all speech models, gi (X|Θ) is the

discriminant produced by the model for class i, and Gi (X|Θ) is an anti-discriminant

function for class i, defined as:

Gi (X|Θ) = log

[
1

M − 1

M∑

j,j 6=i

exp {ηgj (X|Θ)}
]1/η

(115)

The HMM parameters in Θ are adjusted by a gradient search algorithm that attempts

to minimize a loss function, which is a smoothed version of the misclassification

measure.

l {di (X|Θ)} =
1

1 + exp {−αdi (X|Θ) + β} (116)
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The parameter updating equation via gradient search can be summarized as

Θn+1 = Θn − εnWn∇l {di (X|Θ)}Θ=Θn
(117)

where εn is the learning rate and Wn a positive definite matrix that can be set as the

identity matrix. Dropping the parenthesized variables to simplify the notation, the

gradient ∇l {di (X|Θ)} can be computed using the chain rule as follows:

∂l

∂Θ
=

∂l

∂di

[
∂di

∂gi

∂gi

∂Θ
+
∂di

∂Gi

∂Gi

∂Θ

]
= αl (1 − l)


−

∂gi

∂Θ
+

M∑
j,j 6=i

exp (ηgj)
∂gj

∂Θ

M∑
j,j 6=i

exp (ηgj)


 (118)

Hence, the parameter update equations for all HMM’s and output Gaussian mixture

models, i.e., the transition probabilities aij, the mixture weights cjk, the means µjkl,

and the standard deviations σjkl can be derived as in [49].

In our study, we will introduce a slight modification to these basic HMM training

formulae. Specifically, we train the HMM parameters using the frame-normalized log

likelihood instead of the total log likelihood. We have found this formulation to work

better in our phoneme classification tasks because it limits the dynamic range of the

discriminants, especially when training the category models that will be discussed

later in (122). The frame-normalized likelihood produced by phoneme model i for the

set of observations X and parameterized by the set of parameters Θi is defined as

q (X|Θi) , p (X|Θi)
1

f (119)

where f is the number of frames in X. Hence, the class-wise discriminant is

gi (X|Θ) = log q (X|Θi) =
1

f
log p (X|Θi) (120)

The gradient of gi (X|Θ) with respect to the vector of parameters Θ is

∂gi (X|Θ)

∂Θ
=
∂ log q (X|Θi)

∂Θ
=

1

f

∂ log p (X|Θi)

∂Θ
(121)
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Hence, one can see that all gradients in [49] need only be scaled by a factor 1/f when

using the frame-normalized discriminants instead of the total discriminants.

We now consider the category models, which are modeled as linear combinations

of the frame-normalized likelihoods.

rn

(
X

∣∣Θ, α(n)
)

=
∑

i,wi⊂Cn

αiq (X|Θi) (122)

where each q (X|Θi) is computed using the optimal state sequence of observation X

for model i. The category discriminant fn of category n is the log likelihood:

fn = log rn

(
X

∣∣Θ, α(n)
)

= log
∑

i,wi⊂Cn

αiq (X|Θi) (123)

fn(1 ≤ n ≤ M) can then be used instead of the class discriminant gi(1 ≤ i ≤ N)

in the basic HMM equations to perform category model training. It is easy to show

that the gradient of fn with respect to the weight α
(n)
i is

∂fn

∂α
(n)
i

=
q (X|Θi)

rn (X |Θ, α(n) )
(124)

It is also easy to show that the gradient with respect to the HMM parameters is

∂fn

∂Θ
=

α
(n)
i q (X|Θi)

rn (X |Θ, α(n) )
· ∂ log q (X|Θi)

∂Θ
=

α
(n)
i q (X|Θi)

rn (X |Θ, α(n) )
· ∂gi (X|Θ)

∂Θ
(125)

Hence, the gradients with respect to the transition probabilities, mixture weights,

means, and standard deviations can be obtained by replacing the ∂gi(X|Θ)
∂Θ

term with

the gradient obtained for per-frame MCE training in (121).

For the category-dependent class discriminants, the MCE training is done such

that only the classes belonging to the relevant category are involved. Hence, the

anti-discriminant function for class wi(⊂ Cn), would be (assume n(Cn) is the number

of classes in Cn)

Gi (X|Θ) =
1

η
log

1

n (Cn) − 1

n(Cn)∑

j,j 6=i
wj⊂Cn

exp {ηgj (X|Θ)} (126)
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Figure 32: The category search procedure. The phoneme class-wise variances are
used to produce N orderings of the N phonemes, where each ordering starts with a
different seed phoneme. CART-style splitting using the impurity function in (113) is
used to generate a phoneme tree out of each ordering, and a list of candidate catego-
rizations is created by combining the nodes. A search for the “best” categorization
is performed over the N lists.

Category-
Independent 

Features

Initial Category 
Models (Mixed 

HMM)

Category-
Dependent 
Features

Refined Cat.-
Dep. Class 

Models (HMM)

Training Data

Initial Class 
Models (HMM)
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Models (HMM)

ML Estimation 
(Baum-Welch)

Apply Uniform 
Weights

Refined Category 
Models

(Mixed HMM)

MCE Training

ML Estimation 
(Baum-Welch)

Within-Category 
MCE TrainingCategorization

Figure 33: The model training procedure. The category-independent features and
category-dependent features are obtained using the method illustrated in Figure 25
and 26. Class models are initialized using standard maximum-likelihood estimation
(Baum-Welch) methods. The category models are initialized by applying uniform

αi values to the mixed-HMM models in rn

(
X

∣∣Θ, α(n)
)

=
∑

i,wi⊂Cn

αiq (X|Θi). MCE

training is then used to refine the αi’s and HMM parameters. For the category-
dependent features, within-category MCE training is performed to refine the ML-
estimated HMM parameters.
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Figure 34: The testing procedure (hierarchical classification). First, category-
independent feature selection is done on each test token to create the category-
independent feature set X. Category mixed-HMM models are used to decide on
the category Cn. Category-dependent feature selection on the test data is done to
create feature set Xn, which is used with the within-category class models to produce
the final class decision wi.

3.3.5 Hierarchical Classification

A schematic overview of the entire system is depicted in Figures 32, 33, and 34.

The experiment was conducted using phone segments in the TIMIT database (see

Appendix A.2 for details). All phoneme classification results shown in Table 7 ∼ 10

are before mapping the 48 phoneme classes to 39 classes (as in [58]). The reason

is so that we can analyze the pure classification rates independent of the effects of

phonology-based remapping.

Figure 32 shows the categorization search procedure, from which we obtain the

categorization in Table 6. Using ML-estimated HMMs, a preliminary experiment

was conducted to test how well each feature vector (x1 ∼ x9) could discriminate the

classes of each category (C1 ∼ C9). The results are shown in Table 7. The bold-face

diagonal entries are roughly the highest at each row, which is consistent with our

goal of making each category-dependent feature vector specialize in discriminating

the classes in the corresponding category. The only category where this trend is not

so evident is C1, for which the discriminative capability of x1 seems to be lower than

most of the other category-dependent features. The reason may be that C1 contains

many phoneme classes, and their low-variance regions may not be similar enough to

be represented by one feature vector.
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Table 9 shows the hierarchical classification rate (62.20%) when using the category-

independent feature vector for both the category decision and the class decision, as

mentioned in Section 3.3.2. ML-estimated HMM’s (without any MCE training) were

used for all decisions. Uniform weights were applied in the category discriminants in

(122), as shown in (99). Table 9 also shows the category classification rate (79.25%)

in this case. This rate was enhanced (80.06%) with the addition of MCE training for

the category discriminants as described in Section 3.3.4.

The overall hierarchical classification rate after using the full training procedures

and category-dependent features is shown in Table 10. With a minimal amount of

MCE training, the hierarchical classification rate can be raised higher than when us-

ing the ML-estimated HMM’s with uniform weights. While the hierarchical classifier

does not perform as well as the single-layer classifier using category-dependent fea-

tures, note that the latter is far more computationally demanding in that it requires

likelihood calculations in 48 × 9 = 432 models for every training token, whereas

the hierarchical classifier requires only likelihood calculations for the category mod-

els and the subsequent category-dependent class models (roughly 48 + 48/9 ≈ 53.3,

since there is an average of 48/9 classes per category). Also note that the purpose

of our experiments is not to optimize classification performance but to validate our

construction and application of a hierarchical classifier using category-dependent fea-

tures.

3.4 Discussion

In our selection of category-dependent features in Figure 26, the thresholds used

for the low-variance filters and high-activation filters are set rather arbitrarily. We

observed in the course of our experiments that the phoneme classification trends such

as those shown in Table 7 can noticeably vary depending on how these thresholds

are set for each category. Hence, there still remains the task of developing a more
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Table 7: Phoneme classification accuracy(%) of each category in Table 6 (C1 ∼
C9) using different category-dependent features (x1 ∼ x9) and ML-estimated HMMs.
Ideally, the (bold-face) diagonal entries should be highest for each row, since it is
always feature vector xm that “specializes” in discriminating the classes in Cm.

Category x1 x2 x3 x4 x5 x6 x7 x8 x9

C1 67.02 67.63 66.76 68.29 68.21 68.24 67.50 64.76 68.88
C2 69.98 73.48 70.95 72.21 72.23 72.12 69.49 68.56 73.01
C3 73.08 73.11 73.82 73.40 73.51 73.79 73.30 74.12 74.49
C4 70.46 70.13 68.56 72.58 70.93 69.92 68.44 65.20 70.79
C5 90.26 90.53 89.85 90.31 90.64 90.37 90.15 89.27 90.48
C6 81.73 83.11 82.10 83.05 83.16 83.65 82.61 82.73 83.71
C7 85.76 84.33 84.33 84.21 84.17 84.88 85.72 85.59 85.17
C8 79.61 79.75 78.84 79.34 79.75 79.81 79.52 80.55 79.64
C9 91.63 91.50 91.41 91.32 91.68 92.25 91.99 90.08 92.39

Table 8: Phoneme classification accuracy (%) of each category in Table 6 using
the corresponding category-dependent features (i.e., the bold-face diagonal entries in
Table 7) after varying degrees of within-category MCE training.

x1, C1 x2, C2 x3, C3 x4, C4 x5, C5 x6, C6 x7, C7 x8, C8 x9, C9

67.39 74.18 75.95 72.81 91.58 83.85 85.72 80.60 92.39

Table 9: Phoneme class and category classification rates(%) for clean speech (using
48 phoneme classes, 9 categories in Table 4)

Hierarchical classification rate using initial models 62.20
Category classification rate using initial models 79.25
Category classification rate using trained models 80.17

Table 10: Phoneme classification accuracy(%) of 48 phoneme classes under vary-
ing SNR, features, and classifier configurations. SL: Single-layer classifier; TL:Two-
layer (hierarchical) classifier, CI: Category-independent features from A1 model;
CD:Category-dependent features from A1 model; *74.51 when the 48 phoneme classes
are mapped to 39 as in [58].

Clean 20 dB 15 dB 10 dB 5 dB 0 dB

MFCC-SL 69.58* 62.76 56.60 47.39 34.30 19.66
CI-SL 61.87 61.31 60.34 58.11 51.99 40.84
CD-SL 66.96 66.34 65.23 62.62 56.24 44.03
CD-TL 62.66 61.90 61.18 58.05 52.78 41.33
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quantitative understanding (and perhaps a more refined definition) of the low-variance

and high-activation regions in the cortical response in connection with the acoustic

properties of the phonemes.

The composite classifier described in Section 3.2.5 is a vastly simplified method of

combining the HMM outputs to make a decision. More elaborate combination meth-

ods [94, 57] exist, however, that may yield better performance. In addition, while

speech recognition and MCE training is not a primary purpose of this thesis, the

small increase in phoneme classification rates (around 1 percent point, as shown in

Tabs. 9 and 10) leaves room for improvement on the training method and parameters,

especially for the category models. The two-stage process in (69) may be too con-

strained in that “hard” decisions are made on the category at the first stage. Rather,

a “soft” hierarchical decision scheme that considers multiple categories, rather than

only one, may allow better performance.

We recall that classification using category-dependent features according to the

Bayesian decision rule only makes sense when dealing with two or more pattern

classes, which is why we specifically define a “category” as the union of two or more

classes. Looking forward, one may extend the concept to the notion of class-dependent

feature that specializes in the discrimination of a single class from the rest of all classes

in a given set of observations. Hence, the class-dependent feature xi specializes in

discriminating the class wi from its complement wC
i . It is then natural to suggest

that class-dependent features are appropriate for detection while category-dependent

features are appropriate for classification. For example, one may conjecture that the

class-wise low-variance regions in the cortical response can be used to obtain class-

dependent features with which phoneme detectors can be constructed. It may be

possible that the class-dependent features will allow better detectors (i.e., detectors

with Receiver Operating Characteristics curves that are a better fit to the ideal curve)

than those using “class-independent” features. These are directions in line with our
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work that may be pursued in the future.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

In this dissertation, we have presented a modified version of a physiological model of

the peripheral and central auditory system developed in [95] and [92]. As a method of

developing insight on the spectral transformation in the cortical response, and as an

indirect way of validating the auditory model under existing recognition framework,

we presented various feature selection methods that parallel the computation of the

well-known MFCC. The characteristics of these features were quantitatively and qual-

itatively compared and discussed. We also presented a framework for analyzing the

noise robustness and the encoding of cognitive information in class-dependent neu-

rons in the cortical response, and proposed a method of dimension reduction based

on these ideas. The validity of the framework was also quantitatively verified by ap-

plication in a conventional phoneme classification experiment, and interpretation of

the results gave further insight on the MFCC-equivalent features derived in previous

sections.

Conceptually, the MFCC can be interpreted as information derived from a small

subset of neurons in the cortical space as defined by the central auditory model em-

ployed in this study. The cortical response is fundamentally different from traditional

frontends in that it acts as a system of matched filters that try to mimic individual

parts of the spectrum and map them to a dimension-expanded space, hence allow-

ing more explicit separation of spectral components. This allows us to introduce the

notion of category-dependence in cognitive information and noise-robustness.

Hence, in the latter half of our work, we explored the use of category-dependent

features based on the common low-variance and high-activation regions of phoneme
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classes in the cortical response. As a way of validating the feature selection, we use

the features in a composite phoneme classifier and found a significant improvement

in the classification rate compared to the category-independent case. Next, to fully

incorporate the category-dependence in the classification process, we explored the

use of hierarchical classification where the standard Bayesian decision rule is broken

into a two-stage process (first, the category decision, and second, the within-category

class decision). The hierarchical classifier was constructed based on many heuris-

tic building blocks including a CART-style splitting and search routine to obtain a

reliable categorization, and mixed-HMM category models that were enhanced using

MCE training. The results show improved performance over the single-layer classi-

fier, and motivates more in-depth development of category-dependent features and

hierarchical classification in future work.

Based on our interpretation of the central auditory model, it may be possible in

the future to develop a simplified variant of the model that is more computationally

efficient and analytically tractable while maintaining the essential benefits of dimen-

sion expansion (such as the signal to noise separation effects and class-dependent

encoding of speech information that we studied in Chapter 2. A more theoretically

rigorous development of ”low-variance regions” and ”high-activation regions” would

also allow better construction of the low-variance and high-activation filters, which

currently rely on heuristic normalizing and thresholding of the variances and absolute

means. There is also much room for improvement in the modeling and design aspects

of the hierarchical classifier we presented. Finally, we hope that the basic notions

of category-dependent features and class-dependent features presented in this thesis

could be further developed into a more formalized framework for pattern classification

and detection.

The contributions of this work can be summarized as follows:

1. We proposed new insights and ideas on interpreting a model of the central
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auditory system, and the benefits of dimension-expansion in the model. The

details are as follows:

• We qualitatively and quantitatively validated the model under existing

speech processing and recognition methodology.

• We studied the separation effect of signal and noise in the cortical response,

showing that dimension-expansion can provide us with noise robustness.

• We showed how low-variance regions encode speech information.

2. We proposed new feature selection and pattern recognition methods for exploit-

ing the dimension-expansion in the model. The details are as follows:

• We recognized that the dimension-expansion in the model gives way to

low-variance regions specific to phoneme class, and proposed a category-

dependent feature selection method.

• We proposed methods for constructing a hierarchical classifier to exploit

the specialized discriminative ability of category-dependent features.

3. We quantitatively validated our ideas and methods by applying them to phoneme

classification experiments (note that our objective in these tasks was not to op-

timize recognition performance nor propose new features as a replacement of

MFCC’s).

Publications, submissions, and presentations based on this work so far are as

follows:

• JEON, W. and JUANG, B.-H., “Auditory analysis for speech recognition based

on physiological models,” (abstract) Journal of the Acoustical Society of Amer-

ica, vol. 115, no. 5, pp. 2429
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• JEON, W. and JUANG, B.-H., “A category-dependent feature selection method

for speech signals,” INTERSPEECH-2005, Lisbon, Portugal, Sept. 2005
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Acoustics, Speech, and Signal Processing, vol. 1, pp. 1233 - 1236, Toulouse,

France, May 2006
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using category-dependent features,” submitted to IEEE International Confer-
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cal classification of speech signals,” under preparation for submission to IEEE

Transactions on Audio, Speech and Language Processing

• JEON, W. and JUANG, B.-H., “Methods for automatic pattern recognition
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APPENDIX A

DETAILS ON IMPLEMENTATION AND EXPERIMENTS

A.1 Implementation of Auditory Model

The auditory spectrum was implemented using an IIR filterbank with 128 frequency

channels between 179.73 Hz and 7040 Hz at a resolution of 24 channels/octave[2].

Following the implementation in [2], the auditory spectrum computation is simplified

by normalizing all speech signals to have zero mean and unit variance and skipping

the time derivative and spatial smoothing stages. A decay constant of 8ms is used

for the leaky integration at the final stage, and filterbank outputs are sampled every

10ms to obtain the auditory spectrum. When extracting the spectrum for a given

phone segment in a continuous speech sentence, 40ms of data preceding the segment

was included in the analysis range to allow the auditory spectrum’s LIN to converge

before final sampling of the actual segment.

The response areas of the cortical response are implemented to have eleven φ

channels equally distributed along the range −π
2
≤ φ ≤ π

2
. In addition, there are

twenty s channels between 0.25 cycles/octave and 4.6 cycles/octave at a resolution

of 4.5 channels/octave (20.2 channels/octave for high-resolution diagrams in figures).

The x channels are identical to the frequency channels of the auditory spectrum.

Hence, each cortical response frame contained 128×20×11=28,160 points.

All aspects of the model were implemented by original MATLAB code unless

otherwise noted.
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A.2 Setup of Phoneme Classification Task

Phoneme segments in the TIMIT database excluding the “sa” sentences were used

in all experiments. We followed the convention specified in [58] and adopted the

48 folded phoneme classes specified in [58] (“ax-h” was folded into “ax”). Phone

segments for the MFCC were obtained by applying 25 ms Hamming windows at

10 ms intervals, allowing equal signal overlap at the first and last frames, following

the implementation in [34]. Phone segments shorter than one frame were windowed

such that each segment was located at the center of the window. For the auditory

spectrum, spectral vectors were obtained by time-sampling the channel outputs at

the end location of each Hamming window used for the MFCC. Ai in (52) and Ac

in (56) were obtained using the training data, then applied on the testing data for

subsequent procedures.

For the phoneme classification task, we built 48 models, one for each phoneme.

Each model was a simple left-to-right Hidden Markov Models(HMM) implemented by

HTK software, with skips added to accommodate phone segments with only one or two

frames. Each feature vector had 12 raw elements, and energy, delta and acceleration

coefficients were appended to result in a total size of 39 elements. Frames outside

the phoneme segment were used to calculate the delta and acceleration coefficients

at segment edges. All features were normalized to have zero mean and unit variance,

and bias and scale factors from the training data were used for the testing data.

The number of Gaussian mixture components in the output mixture probability of

each state was gradually incremented from 1 to 40 over many iterations. Unless

otherwise stated, all phoneme classification results are the result of using 40 mixtures

and following conventional procedure [58] of disregarding within-group confusions in

certain sets of classes (resulting in 39 final classes). The best result under clean

conditions is provided by the MFCC at 74.51%, which matches the results reported

in other studies performing similar phoneme classification tasks[34].
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APPENDIX B

MATHEMATICAL PROOFS

B.1 Proof of Response Areas Modeling Spectral Envelopes

Assume that the power spectrum takes on the following form:

p (y) =
∑

k∆∈R

δ (y − k∆) v (y) (127)

where the summation is performed over the integer k, and R is the entire frequency

range of interest. In a speech signal, ∆ models the pitch, while v(y) is the spectral

envelope that can model broadband energy distributions such as formants. We have:

r2 (λ) =
[ ∑

k∆∈R(λ)

v (k∆)w (k∆;λ)
]2

(128)

If ∆ is small compared to R(λ), (35) also implies:

∑

k∆∈R(λ)

w2 (k∆;λ) ≈ 1

∆

∫

R(λ)

w2 (y;λ)dy =
K

∆
(129)

Hence, we can apply the summation form of the Cauchy-Schwarz Inequality on (128)

to obtain:

r2 (λ) ≤




∑

k∆∈R(λ)

v2 (k∆)


 ·




∑

k∆∈R(λ)

w2 (k∆;λ)


 =

K

∆

∑

k∆∈R(λ)

v2 (k∆) (130)

The maximum squared response will occur when

w (k∆) = c · v (k∆) (131)

in R(λ) where c is some constant. One response area function that satisfies this

is (41), and we now have a high-activation response area that traces the spectral

envelope.
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B.2 Proof on Neuronal SNR

Assume that the additive noise is stationary white noise with variance β over R, and

p(y) is the Fourier power spectrum. This results in d(y) = β. We also assume the

harmonic model in (127), which does not lose us generality since any arbitrary power

spectrum can take this form if we make ∆ very small. The SNR of the auditory

spectrum in the range R(λ) as defined in (46) is:

Sp,λ =

∫
R(λ)

p (y)dy
∫

R(λ)
βdy

=
1

βVλ

∫

R(λ)

[
∑

k∆∈R

δ (y − k∆) v (y)

]
dy =

1

βVλ

∑

k∆∈R

v (k∆)

(132)

where Vλ denotes the volume (length in 1-d case) of the region R(λ). Similarly, the

SNR of the noise-respondent neuron with response area defined in (43) is:

Sr,θ =

cβ
∑

k∆∈R(λ)

v (k∆)

c
∫

R(λ)
β2dy

=
1

βVλ

∑

k∆∈R(λ)

v (k∆) (133)

Hence,

Sr,θ = Sp,λ (134)

The SNR of the signal-respondent neuron with response area (41) is:

Sr,λ =

c
∑

k∆∈R(λ)

v2 (k∆)

cβ
∫

R(λ)
v (y)dy

≥

1
n

[ ∑
k∆∈R(λ)

v (k∆)

]2

β
∫

R(λ)
v (y) dy

(135)

where n denotes the number of harmonic impulses in R (λ) and we have applied the

summation form of the Cauchy-Schwarz Inequality where equality holds when v(k∆)

is constant over k.

If the pitch ∆ is small compared to R (λ) (or if p(y) ≈ v(y)),

∫

R(λ)

v (y)dy ≈ ∆
∑

k∆∈R(λ)

v (k∆) (136)

In addition, we know that n∆ ≈ Vλ. Hence,

Sr,λ ≥ 1

βVλ

∑

k∆∈R(λ)

v (k∆) = Sr,θ = Sp,λ (137)
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Figure 35: (a) Demonstration of the approximation in (139), where p(y) has been
arbitrarily scaled and biased. Here, the range R(λ) is the y-axis roughly below 4kHz.
(b) Ratio of squared SNR’s as a function of b

B.3 Effects of Inhibition on SNR

Since p(y) ≥ 0, it is never actually possible for the approximation (41) to hold, since

all response areas have negative inhibitory lobes flanking the positive excitatory areas.

If the response area w (y;λ) is composed of a positive part w+ (y;λ) in the excitatory

range R+ (λ) and a negative part w− (y;λ) in the inhibitory range R− (λ), the cortical

response in (28) can be written as:

r (λ) =

∫

R+(λ)

w+ (y;λ) p (y) dy +

∫

R−(λ)

w− (y;λ) p (y)dy (138)

For r (λ) to be large, it is obvious that p(y) in R− (λ) must be small, since p(y) is

always non-negative, and must be as close to zero as possible when w− (y;λ) is most

strongly negative. This trend can be noticed in Figures 16(a), (b), and (d), and the

vice versa in Figure 16(c).

Hence, an approximation of the signal-respondent response areas that is more

reasonable than (41) may be:

w2 (y;λ) =





c · {v (y) − b}

0

y ∈ R (λ)

y /∈ R (λ)
(139)

where b > 0. By subtracting a constant from the spectrum, we divide it into a positive

region and a negative region, which are effectively matched with the excitatory and

inhibitory regions of the response area. A demonstration of this is shown in Figure
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35(a), where an arbitrary scale and bias factor has been applied to the auditory

spectrum to show how it better matches the response area shown in Figure 17(b).

To see how this affects our analysis of the SNR, we first assign s1 =
∫

R(λ)
v (y) dy

and s2 =
∫

R(λ)
v2 (y) dy for notational simplicity. Applying the approximation in

(136), we can compute the SNR defined in (45) for the response area model in (139)

to be:

S ′
r,λ =

1

∆β

∣∣∣∣
s2 − bs1

s1 − bVλ

∣∣∣∣ (140)

Likewise, the SNR using the original response area model in (41) is:

Sr,λ =
1

∆β

∣∣∣∣
s2

s1

∣∣∣∣ (141)

We can compare the two SNR’s by taking the squared ratio and writing it as a function

of b as follows:
S ′2

r,λ

S2
r,λ

=

{
s1 (bs1 − s2)

s2 (bVλ − s1)

}2

=

{
α+

ρ

b− γ

}2

(142)

where α = s2
1/(s2Vλ), ρ = s1 (s2

1 − Vλs2)/(s2V
2
λ ), γ = s1/Vλ. By the integral form

of the Cauchy-Schwarz relation, and ignoring the equality case which would require

the spectral envelope to be constant, we have s2 > s2
1/Vλ. Hence, we know that

0 < α < 1 and ρ < 0, and also γ > 0, allowing us to visualize (142) as Figure 35(b)

and recognize that S ′
r,λ > Sr,λ as long as 0 < b < 2s1s2/(s2

1 + Vλs2). This provides us

a range in which the inhibitory parts of the response area can actually raise the SNR

by allowing the cancelation of noise integrated by the excitatory parts. Note that

when b = γ, the noise is canceled exactly when the spectral distortion is constant,

resulting in an SNR approaching ∞. Since γ is effectively the local average of the

spectrum, it is also reasonable to assume that the b for the cortical response areas will

roughly lie in the vicinity of γ due to the symmetry of the response areas, particularly

when φ = ±π/2.
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