
2566 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 8, NOVEMBER 2011

Speech Analysis and Synthesis Based
on Dynamic Modes

Julio Vargas and Stephen McLaughlin, Fellow, IEEE

Abstract—In this paper, the source–filter model of speech pro-
duction is adapted to represent the speech signal as the superpo-
sition and convolution of a dynamic source and resonant modes.
The aim is to increase the resolution of the time-instantaneous-fre-
quency representation of each of the individual contributions of
different sections of the human phonatory system. We present a
framework based on dynamic mode predictors and filters, which
are adapted, using gradient-based techniques, to track the modal
dynamics of speech yielding a representation which is free from
quasi-stationary assumptions thus allowing flexible manipulation
of the speech signal. Several examples are offered including in-
tonation modifications to illustrate the potential of the proposed
approach.

Index Terms—Dynamic features, modal dynamics, instan-
taneous frequency, instantaneous pitch tracking, intonation
modification, nonstationary models, speech resonances.

I. INTRODUCTION

S
PEECH is generated by a complex, nonlinear, nonsta-

tionary and multi-component process which originates

from an intricate interaction between the constituents of the

human phonatory system. Over the years numerous researchers

have proposed models attempting to capture the nature of

speech. While these methods have been successful in capturing

elements of the speech generation process and in developing

speech systems, these models are often constrained by restric-

tive assumptions.

If the speech signal is assumed to be locally stationary, the

contribution of the vocal tract is manifested in the envelope of

short-term spectral representations based on either the Fourier

transform or on auto-regressive models. This supports the con-

cept of a source-filter model of speech production inspired by

the human phonatory system [1].

This paper builds on ideas that consider speech to be com-

posed of modulated components and the concept of an analytic

signal discussed in [2] which itself built on earlier work by

Dudley [3], Cherry and Philips [4], and Flanagan [5]. These
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early works suffered from the estimate of the formants being

affected by leakage from the neighboring formats. However,

as Rao [2] pointed out, all of these or subsequent approaches

ignored the detailed variations in amplitude and phase or

frequency.

Some researchers have focused on modeling the speech wave

as a quasi-periodic and quasi-stationary signal [6]. They rely on

the short-term Fourier Transform to extract the evolution of the

parameters which model the sinusoidal components yielding a

representation with limited effectiveness in the differentiation

of information related to glottis or vocal tract behavior. Despite

the fact that the instantaneous frequency of each modeling com-

ponent is estimated with increased accuracy in [7], marking a

departure from the implied quasi-periodicity assumption, the in-

stantaneous variability of the vocal tract is not captured due to

the use of quasi-stationary spectral envelope estimators based

on linear prediction.

In the search for alternative approaches to seeking an effective

characterization of the nonlinear and time varying yet resonant

nature of speech, researchers have proposed modeling speech

resonances using sinusoids with instantaneously variable pa-

rameters (frequency and amplitude [8] or damping [9]). These

models introduce a level of flexibility in the parametrization of

the characteristics of the resonances allowing a dimensionality

reduction in comparison to representations based on quasi-peri-

odicity assumptions. Despite these achievements, the perceptual

integrity of the speech signal is not entirely retained because of

the use of band-pass filtering and windowing [10] which is re-

quired to separate and parameterize the modeling components.

In an attempt to separate vocal tract from source related in-

formation, considerable efforts have been devoted in extracting

the spectral envelope from short term spectral representations.

However, the instantaneous variability of the vocal tract shape

and the limited separability of information obtainable in the

spectral domain have defeated all efforts. Although sophis-

ticated approaches have been explored recently to extract

vocal-tract-related information relying on either multi-cycle

correlation measures [11] or spline-based spectral smoothing

[12], it can be argued that the separability achievable with these

techniques is limited by their inability to faithfully represent

vocal tract and glottal or source dynamics. A faithful represen-

tation would be one enabling the time-instantaneous-frequency

resolvability of the acoustic contribution of different sections

of the phonatory system which is an essential requirement to

guarantee the necessary flexibility to perform prosodic modi-

fications. This fact is evidenced in speech modification efforts

focused on preserving continuity in speech dynamics associ-

ated with pitch [13] and resonant frequencies [14] driving the
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development of techniques that strive to extract instantaneous

pitch [15] and resonance related features [17].

Recently proposed techniques to perform prosodic modifi-

cations, based on synchronously re-scaling pitch cycles of the

linear prediction residual [18], [19], depend on windowing and

are not focused on preserving continuity in speech dynamics.

This is a limitation if these techniques are to be used to control

the fine and continuous evolution of perceptually important pa-

rameters observed in real speech.

Based on the brief review given above, it is possible to infer

that a challenge still remains to find an adaptable and integrity-

preserving technique which does not rely on rigid and distorting

predefined frames or filters [10] and which seeks to faithfully

represent the dynamics of speech. This technique should focus

on the extraction of physically and perceptually relevant infor-

mation with instantaneous-time-frequency resolvability there-

fore taking into account the underlying instantaneous properties

of the human phonatory and auditory mechanisms.

In this paper, we propose a framework for analysis which

accounts for the instantaneously variable and multi-component

nature of the speech signal. We seek to capture and preserve

continuity in perceptually relevant spectral and pitch related

parameters by focusing on the development of a technique

free from predefined windowing and filtering. In order to

achieve this goal, the speech signal is assumed to be com-

posed of modes or exponential signals characterized by their

instantaneous complex frequencies, these modes are termed

dynamic modes (DMs) hereafter. The proposed approach

seeks to reinforce the idea of extracting the dynamics of ele-

mentary components of the speech signal by focusing on the

instantaneous complex-frequency features to present a flexible

framework for speech analysis.

The DMs are convolved and added together to construct the

speech signal and can be grouped according to their association

with different components of the phonatory system. In order to

extract information from real speech signals, the instantaneous

parameters of a set of shadow mode predictors are adapted, re-

lying on gradient-based approaches, to minimize instantaneous

prediction measures. The idea of shadow modes was first dis-

cussed in the context of nonlinear dynamical systems (see Gre-

bogi et al. [20]) and has been further utilized in prediction of

nonlinear time series by Judd et al. [21]. In [20] the authors state,

For a physical system which exhibits chaos, in what sense does

a numerical study reflect the true dynamics of an actual system.

They were focused on demonstrating that a true trajectory could

be shown to track closely or shadow a noisy, (computer gen-

erated) trajectory. In [21], shadowing trajectories were used to

assess the reliability of predictions of dynamical time series. In

this paper, this idea is adopted seeking to develop shadow pre-

dictors that allow tracking the trajectory of components within

the speech model.

The ideas introduced here represent a continuation and ex-

tension of the work presented in [17] where the contribution of

the vocal tract was modeled as superposition of nonstationary

exponential signals. Given that the dynamic interaction of vocal

tract and glottal (or source) systems was not explored, the pro-

posed model was insufficient to be applied to the task of per-

forming prosodic modifications. In this work, these limitations

Fig. 1. Illustration of modeling the speech signal as a superposition of four dy-
namic modes. Each mode is the result of the dynamic mode convolution (DMC)
of the glottal modes with the corresponding mode dynamics.

are overcome with the introduction of a model incorporating

vocal tract-source interaction and the glottal or source signal

is represented as a sum of modes to account for the possible

multimodal nature of the different types of phonation or voice

sources. This idea is partially supported by the fact that the

glottal waveform has been modeled, explicitly or implicitly, as

an oscillatory waveform relying on analytical functions [22],

physical models [22], nonlinear function models [23], [24] or

hybrid approaches [25].

Although more research is required to support the idea of the

multimodal nature of the source, in principle, a quasi-periodic

glottal signal can be modeled as a superposition of harmonic

components (modes). Additionally, the noise-like source for un-

voiced speech could be potentially decomposed as a sum of non-

harmonic modes [26].

The technique proposed in [17] to adaptively track speech res-

onances is revised here as a process of parallel de-emphasis and

shadow resonant mode adaptation reinforcing a view focused on

the intrinsic modal nature of speech. These ideas are extended

to track the instantaneous pitch of speech by sharply focusing

the “attention” of a shadow dynamic predictor on a fundamental

mode of the glottal component of the speech signal. This in-

creased attention is achieved by relying on dynamic Gabor and

resonant modes guided by the dynamics of the shadow pre-

dictor. As an illustration of the potential of the proposed ap-

proach, finely controlled instantaneous pitch (intonation) mod-

ification is performed on speech signals by focusing on modi-

fying the instantaneous frequency of the glottal modes to match

a target pitch. This is done by relying on instantaneous-pitch-

guided time-warping.
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Fig. 2. Example illustrating the implementation of the required cascade for the case of four Shadow dynamic mode predictors (S-DPs) to extract mode dynamics
and a dynamic Gabor-resonator (DGR) to track the instantaneous pitch.

Fig. 3. Illustration of the implementation of a Shadow dynamic mode predictor.

This paper is organized as follows. In Section II, the concept

of a dynamic signal is extended to introduce the idea of dy-

namic modes. After that, a new model of speech production is

presented in conjunction with the idea of dynamic mode convo-

lution concluding the section with a detailed description of the

idea of dynamic mode predictors, shadow dynamic modes and

dynamic Gabor modes. In Section III, the concepts which have

been introduced are applied to the analysis of speech signals to

extract resonance and pitch related information. The extracted

information is then used to allow intonation modification based

on instantaneous-pitch-guided time warping of the prediction

residual illustrating the proposed approach with several experi-

ments. Finally, the paper draws conclusions based on the anal-

ysis and results presented in the paper.

II. DYNAMIC MODES

The notion of instantaneous frequency of a signal is a concept

that has existed for some considerable period of time [27], [28].

Poletti showed [29] how the conditional moments of frequency

of a time–frequency distribution can be related to the derivative

of the log of the corresponding signal, a complex function whose

imaginary part is the instantaneous frequency of the signal. Po-

letti considered the complex signal

(1)

with derivative

(2)

where is termed the dynamic signal. Its real part is the

derivative of the log magnitude and its imaginary part is the in-

stantaneous frequency. Consequently, describes the rate of

change of the log magnitude and phase, i.e., the signal dynamics.

In this paper, by extending this idea of a dynamic signal to

one of dynamic modes, an evolved model of speech produc-

tion is presented focused on achieving resolution, in an instan-

taneous-time–frequency sense, on the acoustic contribution of

the different components of the phonatory system. A dynamic

mode (DM) can be defined as

(3)

with dynamics described by

(4)

In the description above which represents the dynamics of the

mode note that equates to in (2) and

is also known as the instantaneous bandwidth of the signal [30].

A DM is basically an AM–FM sinusoid and the idea is to allow

the introduction of adaptive modes that can be used to analyze

and represent the speech signal.
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Fig. 4. Dynamic Gabor-Resonator.

A. Dynamic Modes to Model the Speech Signal

In this section, a new model of the speech signal is presented

which seeks to characterize, from a time-instantaneous-fre-

quency perspective, the acoustic contribution of different

components of the human phonatory system. The model ob-

tained can be seen as an evolution of the quasi-stationary model

of speech production reinforcing the nonstationary multimodal

and convolutional properties of the system studied. As will be

shown in the next section, the dynamics of the proposed model

can be extracted by relying on adaptive mode predictors and

filters enabling flexible prosodic modifications.

We start by representing the speech signal as a superposition

of resonances:

(5)

where each resonance can be modeled as the dynamic convolu-

tion of a resonant DM (filter) with a superposition of source

modes

(6)

The concept of convolution is adapted here to account for the

particular properties of dynamic modes. The dynamic mode

convolution (DMC) of a given resonant mode with any

input mode, , can be defined as a function of the char-

acteristic dynamics of the mode and a vector of its past

samples

(7)

For example, for slow resonant dynamics and based on the cur-

rent input sample and the past two output samples, (7) can be

expressed as

(8)

where is the sampling period. It should be noted that this dy-

namic convolution is not commutative.

The speech signal can then be finally expressed as

(9)

indicating a concentration of energy on the resonant modes. This

model is illustrated in Fig. 1.

By alluding to the physiological origin of the proposed mod-

eling components, the nonstationary resonant modes can be as-

sociated with the vocal tract while the source modes can be as-

sociated with the glottis in the case of voiced speech.

A related model, assuming linearity and time invariance in

discriminated glottal phases, was proposed in [31] to represent
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Fig. 5. Instantaneous frequency tracks and prediction residual for sentence S1 (“In two cases airplanes only were indicated”). (a) Hand-labeled “ground truth”
data [16]. (b) Prediction residual for the hand-labeled data. (c) Cascade of predictors. (d) Prediction residual for the cascade of predictors.

the speech signal as a sum of exponentials. In the model pro-

posed in this paper, the convolutional representation is retained

in an effort to exploit the decomposability associated with

source-filter models of speech production.

B. Dynamic Mode Predictors

With each DM we can develop associated dynamic error pre-

dictors (DPs) based on the knowledge of the dynamics of the

mode

(10)

where the vector of samples is a vector embedding com-

plementary information, (that is information other than that al-

ready included in ) which describes the state of the signal.

In the notation adopted here, represents a functional descrip-

tion of the dynamic predictor which has and as its

arguments. Equation (10) is set equal to 0 to illustrate that, in

principle, a perfect predictor can be constructed which relies on

information extracted from samples of the mode and from its dy-

namics, . If we used all of the derivatives of the dynamics,

the information provided by the samples of the mode would be

phase related. For example, for a DM with constant dynamics

, a DP can be devised using two past samples of

the mode as follows:

(11)

C. Shadow Dynamic Modes and Predictors

A shadow dynamic mode (S-DM) can be defined as

(12)

with characteristic dynamics given by

(13)

A shadow predictor (S-DP) (motivated as discussed previously

by the work of [20] and [21]), associated with an S-DM, can be

used to track and cancel a DM yielding a prediction error

(14)

which has two components. If we assume that and

have “slow dynamics” (i.e., low values of

and ), and then apply linear filter theory to obtain the

response of shadow predictors for modes (and shadow modes)

with null dynamics.1 In this case, it can be readily shown that

the dynamics of the input mode will be unaltered at the output

of the predictor. These ideas can be straightforwardly extended

to the case of modes with relatively low dynamics to show that

a relatively small variation of the output dynamics, in relation

to the input dynamics, will be obtained.

1As will be made clear later, some of the dynamic modes are associated with
the resonances of the vocal tract while others are associated with the source/
glottal signal. In the case of the resonant modes, their dynamics will depend on
the movement of the articulators and can be considered to be “slow” relative to
the sample rates used for speech processing. The same idea can be applied to the
dynamics of the glottal signal associated to the evolution of the instantaneous
pitch.
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Fig. 6. Instantaneous bandwidth for resonant modes corresponding to the example presented in Fig. 5.

Defining the tracking error as, (and decomposing it into two

components)

(15)

and considering a small vicinity of around the origin where

is a concave function of ; the S-DP can be made adaptive

by inducing error dynamics that follow the steepest descent di-

rection (gradient based approach):

(16)

where and are real-valued functions of and , respec-

tively, having the same sign as and ,

respectively. The notation indicates a previous iteration.

Dynamic error induction is effectively implemented adapting

the dynamics of the S-PM according to

(17)

The S-DP can be finally represented in the following equation:

(18)

The adaptation functions ( and ) must be designed fo-

cusing on reaching a state where the dynamics of modes are

locked, where locked means .

An S-DM can be dynamically convolved while tracking

an input mode to obtain a dynamic-tracking resonator

(DR)

(19)

In locked-mode, the DR will reinforce, (i.e., amplify against

other superimposed modes with different dynamics) and track

the dynamics of the input mode .

D. Dynamic Gabor Modes and Filters

Gabor filters are well known in signal processing [32] and can

serve as excellent band-pass filters for speech signals. A Gabor

filter is defined as the product of a Gaussian kernel times a si-

nusoid. Extending these ideas, a dynamic Gabor mode (G-DM)

can be defined as

(20)

characterized by dynamics

(21)

Also a dynamic Gabor filter, with input and output ,

can be defined through a non-recursive approximation of the

dynamic mode convolution of and

(22)
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Fig. 7. Estimates of glottal flow derivative and glottal flow for a voiced segment of speech (“(h)ad” from S2).

For the case of and with “slow dynamics” (low

values of and ), the G-DF

will act as a time-varying filter with center frequency . This

fact can be exploited to isolate if there are additional su-

perimposed modes based on the knowledge of the evolution of

.

III. APPLICATION TO SPEECH ANALYSIS AND SYNTHESIS

The application of the above to speech analysis and synthesis

involves dynamic (gradient-based adaptation) shadow mode

predictors in cascade being used to track the dynamics of the

resonant modes of speech without explicitly decomposing

the speech signal into its modulated components while still

allowing a separation of the vocal tract from source-related

information. The prediction residual conveys source-related

modal dynamics that can be further extracted via dynamic fil-

ters. Additionally, the speech signal can be recovered by inverse

filtering (dynamically convolving) the prediction residual with

the corresponding dynamic inverse predictors. Fig. 1 illustrates

how the speech signal could be modeled as a superposition of

four dynamic modes. Each mode is the result of a dynamic

mode convolution (DMC) of the glottal modes with the corre-

sponding mode dynamics.

A. Shadow Mode Predictors to Track Resonant Dynamics

Based on the representation presented above, shadow mode

predictor adaptation can be used to track the dynamics of each

resonant mode. Shadow predictor adaptation can be achieved

using a cascade of S-DP to isolate a dynamics-preserving ver-

sion of each resonant mode while adapting S-DPs

for (23)

where denotes the cascade operation, is a shadow

resonant mode with dynamics and is the “glottal

resonance” index. Each of the semi-residual signals con-

veys the corresponding modal dynamics and, in locked mode,

the prediction residual will be given by

for

Based on the tracked dynamics of each resonance

, The prediction residual can be expressed in com-

pact form as

(24)

and the speech signal can be recovered through inverse filtering

(25)

Taking into account that each inverse predictor can be ex-

pressed as

(26)

Equation (25) can be rewritten as

(27)
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Fig. 8. (a) Segment of speech uttered by a male speaker (S2: “She had your dark suit in greasy wash water all year”). (b) Cascade of predictors residual. (c)
Frequency trajectory of the first four resonances. (d) Instantaneous pitch (proposed approach—red line, Yin estimator [39]—green line, RAPT [40]—black line).

It is important to note that the prediction residual is a dynamics-

preserving version of the superposition of source modes (6)

and (9) and (27) are intrinsically equivalent. An illustration of

the process for resonance dynamics tracking (representing the

dynamic convolution operation as inverse S-DP) is shown in

Fig. 22 in conjunction with Fig. 3.

The convergence of the gradient-based algorithm described,

for the case of real world speech signals, depends on the ap-

propriateness of the model to describe the intrinsic dynamics.

Guaranteeing the necessary concavity depends not only on the

proximity of the dynamics of a shadow predictor to that of the

tracked modes but also on the efficacy of the model of speech

production to faithfully represent the complexity of the speech

signal. If the model is successful in providing a search space

with reduced dimension, the adaptation functions ( and )

can be designed to reach the state of locked-modes dynamics,

where the dynamics of each constitutive mode is tracked with

minimal error.

Since we will not have a priori knowledge of the number of

resonances in a given frequency range, the exact number of

resonances can be determined by monitoring the instantaneous

bandwidth of each semi-residual mode in (22). A relatively

high bandwidth (more than 400 Hz) is a strong indication of a

weak or non existent mode.

2The apostrophes in Fig. 2 are used to distinguish S-DPs with equal dynamics
but different inputs.

The number of glottal/source modes will depend on the

type of source excitation and its study is not addressed in this

paper.

B. Dynamic Mode Filters to Track the Instantaneous Pitch

of Speech

Extending the efforts to capture non-stationary speech fea-

tures focussing on the instantaneous pitch frequency [33], [34],

[12], [35], we rely on a dynamic Gabor-resonator filter, applied

to the prediction residual , to track the instantaneous

frequency of the fundamental source mode

(28)

where is a low-pass version of .

Finally, the instantaneous pitch is obtained as the trend of

the estimated instantaneous frequency evolution . The desired

trend is extracted using least-squares splines [36] by selecting a

temporal separation between knots to obtain smooth estimates

of the dynamics of the pitch-related modes.
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Fig. 9. Close look at the trend extraction task used to obtain the pitch track for the first 0.8 s of the sentence used in 8 (S2).

C. Intonation Modification Based on

Instantaneous-Pitch-Guided Time-Warping

A methodology is presented in this section to modify into-

nation by relying on instantaneous-pitch-guided time-warping.

Once the instantaneous pitch is obtained, following the proce-

dure explained previously above, the instantaneous pitch period

can be found as

(29)

The residual signal can then be time-warped to match

a target pitch according to

(30)

where is a nonlinear time-warping function

(31)

D. Experimental Results and Observations

In this section, several examples are presented to illustrate the

potential of the proposed approach. These examples are based

on four sentences selected from the TIMIT database [37]:

• S1: “In two cases, airplanes only were indicated” (timit\

train\ dr1\ mdac0\ si1261);

• S2: “She had your dark suit in greasy wash water all year”

(timit\ train\ dr1\ mdac0\ sa1);

• S3: “She had your dark suit in greasy wash water all year”

(timit\ train\ dr1\ fcjf0\ sa1);

• S4: “Have they inherited some money or something”

(timit\ train\ dr1\ mdpk0\ si1683).

The basic S-DP of (18) is implemented using samples of the

signal as

(32)

where and are posi-

tive, real-valued and constant scalars. In the derivation of these

equations, the following adaptation functions were selected ac-

cording to the properties specified for (16)3 :

(33)

(34)

and in all examples the values selected for the cascade of pre-

dictors were, and , with two iterations

over segments of 6.3 ms. Values of and were

selected for the adaptive Gabor-resonator sections.

Resonator sections were implemented as

(35)

where a constant value of was used in all of the

experiments.

Gabor sections were implemented as

(36)

with , constant ( 60-Hz bandwidth) and adjusted

iteratively as the average pitch of the segment. The implementa-

tion of the proposed algorithm is further illustrated in Figs. 2–4.

All utterances have been low-pass filtered, following a proce-

dure similar to that described in [17], to focus the analysis on the

3A more rigorous analysis can be performed, similar to that presented in [38],
to further explore the convergence properties of the proposed algorithm. How-
ever, this is beyond the scope of the current paper.
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Fig. 10. Cascade of predictors re-synthesis without modifications (S2).

Fig. 11. (a) Segment of speech uttered by a female speaker (S3: “She had your dark suit in greasy wash water all year”). (b) Cascade of predictors residual. (c)
Frequency trajectory of the first four resonances. (d) Instantaneous pitch (proposed approach—red line, Yin estimator [39]—green line.
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Fig. 12. (a) Segment of speech uttered by a male speaker (S4: “Have they inherited some money or something”). (b) Cascade of predictors residual. (c) Frequency
trajectory of the first four resonances. (d) Instantaneous pitch (proposed approach—red line, Yin estimator [39]—green line.

first four resonances. Despite this selected fixed number of res-

onant modes, the time-varying nature of modal parameters esti-

mated accounts for weakening and disappearing modes. In order

to illustrate this fact, Figs. 5 and 6 are provided showing how

the time varying bandwidth of the modes are effectively tracked

with the proposed approach.4 The obtained tracks are compared

with the corresponding “ground-truth” provided in [16]. More

examples and comparisons against the “ground truth” database

[16] can be found in [17].

Although the value of each of the adaptation parameters (

and ) was selected empirically, good tracking properties were

observed in all experiments with no variance across utterances,

although clearly further work is required to demonstrate the ro-

bustness of these values. Also the tracking algorithms obtained

were not particularly sensitive to the initialization values for the

tracked parameters, as long as they were selected appropriately,

indicating the possibility to incorporate automatic initialization

procedures based on some prior knowledge and coarse estima-

tion algorithms. These facts can be interpreted as an indication

of the success of the proposed model in effectively reducing

the search space for the modeling parameters as previously ob-

served in [17].

In the following examples, the evolution of the parameters es-

timated for the resonant modes were interpolated using splines

4The instantaneous frequencies and bandwidths (in Hertz) were computed as

� �
�

��
� Hz

and

�� �
��

�
���� � Hz�

with a separation between knots of 6.25 ms. Similarly, the fre-

quency tracks of the pitch-related modes (instantaneous pitch)

were interpolated with 12.5 ms of a separation between the

knots. Additionally, down sampling by a factor of 4 has been ap-

plied before performing the pitch tracking operation to reduce

the computational load of the resulting algorithm.

An example is provided in Fig. 7 to illustrate the accuracy of

the proposed approach in the task of recovering an estimate of

the glottal flow derivative and the glottal flow for a segment of

voiced speech extracted from S2. The estimates were obtained

by integrating the prediction residual at the output of the cascade

of predictors showing clearly recognizable patterns associated

to the glottal flow.

Fig. 8 shows the resonant dynamics and instantaneous pitch

extracted from a sentence uttered by a male speaker (S2). The

pitch track obtained with the proposed approach is displayed

against the YIN [39] and RAPT [40] estimators to highlight its

continuous and accurate evolution. A close look at the trend es-

timation task used to obtain the pitch track, from the instanta-

neous frequency output of Gabor-resonator sections; is given in

Fig. 9 for the first 0.8 s of the sentence.

Fig. 10 illustrates the invertibility of the proposed represen-

tation applied to the male utterance S2. It can be seen, in the

figure, how the original spectral-temporal features are preserved

after re-synthesis using the inverse cascade of predictors. Other

examples are illustrated in Figs. 11 and 12 showing resonant

dynamics and instantaneous pitch extracted from S3 and S4, re-

spectively.

In addition to the figures provided, several sound examples,

obtained from the sentences analyzed before, are available on-

line [42] (including low-pass filtered versions of sentences S2,
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Fig. 13. Pitch modification for a segment of the sentence analyzed in Fig. 12 (S4).

S3, and S4 in conjunction with their modified versions) to illus-

trate the applicability of the proposed approach in the task of in-

tonation modification. Some of the examples are also intended

to illustrate how the instantaneous pitch can be modulated to

create a trembling voice effect. It is important to remark that, in

order to preserve voice source-vocal tract synchronization, the

tracks of resonant dynamics can be time warped with function

[obtained from (31)].

Equations (30) and (31) are implemented, in discrete-time, re-

lying on spline-based interpolation to modify the intonation/in-

stantaneous pitch of each analyzed segment according to the in-

tended target pitch evolution. Fig. 13 illustrates the pitch modifi-

cation process for a segment of the sentence analyzed in Fig. 12.

Finally, a sound-based comparison with the STRAIGHT al-

gorithm [41] is also included, for a segment of S4, to high-

light the fact that, although the results show that both tech-

niques allow finely tuned intonation modification; the proposed

approach has the potential to flexibly modify all the instanta-

neous dynamic information (including spectral dynamics) con-

veyed by the speech signal.

IV. CONCLUSION

This paper has proposed a new model to represent the speech

signal as the convolution and superposition of dynamic modes

that can be associated with different sections of the human

phonatory system. In order to track the dynamics of the vocal

modes the idea of adaptive shadow modes and predictors has

been introduced. Similarly, the concept of adaptive Gabor

and resonator mode filters have been presented to extract

pitch-related dynamics from glottal modes. The potential of

the proposed approach is illustrated with several examples

including instantaneous pitch tracking and modification. Future

work will be focused on performing other prosodic modifica-

tions including the control of spectral dynamics.
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