
INV ITED
P A P E R

Speech-Centric
Information Processing:
An Optimization-Oriented
Approach
The authors present a statistical framework for the end-to-end system design where

the interactions between automatic speech recognition and downstream text-based

processing tasks are fully incorporated and design consistency established.

By Xiaodong He, Senior Member IEEE, and Li Deng, Fellow IEEE

ABSTRACT | Automatic speech recognition (ASR) is a central

and common component of voice-driven information proces-

sing systems in human language technology, including spoken

language translation (SLT), spoken language understanding

(SLU), voice search, spoken document retrieval, and so on.

Interfacing ASR with its downstream text-based processing

tasks of translation, understanding, and information retrieval

(IR) creates both challenges and opportunities in optimal

design of the combined, speech-enabled systems. We present

an optimization-oriented statistical framework for the overall

system design where the interactions between the subsystems

in tandem are fully incorporated and where design consistency

is established between the optimization objectives and the

end-to-end system performance metrics. Techniques for opti-

mizing such objectives in both the decoding and learning

phases of the speech-centric information processing (SCIP)

system design are described, in which the uncertainty in speech

recognition subsystem’s outputs is fully considered and margi-

nalized. This paper provides an overview of the past and

current work in this area. Future challenges and new oppor-

tunities are also discussed and analyzed.

KEYWORDS | Joint optimization; speech recognition; speech-

centric information processing (SCIP); spoken language trans-

lation (SLT); spoken language understanding (SLU); voice

search

I . INTRODUCTION

Automatic speech recognition (ASR) is an enabling tech-

nology for a number of important information processing

applications in the realm of human language technology

(e.g., [3], [4], and [35]). For example, a spoken language

translation (SLT) system takes the source speech signal as
input, and the output of ASR as ‘‘noisy’’ text is then fed into

a machine translation (MT) system, producing a translated

text of another target language. That is, the full SLT system

can be viewed as ASR and MT subsystems in tandem (e.g.,

[14], [39], [62], [66], [83], and [96]). As another example,

a voice search system also recognizes the input utterance

as ‘‘noisy’’ text first, and then feeds it as a query to a

subsequent information retrieval (IR) system, returning a
list of documents ranked by their relevance to the query

(e.g., [29], [30], and [84]). As a further example, a spoken

language understanding (SLU) system again recognizes the

input utterance first, and then feeds the noisy transcrip-

tion to a natural language understanding (NLU) system.

The NLU system will then identify the domain that the

utterance represents, and/or parse the semantic meanings

embedded in the utterance (e.g., [80], [85], and [87]).
In all the information processing tasks outlined above,

ASR is a common component and plays a central role;

hence we refer to these tasks and related applications as
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speech-centric information processing (SCIP). In the SCIP
systems, ASR works with one (or more) downstream com-

ponent(s) (i.e., the subsequent component(s) after ASR)

in tandem to deliver end-to-end results. One important

character in such systems is that different applications are

sensitive to different errors in the ASR output. However,

most of the current ASR methods embedded in SCIP sys-

tems tend to use the uniform metric of word error rate

(WER) to train ASR parameters and treat all types of word
errors as equally bad. Another consequence of ignoring the

interactions between the subsystems is the mismatch be-

tween how the subsystems are trained and how the trained

subsystems are used in the operation environment. A typi-

cal example of mismatch is the general use of large

amounts of ‘‘clean’’ written text data to train the MT

subsystem in a full SLT system while in decoding operation

the MT subsystem always receives the ‘‘distorted’’ text in-
put subject to ASR errors and speech disfluency. To over-

come the various types of optimization inconsistency in a

systematic manner and to aim for optimal design of all the

subsystem components in the overall SCIP system, we

need to fully incorporate the interactions between, and the

uncertainty in, these subsystem components, and in parti-

cular, between ASR and MT/NLU/IR components. More

specifically, we need to establish design/learning consis-
tency between the optimization objectives and the end-to-

end system performance metrics for all subsystem

components.

In this paper, we will address the critical optimization

inconsistency problems discussed above that are common-

ly present in most existing SCIP systems. This motivates

the development of a unifying end-to-end optimization-

oriented approach, where both the ASR and the down-
stream subsystems are learned via optimizing end-to-end

performance metrics.

The organization of this paper is as follows. In

Section II, we provide an overview of the general tandem

architecture of a wide variety of SCIP systems and show

how a combination of various subsystems can produce

most of the common realistic systems studied and reported

in the literature. In Section III, we describe and analyze
the problem of optimization inconsistency inherent in

most existing SCIP systems of a ‘‘divide and conquer’’ sort

when the interactions between the subsystems are dis-

carded. We present technical solutions to the optimization

inconsistency problem in the next two sections based on a

body of the published work but with generalization, uni-

fication, and new insights that cut across several types of

SCIP systems. Section IV is focused on the unified objec-
tive functions for end-to-end learning of interactive SCIP

subsystems’ parameters. We devote Section V to the tech-

niques for optimizing these objective functions, including

a summary of experimental evidence showing the feasi-

bility and effectiveness of these techniques. In Section VI,

the experiments conducted and published in the literature

that evaluate the feasibility and effectiveness of several

aspects of the unified framework are reviewed and ana-
lyzed. Finally, in Section VII, we draw conclusions and

discuss future directions on speech-based information

processing.

II . SPEECH-CENTRIC INFORMATION
PROCESSING: AN OVERVIEW

While ASR technology has important applications on its

own (e.g.,[3], [4], [19], and [46]), its more significant im-

pact lies in the combination with its downstream process-

ing, typically referred to as human language technology,

including MT, NLP, and IR [35], [68]. Interfacing ASR
with one or more of the downstream information pro-

cessing systems gives rise to a full SCIP system. In this

section, we will first provide an architectural overview of

an SCIP system. Then, we will discuss three common types

of the SCIP system depending on the nature of the down-

stream processing.

A. Architectural Overview of SCIP Systems
In Fig. 1, we show the general tandem architecture

(i.e., serial connection) that characterizes a number of

SCIP systems.

Starting from the common ASR subsystem component,

each path through the diagram from left to right corre-

sponds to one specific type of the SCIP system. For in-

stance, ASR and NLU subsystems in tandem form the SCIP

system of SLU. When the output of SLU is further provided
to a subsequent dialog control subsystem, a part of a

spoken dialog system (open loop) is established. Similarly,

when the SLT system, which consists of ASR and MT sub-

systems in tandem, is further connected in tandem with an

NLU subsystem, we produce a cross-lingual SLU system.

Importantly, the design and learning of the diverse

types of SCIP systems shown in Fig. 1 are amenable to the

Fig. 1. Illustration of the general tandem architecture of common

SCIP systems and their relations in terms of the shared subsystem

components. Design of these diverse types of systems shown here

follows the shared optimization-oriented principles presented

in this paper.
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common and general optimization-oriented approach to be
presented and analyzed in Sections III–V. Specifically,

rather than simply feeding the ASR subsystem’s output

directly (and unambiguously) as the input to the down-

stream subsystems, uncertainty of ASR, in the form of

probabilistic lattices or N-best lists, is incorporated in the

overall system’s design, learning, and decoding. As we will

see, taking into account the ASR uncertainty permits re-

covery of the errors made in ASR and this becomes essen-
tial for achieving robustness of the overall SCIP system.

Compared with the text-centric systems of NLP, IR,

and MT in human language technology [35], the speech-

centric systems with ASR integrated as the ‘‘front–end’’

present special challenges in terms of system robustness.

This problem can be likened, to a certain degree, to that

facing acoustic-environment robustness in ASR, which has

occupied ASR research for over 25 years and is still an
active research area today. Numerous techniques invented

for handling environment robustness in ASR and their

taxonomy have been reviewed in [22] and [53], and they

are relevant to the new robustness problem in the SCIP

system design arising from ‘‘noisy’’ text inputs (analogous

to noisy acoustic inputs) due to ASR errors [102] and

speech disfluency [69]. The successful techniques for

noise-robust ASR aimed at achieving matched training-test
acoustic environments bear resemblance to the learning

strategy that exploits ASR output uncertainty. As will be

explained in Sections IV and V, the use of ASR lattices or

N-best lists in training the system parameters effectively

(as well as in scoring in the decision-making phase) en-

hances the diversity of the ‘‘noisy’’ text input data to the

downstream information processing subsystems. This will

create a desirable learning style for the SCIP system ana-
logous to the ‘‘multistyle’’ training popular in noise-robust

ASR (and also analogous to the use of elastic distortion

popular in training image recognition systems [78].

Owing largely to shortage of work in the literature, we

intentionally exclude the prosodic modeling and speech-

disfluency modeling stages in Fig. 1. They could be appro-

priately placed either before or after the ASR stage in

Fig. 1. When appropriate modeling techniques (e.g., [88])
are used, this additional stage would also fit well in the

optimization approach presented in this paper. Without

including the prosodic processing/modeling stage, we sim-

ply treat the difference between what goes (as the ‘‘noisy’’

text input) into the downstream processing components in

the SCIP system and the ‘‘clean’’ text input to the tradi-

tional MT, IR, or NLP systems as a combination of ASR

errors and normal speech disfluency.

B. Spoken Language Translation
As shown in Fig. 1, a full SLT system can be viewed as

ASR and MT subsystems in tandem (e.g., [14], [39], [62],

[66], [83], and [96]). SLT is of significant relevance in our

increasingly globalized world, and its research and system

development started in the late 1990s (e.g., [54], [66], and

[82]) after ASR had matured and become useful in prac-
tice. Following the well-established statistical framework

in ASR, the same statistical approach has dominated SLT as

well as MT research (e.g., [13], [14], [52], [67], [71], and

[83]). In this same issue, another paper also provides a

comprehensive review on latest advances in SLT [95].

The applications of SLT are diverse, ranging from

machine-aided human translation [73] to professional trans-

lation services for international organizations. TC-STAR
(http://www.tc-star.org) in Europe and GALE (http://www.

darpa.mil/ipto/programs/gale) in the United States are the

most prominent SLT research projects.

An SLT system with the ASR component to provide the

input to the MT component is more difficult than text-

based MT because of the compounded difficulties of ASR

and MT. A particular issue in SLT is speech disfluency,

making the input to the MT component of the SLT system,
even with perfect ASR, deviate from lexical, syntactic, and

semantic patterns of normal written texts that are typically

used for training the MT system. Examples include filled

pauses, paragraph and sentence delimiters, punctuation

marks, and capitalized words. This deviation, together

with ASR errors, produces serious ‘‘mismatch’’ between

training and testing conditions.

One way to address this mismatch problem is to adopt
the Bayesian approach where uncertainty of ASR outputs is

taken into account. While the initial crude mathematical

formulation of this approach appeared in the early days of

SLT research [66] and later extended to joint ASR and MT

decoding through an ASR lattice or confusion network [8],

[96], only at the decoding stage has the ASR uncertainty

been considered until rather recently when the same un-

certainty was incorporated into the training process with a
decision-feedback style [94]. In Section V, we will review

this line of work, elaborate on how partial exploitation of

ASR uncertainty at the decoding stage only can be nontri-

vially extended to the full exploitation (i.e., at the training

state also), and provide a significantly more general and

consistent framework that cuts across SLT, SLU, and other

SCIP-related applications.

C. Voice Search
An ASR system followed by an IR stage produces a

voice search system, as shown in Fig. 1. Voice search is the

technology intended to provide users with the information

they request with a spoken query [84]. The information

requested often exists in a structured or unstructured large

database (e.g., the Web being a huge, unstructured data-

base). The query has to be compared with fields in the
database or ‘‘documents’’ in the Web to obtain the relevant

information. Typical voice search applications are direc-

tory assistance [1], [93] (i.e., search for the phone number

and address information of a business or an individual),

personal music and video management [61], infotainment

in the car [77], business and product reviews [97], confer-

ence information systems [10], local search (extending
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directory assistance to include also maps, directions, movie
schedules, local events, and travel information) [29],

voice-enabled question answering, and more recently,

mobile personal assistants (e.g., Siri in iPhone).

Voice search provides a convenient and direct access to

a broad variety of services and information. It is parti-

cularly appealing to the users of mobile devices because of

the greater efficiency to search for the desired information

from the mobile devices by speech than by typing [29].
However, due to the vast amount of information available

and the open nature of the spoken queries, voice search

applications still suffer from both ASR and IR errors. As an

example, in the voice search task of automated directory

assistance, there are millions of possible business listings

(over 18 million in the United States alone) as the targets

for matching. Further, the users frequently do not know

and say the exact business names as listed in the directory.
This illustrates the special difficulty of voice search.

Typical voice search methods make use of a term

frequency-inverse document frequency (TF–IDF) weight-

ed vector space model [93], personalization features [11],

analysis/parsing of input queries [27], [28], [79], and tem-

plate matching [48]. In most of the above and other exist-

ing voice search work, the ASR output, subject to possible

analysis, is directly fed into the IR system without consid-
ering the interactions between the two components.

A different form of voice search is called spoken

document retrieval, or retrieving (and browsing) spoken

content typically distributed and stored in the Web, where

IR systems are deployed to access spoken ‘‘documents’’

produced by ASR after processing the original spoken ut-

terances such as lecture recordings [15], [58]. The differ-

ence from voice search discussed earlier is that ASR is used
here to process the stored spoken documents rather than

the spoken search query. This form of voice search fits less

well with the tandem architecture of SCIP shown in Fig. 1

and will not be dealt with in this paper.

D. Spoken Language Understanding
Fig. 1 also shows that when ASR and NLU subsystems

are connected in tandem, the resulting pipeline gives rise
to a full SLU system [18], [87], [101]. SLU has the task of

mapping from an utterance to its semantic representation.

In this sense, voice search just discussed can be regarded as

a special form of SLU where the semantic representation is

expressed in terms of the intended entry in the database or

the intended document in the Web.

Traditionally, SLU tasks are divided into two broad

categories. First, intent determination, also referred to as
‘‘call routing’’ or ‘‘How May I Help You’’ for historical

reasons, performs the task of spoken utterance classifica-

tion where the output is one of many semantic classes and

there is no sequence information or structure at the output.

Second, slot/form filling, also referred to as semantic

frame-based SLU, is the task that produces the output as a

sequence of semantic frames, with a possible hierarchical

structure, from a spoken utterance [98]. Compared with
intent determination, the task of slot filling generally

allows a lower degree of naturalness and a smaller cover-

age of the language space, but it gives higher resolution or

finer concepts in the output’s semantic representation.

Unlike ASR (as well as MT), which accepts speech (or

text) inputs in any semantic domain, current NLU tech-

nology has not been able to accomplish the task of under-

standing in unlimited domains [49]. Hence, the semantic
space in both intent determination and slot filling of SLU is

often highly constrained. This is in contrast with voice

search tasks whose semantic space tends to be significantly

larger.

A comprehensive coverage of slot filling, the most

extensively studied SLU category, including both the tradi-

tional and more recent methods as well as technical chal-

lenges, can be found in the recent book chapter of [85]. It
reviews both knowledge-based and, more importantly,

data-driven statistical solutions. The latter includes gener-

ative models/methods of hidden Markov model (HMM)

and composite HMM/context-free grammar (CFG) and

conditional models/methods of conditional random field

(CRF) and composite CFG/CRF. In the more recent work

reported in [34], the results of comparative experiments

are presented on three different tasks of slot filling (called
concept tagging in the paper) in a set of languages with

different complexity. Six methods covering both genera-

tive (finite state transducers, statistical MT, dynamic

Bayesian networks) and discriminative [maximum entropy

Markov models, support vector machines, conditional ran-

dom fields (CRFs)] techniques are compared, and CRF

turns out to be the best performing one on all tasks. Most

recently, Li et al. have explored the multitask learning
paradigm using semi-Markov CRFs on a set of slot filling

tasks that overlap with each other [60].

On intent determination of SLU, a book chapter [80]

also provides a comprehensive review, especially on data-

driven methods. Most recently, deep learning technique

has been successfully applied to intent determination, as

reported by [81], [103].

E. Other SCIP Tasks
In addition to the two-component SCIP tandem sys-

tems reviewed above, Fig. 1 further shows four types of

three-component SCIP tandem systems, which we briefly

review here. First, when the SLU system, which consists of

ASR and NLU subsystems, is further connected with a

dialog control/planning component, a major part (the

‘‘open-loop’’ portion) of a spoken dialog system is estab-
lished. Further additions of natural language generation,

text-to-speech synthesis, and user modeling components

will complete the full, closed-loop spoken dialog system,

which has had excellent recent reviews in [90] and [91]

and will not be covered in this paper. It is worth noting

that the recent prevalence in mobile computing has gal-

vanized intense and renewed interest in the work on
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spoken dialog systems. Some earlier, primitive form of
such systemsVe.g., the work on the MiPad system [21]V
was limited in part by imperfection of the design and

component technologies in these early days [20], but more

importantly by the late arrival of mainstream mobile com-

puting as well as the lack of a full ecosystem of Web ser-

vices that Siri-style understanding and dialog systems are

enjoying today.

Likewise, the two-component SLT system, composed of
ASR and MT subsystems in tandem, can be extended to a

three-component system by a further interface with anoth-

er text-based subsystem. As shown in Fig. 1, by connecting

SLT (ASR+MT) with an NLP subsystem, we produce a

cross-lingual SLU system (ASR+MT+NLU) where the

understanding task is now performed in a new, target

language [57]. Similarly, interfacing SLT with a speech

synthesis subsystem gives rise to a speech-to-speech trans-
lation system, which has applications in enabling human-

to-human conversation using different languages [36],

[65]. Finally, cross-lingual voice search can be accom-

plished when SLT is interfaced in tandem with a voice

search subsystem, giving the full pipeline of ASR+MT+

VoiceSearch.

We emphasize that the general design and learning

principles, full exploitation of the uncertainty in the front-
stage subsystems, and the optimization-oriented approach

described in the remainder of this paper apply to all SCIP

systems discussed in this section. However, we will mainly

focus the discussions on selected, two-component systems

largely due to the lack of sufficient work in the literature

on other more complex SCIP systems. Specifically, we

limit our discussions to the full exploitation of the uncer-

tainty in the ASR subsystem, which is common in and
essential for all types of SCIP systems.

III . OVERCOMING OPTIMIZATION
INCONSISTENCY

As discussed above, ASR operates together with the down-

stream components to deliver the end-to-end result in any

of the SCIP systems. However, optimization inconsistency
that has permeated the existing design of most of the SCIP

systems today is a crucial problem. In this section, we first

provide an analysis on the optimization inconsistency

problem from two perspectives. Then, we outline a general

solution, expanded and generalized from recently pub-

lished work, which overcomes the inconsistency and forms

the basis of much of the remaining material in this paper.

A. The Problem of Optimization Inconsistency
SCIP is a complex information system that consists of

multiple subsystems in a tandem architecture where voice-

based ASR subsystem as a ‘‘front–end’’ is interfaced with

one or more text-based subsystems including MT, NLU,

and IR. Each of these subsystems has been trained using

the collected supervised data with respect to the individual

subsystem’s own input and output signal/information.
Optimization inconsistency among subsystems discussed

in this section refers to the mismatch condition between

the training data used to estimate the parameters of such

individual subsystems and the operating environment

when the decoding decision is made during the system

deployment.

In conventional design, the subsystems tend to be built

and trained independently, i.e., without considering the
interactions between them. Sometimes, such a simplistic

and easy-to-implement approach is referred to as a ‘‘divide

and conquer’’ one and has been advocated by its propo-

nents. Each subsystem is isolated from one another, and is

assumed to take ‘‘clean’’ input and to produce the output

results directly on its own. However, a subsystem in an

actual SCIP system takes the output from the upstream

subsystems as its input, and produces output that will be
fed into its next downstream subsystem in tandem until

the final result is delivered. Following this design philoso-

phy, since each subsystem will necessarily produce pro-

cessing errors, errors from one subsystem will propagate

and impact negatively on the remaining consequent sub-

system(s). That is, errors produced by the upstream sub-

system at the decoding stage make the input to the

downstream subsystem being polluted or ‘‘noisy.’’ This
‘‘noisy’’ input mismatches the ‘‘clean’’ condition under

which the downstream subsystem is to be trained. In this

case, the output of an upstream subsystem (e.g., ASR) is

just an intermediate result that will be consumed by

downstream subsystems. Since this (uncertain) interme-

diate result is a random variable, it should be marginalized

(e.g., take a summation over all possible intermediate

results) in both decoding and training, a process through
which the mismatch problem can be reduced.

Let us take a concrete example. In the voice search

application, the ASR subsystem is most often built without

considering that its recognition output will be fed into an

IR subsystem, which may be able to tolerate certain types

of text errors better than others. On the other hand,

traditionally, an IR system is built separately, assuming the

input is a relatively ‘‘clean’’ text, thus with little or no
tolerance to the distorted text caused by ASR errors or by

speech disfluency. This assumption, however, does not

hold for the IR component in a full voice search system,

where the IR module necessarily has to handle the output

from the ASR module, which is nearly always ambiguous

and error prone. The use of marginalization would enable

the IR component to select possible incorrect ASR errors,

as long as they can be tolerated by the IR, to strike a
tradeoff with other errors that would affect IR more

negatively. This kind of interactions between the sub-

systems is thus important to incorporate in the holistic

design of the full system, which we advocate and elaborate

in this paper.

In addition to the ‘‘mismatch’’ inconsistency just de-

scribed, another important source of inconsistency in the
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conventional design of SCIP systems stands out between
the training criteria for subsystems and the desired end-to-

end evaluation metric. Historically, different downstream

subsystems have had their own evaluation metrics, and the

model parameters in each of such subsystems have been

optimized by the objective function directly relevant to

that metric. However, in the SCIP systems, different

applications tend to emphasize distinct types of errors in

the ASR output.
Let us again take a concrete example here. IR applica-

tions tend to focus on the match of content words, while

ignoring functional words. Therefore, it is important for

the ASR component to have the content words correctly

recognized, while the errors in functional words can be

tolerated. On the other hand, functional words bear im-

portant contextual and syntactic information, which is

critical to MT. Therefore, it is crucial to recognize func-
tional words correctly in MT applications. Unfortunately,

most of the current ASR models are optimized without

considering the downstream subsystems. Instead, WER is

widely accepted as the de facto metric for ASR, treating all

types of word errors equally. Since WER only measures

word errors at the surface level and takes no consideration

of the roles of a word in the ultimate performance mea-

sure, this often leads to suboptimal end-to-end perfor-
mance. An analysis and experimental evidence for such

suboptimality in the context of SLT were provided in [39],

and those for the case of SLU were provided in [86].

B. End-to-End Optimization to Overcome the
Inconsistency Problem

In this paper, we address the above critical optimiza-

tion inconsistency problem facing the design and learning
of SCIP systems. The analysis of the problem has motivated

the development of a unifying end-to-end optimization

framework, which fully exploits the uncertainty in each

subsystem’s output and the interactions between the sub-

systems. In this framework, the parameters of all sub-

systems are treated as correlating with each other and they

can be trained systematically to optimize the final perfor-

mance metric of the full SCIP system.
End-to-end training of SCIP systems involves optimiz-

ing difficult objective criteria [39], [41], [56], [94]. Efforts

have been made and reported in the literature on the use of

better optimization criteria and methods. In [42], the

‘‘margin concept’’ is incorporated into conventional discri-

minative training criteria such as minimum phone error

(MPE) and maximum mutual information (MMI) for

string recognition problems. In [45], a fast extended
Baum–Welch (EBW) algorithm built on Kullback–Leibler

(KL)-divergence-based regularization is proposed. In [50]

and [51], a line search A-function (LSAF) is introduced to

generalize the EBW algorithm for optimization of discri-

minant objective functions. In [41], a discriminative train-

ing criterion that unifies maximum mutual information

(MMI), minimum classification error (MCE), and mini-

mum phone/word error (MPE/MWE) was proposed for
ASR and a growth-transformation (GT)-based optimization

method for training hidden Markov model (HMM)

parameters in ASR systems was presented in a systematic

way. It was shown that GT-based optimization approxi-

mates the quadratic Newton update and usually gives a

faster learning speed than the simple gradient-based

search. More recently, in [37], this optimization method

was extended to SLT based on the Bayesian framework
using a similar GT- or EBW-based optimization method. In

[39], experimental evidence was provided that the ASR

component with the lowest WER may not necessarily lead

to the best translation performance, and that global end-to-

end optimization in SLT is superior to separately training

ASR and MT components of an SLT system. Finally, in

[94], a global end-to-end optimization for SLT was imple-

mented using a gradient–descent technique with slow
convergence. This body of work sets up the background for

the more technical material in the next two sections on the

establishment of optimization criteria and methods for

implementing the general end-to-end learning framework.

This framework and the associated optimization-oriented

approach are aimed at exploiting more advanced EBW-

based optimization techniques for improving global, end-

to-end optimization for all types of SCIP systems. The goal
here is not only faster convergence but also better perfor-

mance in the overall SCIP system.

As alternatives to the EBW algorithm, other effective

gradient-based methods exist [24], [63], [64]. For example,

Quickprop [26] is a batch-mode optimization method. With

the help of heuristics to determine the proper update step

size, it approximates Newton’s optimization. Rprop [75],

which stands for ‘‘resilient backpropagation,’’ is another
batch-mode optimization method, which performs dynam-

ic scaling of the update step size for each parameter based

on different kinds of heuristics. In [64], a comprehensive

study of gradient-based optimization methods for MCE

training, including batch and semibatch probabilistic de-

scent (PD), Quickprop, and Rprop, is given for large

vocabulary speech recognition tasks. Furthermore, the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and
conjugate gradient search [5], [23] are also popular gradient-

based methods and are superior to other gradient–descent

techniques in terms of the convergence properties. Readers

are referred to [55] for further discussions.

IV. A UNIFIED UTILITY FUNCTION FOR
JOINT OPTIMIZATION

While superior results were reported in earlier work on

using end-to-end optimization for a variety of SCIP appli-

cations (e.g., [89] and [94]), there is a lack of a principal

solution. In this section, motivated by the findings from

previous work, we present a unifying solution, with solid

theoretical principle, which generalizes to different types

of SCIP system design and learning.
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A. Notations
Without loss of generality, Fig. 2 extracts the most ba-

sic information flow in SCIP systems, where X is the ob-

served input speech utterance, fHg is a set of hidden

random variables denoting speech recognition hypotheses

that are commonly represented by a lattice or an N-best list

associated with scoring information, and Y is the output

from the final downstream information processing sub-

system. Note that while Fig. 2 shows a tandem data flow

with two subsystems, the principle and techniques pre-
sented in this and the next sections can be extended to the

SCIP systems with more than two subsystems.

In the following sections, assuming there are R utter-

ances in the training set, we denote by X ¼ X1 . . . XR the

aggregate of all R training utterances. Likewise, Y ¼ Y1 . . .
YR denotes the aggregate of all R output hypotheses, one

from each utterance, and H ¼ H1 . . . HR denotes the ag-

gregate of all R recognition hypotheses, one from each
utterance. In model optimization, we denote by m the set

of parameters subject to optimization.

B. A Unified Utility Function
First, we define a general utility function that we would

like to optimize in the joint training of SCIP systems sub-

ject to regularization. This would be the objective function
for optimization if there were sufficient amounts of train-

ing data to obviate the need for adding a regularization

term. Using the notations defined in Section IV-A, the

utility function takes the following succinct form:

UðmÞ ¼
X
Y

PmðY jXÞCðYÞ (1)

where CðYÞ is a function tied to a classification quality

measure, which scores the quality of the final output. Note

that CðYÞ is independent of the model parameters, and it

can be any arbitrary scoring function by design.
Equation (1) defines the expected quality of the end-to-

end system output over the entire training corpus. In joint

optimization, it is desirable to design the quality function

CðYÞ that is close to the end-to-end evaluation metric of a

particular SCIP system.

On the other hand, in order to make the computation

of (1) tractable, CðY Þ need to be in certain decomposable

form with respect to different training utterances; i.e.,

CðYÞ ¼
XR

r¼1

CðYrÞ (2)

which states that the classification quality of the whole

data set is proportional (by a constant factor of 1=R) to the

average quality of each sentence.

With the decomposition form of (2), and under the

assumption that training sentences are independent of

each other, the utility function can be rewritten into a
tractable form

UðmÞ ¼
XR

r¼1

X
Yr

PmðYrjXrÞCðYrÞ: (3)

A brief proof is provided here:

UðmÞ¼
X

Y1;Y2...R

PmðY1; Y2...RjX1;X2...RÞ CðY1Þ þ
XR

r¼2

CðYrÞ
" #

¼
X

Y1

PmðY1jX1ÞCðY1Þ þ
X
Y2...R

PmðY2...RjX2...RÞ
XR

r¼2

CðYrÞ
" #

¼
XR

r¼1

X
Yr

PmðYrjXrÞCðYrÞ:

Different SCIP applications have separate forms of the

final output and distinct quality measures. In Table 1, we

show four quality functions designed to cover the appro-

priate metrics for ASR and three speech-centric applica-

tions: SLU, SLT, and voice search, where Y�r denotes the

target reference of the rth input sentence. As an example,
in SLT, the final output Y is a sentence in the target lan-

guage, and the quality of Y is commonly measured by the

bilingual evaluation understudy (BLEU) score [70] given

the reference translation Y�. On the other hand, in voice

search, each ASR hypothesis H is fed into the IR system as

a query, and the final output Y is a list of ranked

Fig. 2. Notations and the pipeline relations among speech

signal input X, the full system output Y, and the intermediate

ASR outputs fHg as marginalizable hidden variables. Random

variables fHg are also the input to an MT, NLU, or IR subsystem.

Table 1 Four Quality Functions That Correspond to Appropriate

Evaluation Metrics for ASR, SLU, SLT, and Voice Search
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documents that are retrieved from a document set. The
quality of Y is usually measured by comparing it against

the gold set of documents Y�, sorted by the relevance to

the original spoken query as judged by humans. In IR, one

widely adopted metric is the normalized discounted cumu-

lative gain (NDCG) score [47].

By taking different forms of the classification quality

measure function CðYrÞ, the unified utility function en-

compasses a range of SCIP systems. Note that the corpus
level quality measure is CðYÞ ¼

PR
r¼1 CðYrÞ.

For some applications, the evaluation metric is scored

over the whole data set and thus cannot be decomposed

directly. Examples are the F-measure for the slot filling

task of SLU [98] and then the BLEU score for SLT. In this

case, we need to design a decomposable quality function

that approximates the true metric. For example, the

sentence-level BLEU is used to approximate the corpus-
level BLEU. In practice, we found the sentence-level BLEU

correlates well with the corpus-level BLEU [38].

If the parameter set of the downstream subsystem is

not accessible, we can treat that subsystem as a fixed black

box, and train other subsystems jointly with the end-to-end

system performance as the objective. As an example, if the

commercial online web search service is used as the back–

end of a voice search system, where the commercial search
service is provided as is, we want to optimize the ASR

system so that the end-to-end voice search performance is

optimized. In this case, we can design the utility function

as follows:

UðmÞ ¼
X
H

PmðH jXÞ
XR

r¼1

NDCG Yr; Y�r
� �" #

(4)

where Yr ¼ IRðHrÞ is the ranked document list retrieved

through feeding the speech recognition hypothesis Hr to

the back–end IR system. This utility function effectively

scores the expected quality of the ASR output, which is

measured by the IR performance resulting from using the
recognition hypothesis as query. This gives a special case of

the general utility function of (1).

The utility function of (1) provides a principled and

practical way of constructing the optimization objective,

and has four important merits. First, the evaluation me-

trics of most applications are not smooth. In earlier work,

the metric had to be modified to make it differentiable so

as to facilitate model training. In contrast, the utility
function of (1) is independent of the model parameters and

can take a more flexible form. Second, the conventional

discriminative training methods require a target reference,

and the model parameters are adjusted such that the sys-

tem will produce outputs that approach that reference.

However, in complex tasks such as MT, specifying a true

reference is difficult and often the true reference may not

be reachable [100]. For the utility function of (1), there is
no need to explicitly specify a discriminative reference or

pseudoreference target. Third, the utility function of (1) is

directly linked to the end-to-end evaluation metric, mini-

mizing the discrepancy between the training criterion and

the evaluation metric. Fourth, the utility function of (1) is

in a form suitable for the use in extended Baum–Welch

(EBW) optimization algorithm, which is efficient and

scalable to handle large data sets. Moreover, EBW reesti-
mation formulas can often provide useful insight on how

the parameters are influenced by each other during the

optimization process. They also offer intuitive interpreta-

tions for the model updating process. This is particularly

important for the analysis of the complex interactions of

subsystems and their impact on model estimation for the

SCIP systems. Concrete examples will be given on the EBW

formulas and their interpretations in the next section.

C. Modeling PmðY jXÞ in the Utility Function
To complete the specification of the utility function of

(1), here we model end-to-end SCIP systems by a general

log-linear model, where the interactions between the sub-

systems are jointly modeled.

Given the speech signal X, the final output of an SCIP

system Y is decoded by

Ŷ ¼ arg max
Y

PmðYjXÞ: (5)

When we view the recognition hypothesis H as a

hidden structure between X and Y, then according to the

law of total probability, we have

PmðYjXÞ ¼
X

H

PmðY;HjXÞ � max
H

PmðY;HjXÞ (6)

and when the downstream subsystem is modeled by a log-

linear model, we can also represent the posterior proba-

bility of the ðY;HÞ pair given X through a log-linear model

as follows:

PmðY;HjXÞ ¼ 1

Z
exp

X
i

wi log’iðY;H;XÞ
( )

(7)

where Z ¼
P

Y;H expf
P

i wi log’iðY;H;XÞg is a normal-

ization denominator to ensure PLðY;HjXÞ sum to one over

the space of the ðY;HÞ pair, w ¼ fwig are feature weights,

and f’iðY;H;XÞg are the feature functions, also called

component models, empirically constructed to capture the

dependency among Y, H, and X. For simplification, we

denote by h the set of parameters of all feature functions
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subject to optimization, and the complete parameter set
m ¼ fw;hg. In the following sections, we may use m, w,

and h to represent parameters as appropriate to emphasize

the parameter set that is subject to optimization within the

current context.

Conventionally, it is assumed that H depends only on X
through the ASR subsystem and Y depends only on H
through the downstream subsystem. Then, the feature set

of the overall SCIP system is a mere collection of the ASR
model (e.g., HMM and language model) and component

models in the downstream subsystem. Moreover, once

being integrated through (7), models from different sub-

systems will compete and/or support each other to esti-

mate the integrated score of (6) for each hypothesis. This

integrated score ensures that the decoding process is able

to deliver a global optimal output incorporating the inter-

actions between the subsystems. Using SLT as an example,
we now elaborate on this joint modeling framework below.

The ASR component in an SLT system is commonly

modeled through a noisy-channel model; i.e., the posterior

of the recognition hypothesis given the speech signal is

PðHjXÞ / PðXjHÞPðHÞ (8)

where PðXjHÞ is usually represented by an HMM-based

acoustic model, and PðHÞ by an n-gram language model

(LM) for the source language. However, the actual decod-

ing process in ASR practice is

arg max
H

log PðXjHÞ þ wLM log PðHÞ þ wWCjHj½ � (9)

where wLM and wWC are the LM scale and the word count

scale. Therefore, we can construct ASR-relevant feature

functions as follows:

’AM ¼ PðXjHÞ ’LM ¼ PðHÞ ’WC ¼ ejHj:

Modern MT is commonly represented by a log-linear

model [67]. For example, the widely adopted phrase-based

MT has features including an n-gram target language

model, a reordering model, source-to-target and target-to-

source phrase translation models, source-to-target and

target-to-source lexicon translation models, target word

counts, and phrase counts.
In SLT, it is usually assumed that the MT process de-

pends on the input speech only through the recognition

hypothesis. Hence, the features for both ASR and MT

components are simply aggregated to form the feature set

in (7) [14], [39]. Nevertheless, it is worth noting that (7)

enables the possibility of developing and integrating more

informative features ’iðY;H;XÞ capable of capturing the

dependency between speech input and translation output
directly. A potential direction is to use prosodic features in

this regard. The prosody of speech (in the source language

side of SLT) bears important information that is potentially

helpful for translation. For instance, prosody can help to

more accurately translate emotion expressions of the user.

Unfortunately, in most of the current SLT systems, the

prosodic information after ASR is lost. Given the joint

modeling framework discussed here, it is possible to design
features ’iðY;H;XÞ that embed the prosodic influence and

enable appropriate dependency between speech input and

translation output.

Equation (7) is defined on a single sentence; however,

it is straightforward to extend it to the full training corpus,

yielding

PmðY ;H jXÞ ¼
1

Z
exp

X
i

wi log’iðY ;H ;XÞ
( )

(10)

where the features of the full corpus are constructed by

’iðY ;H ;XÞ ¼
YR

r¼1

’iðY;H;XÞ: (11)

Accordingly, at the full-corpus level, we have

PmðY jXÞ ¼
X
H

PLðY ;H jXÞ: (12)

Equations (10)–(12) describe the actual models needed in

computing the utility function of (1). In Section V, we will
discuss the techniques for jointly estimating the ASR and

the downstream subsystems’ parameters h in these mod-

els, as well as the feature weights w, so as to optimize (1).

V. TECHNIQUES FOR JOINT
OPTIMIZATION

The complete parameters that are subject to optimization

in an SCIP system consist of two sets: fw;hg, where w ¼
fwig are the feature weights in the log linear model of (10),

and h are the parameters that characterize the feature

functions of ’iðY ;H ;XÞ in (10). Note that exactly what h
entails is dependent upon how the subsystems (e.g., ASR,

SLT, NLU, and IR) are parametrically modeled. In this

section, we first describe the optimization techniques for

the parameter sets w ¼ fwig and h, respectively. Then, we

describe the complete training procedure that iteratively

trains sets w ¼ fwig and h. Joint optimization in the sec-

tion title here refers to the joint parameters in the feature
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function of ’iðY ;H ;XÞ, which contains the free param-
eters in both ASR and its downstream processing subsys-

tems, the main topic in Section V-B.

A. Learning Feature Weights in the
Log-Linear Model

The size of free parameters of the log-linear model, i.e.,

the set of feature weights denoted by w ¼ fwig in (10), is

usually small. These parameters can be trained by directly

maximizing the utility function or the evaluation metric

associated with the final output of the SCIP system on a
development set; i.e.,

bw ¼ arg max
w

Eval bYðw;XÞ;Y �� �
(13)

where Y � is the reference, and bYðw;XÞ is the final system

output obtained through the decoding process according

to (5) given input X and (initialized) feature weights w.

EvalðÞ is the evaluation metric, shown in the second col-
umn of Table 1 for various SCIP systems, which scores the

quality of bY . When the number of weights is relatively

small, the weights w ¼ fwig are usually tuned by methods

such as minimum error rate training (MERT) [67] and

Powell’s search or hill climbing [12]. When there are a large

number of such feature weights, since the evaluation-

metric-derived training objective is usually not convex,

numerical optimization algorithms such as perceptron and
margin infused relaxed algorithm (MIRA) are often used as

reported in the literature [99], [100].

B. Learning Joint Parameters Inside the
Feature Functions

Compared with feature weights w, the number of pa-

rameters h in the feature functions or component models

’iðY ;H ;XÞ in (10) is typically much larger. For example,

there are hundreds of thousands of multivariate Gaussian

models in a modern acoustic model, and millions of

n-grams in a language model. Therefore, learning param-
eters of these models presents a significant challenge. In

brief, there are two major problems when designing the

learning method. First, given the large number of free

parameters, proper regularization is important to achieve

robust parameter estimation. Second, in order to learn the

many free parameters, large-scale training materials are

necessary; hence, efficiency and scalability in the optimi-

zation technique are critical.
Below we will present parameter regularization, fol-

lowed by the application of an efficient and scalable meth-

od based on EBW algorithm for optimizing the parameters

in feature functions.

1) Regularization and the Training Criterion: As a power-

ful technique in machine learning, regularization is ap-

plied to control the complexity of the model, where the
most common regularization methods are based on the

norm of the parameters [9]. However, for the model of (7),

since most of the component models are probabilistic, KL-

divergence-based regularization also fits the need well. KL

regularization has been studied in the machine learning

community. The study of [2] uses KL regularization for

sparse coding, and shows that KL regularization retained

the desirable pseudo-sparsity characteristics of L1 regular-
ization while being differentiable. In training SCIP-related

systems, KL regularization effectively prevents the new

parameters from being too far away from a constant prior

model, which was found effective experimentally [38].

We encounter both continuous-density Gaussian mod-

els (e.g., in the acoustic model of ASR) and discrete distri-

bution models in common speech-centric information

systems (e.g., transition probabilities of HMM and lan-
guage models for ASR and many types of distributions in

MT, IR, and NLU models). For the Gaussian distributions

in ASR, the KL regularization is defined as

KLðY0kYÞ ¼
X

i

KL N0
i kNi

� �
(14)

where we denote by Y the set of Gaussians and Ni the ith
Gaussian distribution, e.g.,

pðx;�;SÞ / jSj�
1
2 exp � 1

2
ðx� �ÞTS�1ðx� �Þ

� �
: (15)

The KL divergence between two Gaussians is

KLðN0kNÞ ¼ 1

2

�
trðS�1S0Þ þ ð�� �0ÞTS�1ð�� �0Þ

� ln
det S0

det S

� �
� k

�
: (16)

On the other hand, we denote by Q the set of all pa-

rameters in discrete distributions. To simplify the nota-

tion, Q is formed as a matrix, where its elements f�ijg are

probabilities subject to S j�ij ¼ 1, e.g., each row is a pro-

bability distribution.

The KL regularization of discrete distributions is de-

fined as the sum of KL divergence over the entire discrete
parameter space

KLðQ0kQÞ ¼
X

i

X
j

�0
ij log

�0
ij

�ij
: (17)
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Then, the overall KL regularization becomes

KLðh0khÞ ¼ KLðY0kYÞ þ KLðQ0kQÞ: (18)

Given the regularization, the objective function to be

maximized in training is

OðhÞ ¼ log UðhÞ � � � KLðh0khÞ (19)

where the prior model h0 can take the maximum-

likelihood trained model without joint discriminative

training. � is a scaling factor controlling the regularization
term, e.g., � ¼ 0 results in no regularization. In practice,

different values of � could be assigned to KLðY0kYÞ and

KLðQ0kQÞ to accommodate the difference between dyna-

mic ranges of KL distances of continuous distribution and

discrete distribution, respectively.

We now describe how the objective function of (19)

can be optimized.

2) Basics of the EBW Algorithm: Here we briefly review

the EBW algorithm and demonstrate how it can be applied

to optimizing some specific forms of the objective

function.

Baum–Eagon inequality [6], [7] gave the parameter

estimation formula to iteratively maximize positive-

coefficient polynomials of random variables that are sub-

ject to sum-to-one constants. Gopalakrishnan et al. [32]
extended the algorithm to handle rational functions, i.e., a

ratio of two polynomials, which is commonly encountered

in discriminative training.

Consider a set of random variables p ¼ fpijg that are

subject to the constraint of S jpij ¼ 1. Assume that gðpÞ
and hðpÞ are two positive polynomial functions of p.

Then, a growth transformation (GT) of p for the rational

function rðpÞ ¼ gðpÞ=hðpÞ can be obtained through the
following two steps, which will iteratively optimize the

value of rðpÞ.
1) Construct the auxiliary function

fðpÞ ¼ gðpÞ � rðp0ÞhðpÞ (20)

where p0 are the values from the previous ite-

ration. Increasing f guarantees an increase of r,

i.e., hðpÞ>0 and rðpÞ � rðp0Þ ¼ ð1=hðpÞÞ �
ðfðpÞ � fðp0ÞÞ.

2) Derive GT formula for fðpÞ

pij ¼
p0ij
@fðpÞ
@pij

����
p¼p0
þ D � p0ijX

j

p0ij
@fðpÞ
@pij

����
p¼p0
þ D

(21)

where D is a smoothing factor.

The EBW algorithm was originally proposed for

discriminative learning of discrete distributions. Later,
Axelrod et al. [16], Gunawardana and Byrne [33], and

Normandin [76] extended it to discriminatively train con-

tinuous density distributions such as Gaussian models,

leading to substantial success in ASR [41], [72].

3) Learning Discrete Distributions: The EBW algorithm

can be applied to learn discrete feature parameters by op-

timizing the objective function (19). Since maximizing
OðQÞ is equivalent to maximizing eOðQÞ, we transform the

original objective function OðQÞ into the following objec-

tive function:

RðQÞ ¼ UðQÞe�� �KLðQ0kQÞ: (22)

In order to optimize Q, i.e., the set of discrete param-
eters, we substitute (1), (10), (12), and (18) into (22), drop

terms that are irrelevant to optimizing Q, and obtain RðQÞ
in a rational function form (see the derivation steps in

Appendix I)

RðQÞ ¼ GðQÞ � JðQÞ
HðQÞ (23)

where

GðQÞ ¼
X

Y

X
H

X
i

’wi
i ðY ;H ;XÞCðYÞ

JðQÞ ¼
Y

i

Y
j

�
��0

ij

ij

HðQÞ ¼
X

Y

X
H

Y
i

’wi
i ðY ;H ;XÞ

are all positive polynomials of Q. Therefore, we can follow

the two steps of EBW to derive the GT formulas for Q.

We now use SLT as a concrete example to discuss the

EBW reestimation formula for the phrase translation mod-

el of MT in the remaining part of this section. In phrase-

based translation, the input sentence is segmented into K
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phrases, and the source-to-target forward phrase (FP)
translation feature is scored as

’FPðH; Y;XÞ ¼
Y

k

pðykjhkÞ (24)

where hk and yk are the kth phrase in the recognition
hypothesis H and translation hypothesis Y, respectively.

As shown in Table 1, CðYÞ takes the form of

SR
r¼1BLEUðYr; Y�r Þ for SLT. Using the EBW derivation

steps provided in Appendix II, we obtain the reestimation

formula for updating the following parameters (probability

of translating the source phrase i to the target phrase j):

pij ¼
P

r

P
Hr

P
Yr
�FPðHr; Yr; r; i; jÞ þ UðQ0Þ�FPp0

ij þ Dip
0
ijP

j

P
r

P
Hr

P
Yr
�FPðHr; Yr; r; i; jÞ þ UðQ0Þ�FP þ Di

(25)

where Q0 is the model obtained from the immediately pre-

vious iteration �FP ¼ �=wFP, and

�FPðHr; Yr; r; i; jÞ ¼ PQ0 ðYr;HrjXrÞ � BLEU Yr; Y�r
� �

� UrðQ0Þ
	 


�
X

k

1ðhr;k ¼ i; yr;k ¼ jÞ (26)

in which the utility function UrðQ0Þ is the expected BLEU

score for sentence r using models from the previous itera-
tion; i.e.,

UrðQ0Þ ¼
X

Yr

PQ0 ðYrjXrÞBLEU Yr; Y�r
� �

: (27)

The smoothing factor set of Di according to the Baum–

Eagon inequality is usually far too large for practical use

[32]. One general guide for empirically setting the smooth-

ing factor Di is to make all updated probabilities positive.
Following [38], we compute

Di;den ¼
X

j

X
r

X
Hr

X
Yr

maxð0;��FPðHr; Yr; r; i; jÞÞ (28)

which ensures that the denominator of (25) is positive. We
also compute

Di;nor ¼ max
j

�
P

r

P
Hr

P
Yr
�FPðHr; Yr; r; i; jÞ

p0ij

( )
(29)

that guarantees that the numerator is positive also. Then,
Di is set to be the maximum of these two values

Di ¼ maxfDi;nor;Di;deng: (30)

To gain insight into the desirable properties of the

EBW reestimation formula of (25), let us first compare the

phrase model’s training formula of SLT and that of regular

text-based MT. That is, if the recognition hypothesis is

replaced by the true speech transcription H�r , SLT is re-

duced to MT and so should the related EBW reestimation
formulas. This can be verified by analyzing the model up-

dating formula in (25) and (26). To this end, we first

eliminate summation over Hr in (25). Then, since H�r is a

deterministic (true) transcription of Xr, we have

P�0 ðH�r jXrÞ � 1. This leads to

PQ0 Yr;H�r jXr

� �
¼ PQ0 YrjH�r

� �
PQ0 H�r jXr

� �
¼ PQ0 YrjH�r

� �
:

Thus, the EBW reestimation formula of (25) for SLT is

reduced to

pij ¼
P

r

P
Yr
�FP H�r ; Yr; r; i; j
� �

þ UðQ0Þ�FPp0
ij þ Dip

0
ijP

j

P
r

P
Yr
�FP H�r ; Yr; r; i; j
� �

þ UðQ0Þ�FP þ Di

(31)

which is exactly the same as the EBW reestimation formula
developed in [38] for text-based MT.

Further insight can be gained by comparing (31) for

MT to (25) for SLT to appreciate how the ASR’s behavior is

automatically taken into account when training the phrase

translation model for SLT. It is clear from (25) that the

estimator in such jointly trained SLT considers possible

phrases in all ASR hypotheses as potential source phrases.

These include the phrases in incorrect ASR outputs, which
nevertheless may result in good translation as driven by the

right utility function. This desirable property becomes

even clearer in (26), which computes a modified fractional

count for the phrase pair. According to (26), the fractional

count will be positive if the resulting translation is good, as

measured by its BLEU score being better than average.

This is consistent with the intuition about a good estima-

tor. The actual value of the fractional count depends also
on how likely the translation is (conditioned on the recog-

nition hypothesis), which is measured by P�0 ðYrjHrÞ, and

how likely the recognition hypothesis is, which is mea-

sured by P�0 ðHrjXrÞ. All these intuitive dependencies are

reflected in (26) through the factor of P�0 ðYr;HrjXrÞ ¼
P�0 ðHrjXrÞP�0 ðYrjHrÞ. Therefore, the EBW estimate auto-

matically implements this desirable and intuitive notion:
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as long as a particular translation is reasonably accurate
(better than average and not necessarily the top one), all

phrase pairs that contribute to this translation, as denoted

by Sk1ðhr;k ¼ i; yr;k ¼ jÞ in (26), will receive positive

fractional counts according to (26). The size of the counts

is the product of the likelihood of the translation given the

recognition hypothesis and the likelihood of the hypothesis

given the speech utterance (not necessarily the most accu-

rate ASR hypothesis), according also to (26). Then, such
positive fractional counts help boost the translation proba-

bility of that phrase pair according to (25).

Similar EBW reestimates are derived for other discrete

models, such as the n-gram language model, and the dis-

crete parameters in the feature functions used in the SLU,

voice search, and other SCIP systems. These reestimation

formulas also offer intuitive interpretations in their respec-

tive application domains, just like the interpretations pro-
vided to the phrase translation probability of SLT as

detailed above.

4) Learning Gaussian Distributions in ASR: Using SLT as

an example again and following similar derivation steps to

those presented in [41] and [37], we establish a set of EBW

reestimation formulas for the Gaussian parameters in the

Gaussian-mixture HMM-based speech recognition sub-
system within any SCIP system. Taking the mean vector of

the ith Gaussian distribution as an example, we write

down the reestimation formula as (32), shown at the

bottom of the page, where

�GðHr; Yr; r; i; tÞ ¼ PY0 ðYr;HrjXrÞ
� BLEU Yr; Y�r

� �
� UrðY0Þ

	 

� �i;Hr

ðtÞ (33)

in which UrðY0Þ is computed similarly to (27), and

�i;Hr
ðtÞ ¼ PY0 ðqr;t ¼ ijXr;HrÞ ¼

X
q:qt¼i

PY0 ðqjXr;HrÞ (34)

is the occupation probability of HMM state i at time t of
the rth sentence.

By analyzing the model update formulas of (32) and

(33), it is clear that the Gaussian means in the ASR model

are trained to avoid producing recognition hypotheses that

may lead to poor translation for SLT (or poor understand-

ing for SLU, or poor IR in voice search in which cases,

BLEU would be replaced by F-measure or NDCG, respec-

tively). Here is why: According to (33), the modified frac-

tional count �G will take a large negative value if

PY0 ðYr;HrjXrÞ is large and the resulting translation has a

low or at least below-average BLEU score. On the other

hand, the model parameters will not be penalized much

for producing recognition errors as long as the resulting

translation quality is not affected much (or staying about

average making the value of ½BLEUðYr; Y�r Þ � UrðY0Þ� close

to zero). In contrast to the conventional discriminative
training methods such as MPE/MWE that treats all errors

equally, the reestimation formula of (32) takes into ac-

count the end-to-end translation (or understanding or

voice search) performance when training the acoustic

model. Hence, different ASR errors are treated differently

in terms of their impact on the ultimate goal of the SCIP

task. This style of training gives the possibility to auto-

matically dismiss certain types of errors so long as they can
be tolerated by the MT (or NLU or IR) subsystem. This

helps to strike a more balanced tradeoff with other errors

that would affect MT (or NLU or IR) more negatively.

C. Iterative Training Process for End-to-End SCIP
System Optimization

We now put together the full end-to-end optimization

procedure for training a complete SCIP system. Since the

parameter sets h and w affect the training of each other,
we train them iteratively. That is, at each iteration, we first

fix w and update h, and then we retrain w given the new h.

In order to track the training progress, a validation set is

used to determine the stop point of training. At the end, h

and w that give the best score on the validation set are

selected as the final parameter set. Fig. 3 provides a sum-

mary of the entire training procedure. Note that steps 2

and 4 are parallelizable across multiple processors.

�i ¼
P

r

P
Hr

P
Yr

P
t �GðHr; Yr; r; i; tÞxt þ UðY0Þ��0

i þ Di�
0
iP

r

P
Hr

P
Yr

P
t �GðHr; Yr; r; i; tÞ þ UðY0Þ� þ Di

(32)

Fig. 3. Summary of the end-to-end optimization procedure for

training a complete SCIP system.
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VI. EXPERIMENTS AND ANALYSIS

In this section, we review a set of works published in the

literature, which either supported or actually implemented
various aspects of the end-to-end and joint-optimization-

based approach to the design and learning of SCIP systems

presented so far in this paper. We focus our attention

mainly on the experimental evidence and evaluations that

demonstrated the feasibility and effectiveness of the

approach.

A. Spoken Language Translation
The initial proposal of using translation evaluation

metrics to train both ASR and MT parameters in an SLT

system was due to [94], where a primitive implementation

and experimental evaluation showed promising results.

The SLT scoring or decision function was developed based
on Bayesian analysis on the joint ASR and MT compo-

nents. The analysis led to the decision variable, used in

SLT decoding, as a function of acoustic scores, source lan-

guage model scores, and translation scores. A discrimina-

tive learning technique was further developed based on the

decision-feedback principle that jointly learns the param-

eters in the source language model (used in ASR) and the

MT subsystem in the overall SLT system. The SLT eval-
uation experiments were conducted on the International

Workshop on Spoken Language Translation (IWSLT)

DIALOG 2010 database. The experimental results demon-

strated the effectiveness of this approach. Compared with

the baseline system that assumes no ASR to MT interaction

and no ASR uncertainty, the improved SLT system raised

the BLEU score by 2.3 points, about half coming from the

use of a combined posterior score from both ASR and MT
subsystems (while keeping the original separate ASR and

MT subsystem training, but generating an n-best list of the

ASR output and using it in the downstream MT) and the

remaining half from the joint training of the two

subsystems.

The optimization criterion used in [94] was the poste-

rior probability of the target text given the source speech

signal, and the gradient descent was used to carry out the
optimization process. The posterior probability is not the

direct SLT evaluation metric of BLEU and this shortcom-

ing was overcome in the more recent work of [40] and

[38], both of which directly took BLEU as the optimization

objective, as we presented in Section IV. The gradient–

descent method of optimization, which took as many as

50 iterations to converge in training, was also improved

to the EBW-based technique, with one magnitude fewer
iterations to run in training. The optimization frameworks

in the work of both [40] and [38] are two special cases of

the more general framework we presented in Sections IV

and V. The evaluation experiments were conducted on

two tasks: 1) an IWSLT 2011 benchmark task where the

EBW-based optimization technique on MT produced the

best Chinese-to-English translation result on translating

TED talks; and 2) Europarl German-to-English MT task
where the same EBW-based technique leads to 1.1 BLEU

point improvement over the state-of-the-art baseline

system.

B. Spoken Language Understanding
While most of the SLU methods, which are reviewed in

the recent book [98] and in Section IV-B, have taken the

‘‘divide and conquer’’ approach that separates the ASR
‘‘front–end’’ and the NLU ‘‘back–end,’’ we draw attention

to some notable exceptions here. In [86], Wang et al.
questioned the conventional wisdom that better speech

recognition accuracy is a good indicator for better SLU

accuracy. Experimental evidence was provided that higher

WERs may correlate with better slot filling accuracy as

long as model training criteria match the optimization ob-

jective for understanding. Specifically, the experiments
were conducted in the ATIS domain of SLU using the

composite HMM/CFG. The use of domain knowledge and

grammar library in the language model produced a higher

WER (7.6%) in ASR than the use of a trigram language

model trained with more data (WER of 6.0%), but slot

filling understanding error rate is lower (8.8% versus

9.0%). A similar kind of divergence between the interme-

diate ASR word errors and the ultimate understanding
errors was also found in earlier work of [74] and [25].

In a more recent work on the ATIS intent determina-

tion task, a decision-feedback learning method using a

quantity correlated with intent classification accuracy was

successfully applied to learn both the language model of

the ASR component and the maximum-entropy model of

the text classification component in the overall SLU system

[89]. The jointly trained system produced some ASR errors
but it performed better than the system assuming no ASR

errors. The framework presented in Sections IV and V

more systematically explores joint training of the system

components. The objective functions are also more directly

correlated with the performance metrics, which are ap-

plied not only to SLU but also to SLT, voice search, and

other SCIP systems. Moreover, the optimization tech-

niques are more principled and more general.

C. Voice Search
Like other SCIP systems, most of the existing voice

search methods discard the uncertainty in the ASR output

and the interactions between the ASR and IR subsystems.

One main exception is the very recent work of [59], where

an end-to-end ASR accuracy metric was proposed for voice

search tasks, in the same spirit as the end-to-end perfor-
mance metrics were developed for SLT and SLU. The end-

to-end metric was motivated by the end user’s experience

and is intended to capture how this experience is affected

by various ASR errors.

In the experiments reported in [59], it was shown that

the impact of many types of ASR errors on the voice search

quality is significantly smaller than what shows as the
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sentence error rates. That is, the voice search quality and
ASR errors often are not well correlated. Such experimen-

tal observations offer a strong support to the basic premise

of the end-to-end joint training of the voice search system

as well as other SCIP systems that we have discussed in this

paper.

D. Cross-Lingual Spoken Language Understanding
Porting an SLU service from one language to another is

of tremendous practical value and hence of increasing

interest to both the language understanding and machine

translation research communities recently [57], [104]–

[106]. One approach to addressing this need is to first

translate the (testing) utterances in the second language to

the primary language and then to use the primary lan-

guages SLU models to analyze them [104]. An alternative

approach is to first translate the annotated (training) cor-
pora to the second language, which is costly, followed by

training models from understanding examples in the sec-

ond language. Given the machine translation services that

are broadly available nowadays, the SLU service for the

primary language can be efficiently extended to cover a

variety of other languages with minimal cost using the first

approach. However, a full cross-lingual SLU system con-

sists of multiple components including ASR, MT, and SLU.
Due to the errors introduced in each of the components,

the performance of straightforward cross-lingual SLU in

this approach is far from acceptable. To address this issue,

the framework presented in this paper has provided a

principal solution to jointly train all the components to

achieve an optimal end-to-end performance. Research

along this direction is currently under way by the authors

and their colleagues.

VII. SUMMARY AND
FUTURE DIRECTIONS

In this paper, we organize and analyze a broad class of

SCIP applications in the realm of human language technol-

ogy. These include:

• SLT ¼ ASR þ MT;
• SLU ¼ ASR þ NLU;

• voice search ¼ ASR þ IR;

• cross-lingual SLU ¼ ASR þ MT þ NLU;

• cross-lingual voice search ¼ ASR þ MT þ IR;

• spoken dialog (open loop) ¼ ASR þ NLU þ
DialogControl;

• speech–speech translation ¼ ASR þ MT þ
SpeechSynthesis;

which are all enabled by a common component or subsys-

tem of ASR that is in tandem with one or more down-

stream, text-based processing component(s). An overview

of the work in the literature on SLT, SLU, voice search,

and selected other SCIP systems is provided, setting up the

background for a critique of the basic methodology in the

current design of most of such systems.

Special challenges are examined for optimal construc-
tion of such complex information processing systems with

the error-prone ASR component. Two distinct types of

optimization inconsistency are analyzed: 1) mismatch be-

tween the training and deployment conditions; and 2) de-

viation of the training objective from the evaluation metric

of the full system pipeline.

Aiming to overcome the optimization inconsistency,

we establish a unified statistical framework applicable to
all types of SCIP systems. We focus our technical presenta-

tion on two key aspects of the framework: 1) optimization

objectives; and 2) optimization techniques. We also review

a body of the work in the recent literature that imple-

mented a number of isolated aspects of this general frame-

work and demonstrated its feasibility and effectiveness.

While most previous work on SCIP has focused on joint

decoding with the parameters of component models being
trained disjointly (i.e., without considering their interac-

tions), we emphasize in this paper joint optimization for

the full set of parameters in the overall SCIP system.

As is clear from the reviews and presentation con-

ducted in this paper, SCIP systems are complex with diffi-

cult optimization problems in their design and learning.

While some progress has been made, many challenges re-

main. First, prosody is an important aspect of the speech
signal, interacting with both ASR and its downstream

components strongly. How to optimally embed prosody in

the framework presented in this paper [e.g., designing

tightly coupled features ’iðY ;H ;XÞ in (10)] has by no

means an obvious solution. Second, how to acquire a large

amount of supervised training data for optimizing SCIP

systems is more difficult than that for optimizing separate

ASR or text-based MT, NLU, and IR systems. While, in
principle, end-to-end two-way parallel data are sufficient

for the full SCIP system training, practical difficulties of

associating the end-to-end data and labels may necessitate

three-way parallel data collection, which is very costly. In

practice, it may be feasible to first train the individual

components separately, then to apply the end-to-end joint

optimization approach to fine-tune the models. Using pro-

per regularization described in this paper, the end-to-end
training can be achieved with a small amount of three-way

parallel data. Third, in practical usage scenarios of SCIP

systems, users may have the desire not only for having the

final system’s output but also for observing some interme-

diate results. For example, in the SLT system, it is desira-

ble to show the end users, who are often ignorant of the

target language, not just high-quality translated target

language but also the ASR results on the source language
with reasonably low ASR error rates. To fulfill such desire,

the objective function in end-to-end learning may be more

complicated than described in Section IV. Fourth,

successful exploration and exploitation of the equivalence

of generative and log-linear discriminative models [43] has

the potential to further extend the feasibility of current

EBW-based learning strategy to attack more challenging
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problems in the SCIP system design and optimization.
Fifth, despite the best effort to overcome it, there still

remains some degree of inconsistency between the

training objective, as exemplified in (3) and (19), and

the decision variable in decoding, as exemplified in (5).

Integration of a minimum Bayes-risk decoding framework

[31] into the current end-to-end optimization strategy

holds promise to eliminate this final piece of inconsisten-

cy. Finally, in light of the recent advance in deep learning
methods that have dramatically cut down the ASR error

rate [17], [44], [92], it is highly desirable to extend the

end-to-end optimization approach for the SCIP systems

presented in this paper based on Gaussian-HMM ASR

subsystems to incorporate the potentially new generation

of ASR based on deep networks. h

APPENDIX I

DERIVATION STEPS FOR (23)
Here we show the derivation steps leading to the

rational-function form of (23) for the transformed training

objective function Rð�Þ.
Substituting (10) into (12) and then into (1), we obtain

UðQÞ¼ 1

Z

X
Y

X
H

exp
X

i

wi log’iðY ;H ;XÞ
( )

CðYÞ

(35)

where Z ¼ SYSH expfS iwi log’iðY ;H ;XÞg.
Further algebraic manipulations yield

UðQÞ ¼
P

Y

P
H exp log

Q
i ’

wi
i ðY ;H ;XÞ

� �
CðYÞP

Y

P
H exp log

Q
i ’

wi
i ðY ;H ;XÞ

� �
¼
P

Y

P
H

Q
i ’

wi
i ðY ;H ;XÞCðYÞP

Y

P
H

Q
i ’

wi
i ðY ;H ;XÞ

: (36)

On the other hand, we rewrite (17) to obtain

KLðQ0kQÞ ¼ �
X

i

X
j

�0
ij log �ij þ C (37)

where C is a term irrelevant to optimizing Q. Equation (37)
can be further written into

e�� �KLðQ0kQÞ ¼
Y

i

Y
j

�
��0

ij

ij : (38)

After substituting (36) and (38) into (22), we obtain (23).

APPENDIX II

DERIVATION STEPS FOR (25)
Here we provide the derivation steps leading to the

EBW reestimation formula in (25) for the phrase transla-

tion model parameters in an SLT system.

We start from the transformed objective function RðQÞ
in (23), follow the first step of the EBW algorithm de-

scribed in Section V-B2, and construct the following auxi-
liary function:

FðQ; Q0Þ ¼ GðQÞ � JðQÞ � HðQÞRðQ0Þ:

Noting only Q, not Q0, contains the parameters pij for

optimization, we obtain

@FðQ; Q0Þ
@pij

¼ @GðQÞ
@pij

JðQÞ þ @JðQÞ
@pij

GðQÞ � RðQ0Þ @HðQÞ
@pij

where, according to (23), we have

@GðQÞ
@pij

¼
X

Y

X
H

Y
i

’wi
i ðY;H;XÞCðYÞ

@ log’wFP

FP ðY;H;XÞ
@pij

¼wFP
1

pij
�
X

Y

X
H

Y
i

’wi
i ðY ;H ;XÞCðYÞ

�
X

r;k

1ðhr;k ¼ i; yr;k ¼ jÞ

@JðQÞ
@pij

¼ JðQÞ @ log JðQÞ
@pij

¼ JðQÞ
@
P

i

P
j ��

0
ij log �ij

@pij

¼ JðQÞ�p0
ij

1

pij

@HðQÞ
@pij

¼wFP
1

pij
�
X

Y

X
H

Y
i

’wi
i ðY ;H ;XÞ

�
X

r;k

1ðhr;k ¼ i; yr;k ¼ jÞ:

Then

@FðQ; Q0Þ
@pij

����
Q¼Q0
¼ JðQ0ÞwFP

1

p0ij
HðQ0Þ

�
X

Y

X
H

�FPðH ;Y ; i; jÞ þ GðQ0ÞJðQ0Þ�p0
ij

1

p0ij
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where

�FPðH ;Y ; i; jÞ ¼
Q

i ’
wi
i ðY ;H ;XÞjQ¼Q0

HðQ0Þ � CðYÞ � GðQ0Þ
HðQ0Þ


 �
�
X

r;k

1ðhr;k ¼ i; yr;k ¼ jÞ

¼ PQ0 ðY ;H jXÞ � CðY Þ � UðQ0Þ½ �
�
X

r;k

1ðhr;k ¼ i; yr;k ¼ jÞ:

Substituting the above equation into the EBW formula

of (21), we obtain the equation shown at the top of the page.

Note that D=wFPJð�0ÞHðQ0Þ is independent from Q so

we denote this ratio as D without loss of generality.
Similarly, we denote by �=wFP as �FP. Further, using

GðQ0Þ=HðQ0Þ ¼ UðQ0Þ, we obtain

pij ¼
P

Y

P
H �FPðH ;Y ; i; jÞ þ UðQ0Þ�FPp0

ij þ Dp0ijP
j

P
Y

P
H �FPðH ;Y ; i; jÞ þ UðQ0Þ�FP þ D:

The right-hand side of the above equation can be fur-

ther rewritten into the decomposed form of (25) following

the derivation steps detailed in [41].
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