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ABSTRACT

We present a technique for denoising speech using nonnegative ma-
trix factorization (NMF) in combination with statistical speech and
noise models. We compare our new technique to standard NMF and
to a state-of-the-art Wiener filter implementation and show improve-
ments in speech quality across a range of interfering noise types.
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1. INTRODUCTION

This paper presents a regularized version of nonnegative matrix fac-
torization (NMF) and demonstrates its usefulness for the denoising
of speech in nonstationary noise. Speech denoising in nonstation-
ary noise is an important problem with increasingly broad applica-
tions as cellular phones and other telecommunications devices make
electronic voice communication more common in a wide range of
challenging environments, from urban sidewalk to construction site
to factory floor. Standard approaches such as spectral subtraction
and Wiener filtering require signal and/or noise estimates and there-
fore are typically restricted to stationary or quasi-stationary noise in
practice.

Nonnegative matrix factorization, popularized by Lee and Seung
[1], finds a locally optimal choice of W and H to solve the matrix
equation V ≈ WH . This provides a way of decomposing a signal
into a convex combination of nonnegative building blocks. When
the signal, V , is a spectrogram and the building blocks, W , are a
set of specific spectral shapes, Smaragdis [2] showed how NMF can
be used to separate single-channel mixtures of sounds by associat-
ing different sets of building blocks with different sound sources.
In Smaragdis’s formulation, H becomes the time-varying activation
levels of the building blocks. The building blocks in W constitute
a model of each source, and because H allows activations to vary
over time, this decomposition can easily model nonstationary noises.
([2] refers to its algorithm as probabilistic latent semantic analysis
(PLSA). Under proper normalization and for the KL objective func-
tion used in this paper, NMF and PLSA are numerically equivalent
[3], so the results in [2] are equally relevant to NMF or PLSA.)

NMF works well for separating sounds when the building blocks
for different sources are sufficiently distinct. For example, if one
source, such as a flute, generates only harmonic sounds and another
source, such as a snare drum, generates only nonharmonic sounds,
the building blocks for one source will be of little use in describing
the other. In many cases of practical interest, however, there is much
less separation between sets of building blocks. In particular, human
speech consists of harmonic sounds (possibly at different fundamen-
tal frequencies at different times) and nonharmonic sounds, and it
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can have energy across a wide range of frequencies. For these rea-
sons, many interfering noises can be represented, at least partially,
by the speech building blocks. In a speech denoising application,
where one “source” is the desired speech and the other “source” is
interfering noise, this overlap between speech and noise models will
degrade performance.

There is additional structure in speech and many other sounds,
however. For example, a human speaker will never generate a si-
multaneous combination of two harmonic sounds with harmonically
unrelated pitches. Using the standard NMF reconstruction, how-
ever, this combination would be allowed. By enforcing what we
know about the co-occurrence statistics of the basis functions for
each source, we can potentially improve the performance of NMF.

This paper makes two contributions. First, we present a regu-
larized version of NMF that encourages the denoised output signal
to have statistics similar to the known statistics of our source model.
Second, we evaluate the speech denoising performance of NMF and
regularized NMF and compare them to a state-of-the-art Wiener fil-
ter implementation.

2. ALGORITHM

Our technique for speech denoising consists of a training stage and
an application (denoising) stage. During training, we assume avail-
ability of a clean speech spectrogram, Vspeech, of size nf ×nst, and
a clean (speech-free) noise spectrogram, Vnoise, of size nf × nnt,
where nf is the number of frequency bins, nst is the number of
speech frames, and nnt is the number of noise frames. Different
objective functions lead to different variants of NMF, a number of
which are described in [4]. Kullback-Leibler (KL) divergence be-
tween V and WH , denoted D(V ||WH), was found to work well
for audio source separation in [2], so we will restrict ourselves to KL
divergence in this paper. Generalization to other objective functions
using the techniques described in [4] is straightforward.

During training, we separately perform standard NMF on the
speech and the noise, minimizing D(Vspeech||WspeechHspeech) and
D(Vnoise||WnoiseHnoise), respectively. Wspeech and Wnoise are
each of size nf×nb, where nb is the number of basis vectors chosen
to represent each source. Each column of W is therefore one of
the spectral “building blocks” we referred to earlier. Hspeech and
Hnoise are of size nb×nst and nb×nnt, respectively, and represent
the time-varying activation levels of the basis vectors.

Also as part of the training phase, we estimate the statistics
of Hspeech and Hnoise. Specifically, we compute the empirical
means and covariances of their log values, yielding µspeech , µnoise,
Λspeech, and Λnoise where each µ is a length nb vector and each Λ
is an nb × nb covariance matrix. We choose this implicitly Gaus-
sian representation for computational convenience, and we choose
to operate in the logarithmic domain because preliminary experi-
ments showed better results for the log domain than the linear do-



main. This is consistent with the fact that the nonnegative constraint
on H means that a Gaussian, which has support for both positive and
negative values, will probably be a poor fit to the true distribution.

In the denoising stage, we fix Wspeech and Wnoise and assume
that they will continue to be good basis functions for describing
speech and noise. We concatenate the two sets of basis vectors to
form Wall of size nf × 2nb. This combined set of basis func-
tions can then be used to represent a signal containing a mixture
of speech and noise. Assuming the speech and noise are indepen-
dent, we also concatenate to form µall = [µspeech; µnoise] and
Λall = [Λspeech 0; 0 Λnoise]. A main contribution of this paper is
then to find an Hall to minimize the following regularized objective
function:
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When α is zero, this is equal to the standard KL divergence ob-
jective function [4]. For nonzero α, there is an added penalty pro-
portional to the negative log likelihood under our jointly Gaussian
model for log H . This term encourages the resulting Hall to be con-
sistent with the statistics of Hspeech and Hnoise as empirically de-
termined during training. Varying α allows us to control the trade-
off between fitting the observed spectrogram of mixed speech and
noise, Vmix and achieving high likelihood under our prior model.
Following [4], the multiplicative update rule for Hall is
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where [ ]ε indicates that any values within the brackets less than the
small positive constant ε should be replaced with ε to prevent viola-
tions of the nonnegativity constraint and avoid divisions by zero.

Finally, to reconstruct the denoised spectrogram, we compute
V̂speech = WspeechHall1:nb

, using the speech basis functions and
the top nb rows of Hall to approximate the target speech.

Figure 1 gives a simple toy example of separating with and with-
out a prior distribution. Here we set nf = nb = 2, and we as-
sume that for both speech and noise, one basis function represents
the high frequency and the other represents the low frequency. The
original signals are in the left column, the unregularized NMF re-
constructions are in the center column, and the regularized NMF
reconstructions are in the right column. Because the basis functions
for the speech and noise are the same, unregularized NMF is com-
pletely unable to reconstruct the individual sources. Note however
that its chosen reconstructions do sum to accurately model the mix-
ture signal, indicating that it successfully minimized D(V ||WH).
The regularized NMF is able to exploit the fact that high and low

frequencies are perfectly correlated in Source 1 and negatively cor-
related in Source 2 to accurately reconstruct the two signals given
only the mixture signal and their statistical models. This example is
extreme in that the “speech” and “noise” bases are identical while
their statistics are quite different, but it makes the potential of the
approach clear. We show in the following section that incorporat-
ing this regularizing prior term does improve speech denoising in
practice.

3. RESULTS

We tested NMF and regularized NMF on a variety of speakers and
with four different types of nonstationary background noise (jack-
hammer noise, bus/street noise, combat noise, and speech babble
noise). All parameters remained at fixed values across all experi-
ments. We used 16 kilohertz audio with nf = 513, nb = 80, and
α = 0.25. (The numerical value of α is meaningless without know-
ing the magnitude of the spectrogram values, but we want to empha-
size that α remained fixed throughout.) We used speech from the
TIMIT database [6], testing two sentences from each of ten speakers
in each of our four chosen types of background noise. We normal-
ized speech and noise so that the average signal-to-noise ratio (SNR)
for each mixture was 0 dB.

We trained a separate noise model for each of the four noise
types, and we trained two different types of speech model. One
model, which we call the “group” model, was trained on a mixed
group of male and female speakers, none of which were in our test
set. This single model was then used to denoise noisy signals from
a variety of test speakers. For the other type of model, the “self”
model, we train a speaker-specific model for each speaker in the test
set using sentences from outside the test set. Comparing “group” to
“self” lets us see how much we gain from speaker-specific models.

Our results are shown in Figure 2. All results are shown as im-
provement relative to the score of the unprocessed 0 dB SNR mix-
ture, and each bar represents an average value over ten speakers. To
quantify our results, we use segmental SNR, a simple metric which
has been found to correlate reasonably well with perceived quality
[7], and the ITU Perceptual Evaluation of Speech Quality (PESQ)
[8], a more sophisticated metric specifically designed to match mean
opinion scores of perceptual quality. PESQ scores range from 1
through 5, and PESQ improvements on the order of 0.5, which we
achieve in many cases, are quite noticeable.

In addition to NMF and regularized NMF, we processed each
example with the ETSI Aurora front end’s Wiener filtering [5], a Eu-
ropean telecommunications standard which has been carefully tuned
for good performance in denoising speech. It is important to note
that, in contrast to the ETSI Wiener filter, all of our NMF variants use
both a training and a testing stage, so they benefit from environment-
specific noise models. They have also been specifically designed to
work on nonstationary noise. The ETSI Wiener filter has no train-
ing stage, so its noise model must be estimated online using a voice
activity detector and assumptions about the stationarity of the noise.
However, the ETSI Wiener filter has an advantage as long as its voice
activity detector works properly because it can then completely si-
lence intervals with no speech activity, yielding very good denoising
in those intervals. Because of the major differences between the two
types of denoising, detailed comparisons of the results are of lim-
ited use, but we feel that it is important to compare to an established
baseline and that some general conclusions are possible. The PESQ
scores for both regularized and unregularized NMF are almost al-
ways greater than for the ETSI Wiener filter, and in many cases are
substantially greater. Segmental SNR results are not as impressive
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Fig. 1. A toy example showing the advantage of regularizing with the log likelihood. In each panel, the horizontal axis represents time and
the vertical axis represents frequency. Darker colors represent higher intensity. The leftmost column shows the original signals. For source 1,
high frequencies and low frequencies are perfectly correlated. For source 2, high frequencies and low frequencies are negatively correlated.
In the middle column, unregularized NMF finds a reconstruction that perfectly models the mixture signal, but each individual source is poorly
reconstructed. In the rightmost column, near-perfect reconstruction of individual sources is achieved by enforcing the prior.
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Fig. 2. Speech denoising performance for our chosen noise types. “ETSI” is the front end Wiener filtering described in [5]. “NMF” is
applying the iterative update in Equation 3 with α = 0. “NMF prior” is applying Equation 3 with α = 0.25. “Self” denotes results for
speaker-specific speech models. “Group” denotes results for a non-speaker-specific speech model trained on a mixed gender group.



compared to ETSI, but even there regularized NMF is almost always
superior.

Overall, there is little difference between the results for male
speakers and female speakers. In particular, the fact that this holds
true for the “group” speech model suggests that the mixed-gender
group model is not strongly biased toward either gender. Next, note
that the regularized NMF results are almost always substantially
better than the corresponding unregularized NMF results. This
shows that the additional structure imposed by the prior consistently
improves the denoising performance across a variety of background
noises. The “self” models almost always outperform the “group”
models, which is not surprising since they are more specifically
targeted to each individual. However, it is interesting to note that
regularized NMF with the “group” model almost always outper-
forms unregularized NMF, even when the unregularized NMF uses
the speaker-specific “self” basis functions.

The aforementioned trends are relatively consistent across three
of the four noise types, but performance on “babble” noise departs
from these trends, especially as measured by segmental SNR. For
“babble,” it appears that regularization is not as helpful, and the ETSI
Wiener filter outperforms all NMF variants in segmental SNR. We
speculate that one reason for the impressive relative performance of
the Wiener filter is that the babble noise is the closest of the four
to stationary noisy, in the sense that it is a near constant drone of
indistinct speech-like noise. It is possible that the priors are not as
useful for babble because the prior for the speech-like babble noise
is very similar to the prior for speech itself, although further analysis
is needed to confirm this hypothesis.

4. CONCLUSION

We have shown that NMF can be used to denoise speech in the pres-
ence of nonstationary noise, and we have shown that by regularizing
NMF based on a prior model of speech and noise, we can exploit ad-
ditional signal structure to improve performance. Our results equal
or surpass results from a state-of-the-art Wiener filter implementa-
tion on a range of noise types.

There are a number of interesting directions for future work.
This work complements work on explicit control of sparseness for
source-separation [9], and combining the two approaches may im-
prove results further. Determining a useful way of incorporating
regularization into the training stage and/or incorporating temporal
dynamics could also improve performance. Finally, we would like
to better characterize how well NMF and regularized NMF can be
expected to work on a given problem, presumably depending on the
distinctness of the basis sets and the divergences between prior dis-
tributions.
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