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ABSTRACT

Reverberation has a considerable impact on the quality and intel-

ligibility of captured speech signals. In this paper we present an

approach for blind multi-microphone speech dereverberation based

on the weighted prediction error method, where the reverberant ob-

servations are modeled using multi-channel linear prediction in the

short-time Fourier transform domain. Instead of using the commonly

employed Gaussian distribution for the desired speech signal, the

proposed approach uses a Laplacian distribution which is known to

be more accurate in modeling speech signals. Maximum-likelihood

estimation is used for estimating the model parameters, leading to

a linear programming optimization problem. Experimental results,

obtained using measured impulse responses, indicate that the pro-

posed approach could be used to improve the dereverberation per-

formance compared to the classical technique.

Index Terms— Dereverberation, speech enhancement, model-

based signal processing

1. INTRODUCTION

Capturing speech in an enclosed space with microphones placed at a

distance from the speaker typically results in microphone recordings

corrupted by reverberation, caused by reflections against the walls

and objects in the enclosure. It is well known that reverberation of-

ten results in a decrease of speech intelligibility and reduces the per-

formance of automatic speech recognition systems [1]. Many speech

communication applications, such as hands-free telephony, telecon-

ferencing and voice-controlled systems, therefore benefit from ef-

fective dereverberation. Recently, various techniques have been pro-

posed that aim to reduce the reverberant components. Some tech-

niques are based on first blindly estimating the room impulse re-

sponses (RIR) [2] followed by multichannel equalization [3]. Al-

though in theory these approaches can perform perfect dereverber-

ation, the achieved performance is limited by the accuracy of the

RIR estimation step and robust equalization techniques are needed

[4]. More robust speech dereverberation approaches are based on

spectral enhancement, which however typically introduce a trade-

off between reverberation suppression and speech distortion [5]. In

addition, several blind speech dereverberation techniques, which do

not employ any knowledge of the room acoustics properties, were

proposed recently [6, 7, 8, 9, 10].

An approach for blind speech dereverberation based on multi-

channel linear prediction (MCLP) was proposed in [6, 7]. The ef-

ficient implementation in the short-time Fourier transform (STFT)
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domain, named weighted prediction error (WPE) [6], uses an autore-

gressive generative model for the acoustic transfer functions (ATFs),

and models the spectral coefficients of the desired (clean) speech sig-

nal using a Gaussian distribution. Dereverberation is then performed

by maximum likelihood (ML) estimation of all unknown model pa-

rameters.

While the assumption of Gaussianity often leads to closed-form

expressions, it is well known that the speech signals can be mod-

eled more accurately using Laplacian or Gamma distribution, both

in terms of time-domain samples as well as spectral coefficients

[11, 12, 13, 14]. Motivated by these facts, in this paper we propose

a speech dereverberation method based on MCLP with a Laplacian

distribution as a local model of the desired speech signal coefficients.

Since maximal likelihood estimation of the regression parameters

however no longer results in a closed-form expression, we have to

resort to numerical optimization for solving the corresponding linear

programming (LP) problem. The results presented in the experimen-

tal section show that for different acoustic scenarios the proposed

method achieves better performance, in terms of cepstral distance

and PESQ score, when compared to the classical WPE based on the

Gaussian distribution.

The paper is organized as follows. In Section 2 we introduce

notation and formulate the problem of speech dereverberation. In

Section 3 we give an overview of the WPE based on Gaussian dis-

tribution and present the proposed method based on a Laplacian dis-

tribution. The experimental results are presented in Section 4.

2. PROBLEM FORMULATION

We consider a scenario where a single speech source in an enclosure

is captured by M microphones. Let sn,k denote the clean speech

signal in the STFT domain with time frame index n ∈ {1, . . . , N},

and frequency bin index k ∈ {1, . . . ,K}. The reverberant speech

signal observed at the m-th microphone, m ∈ {1, . . . ,M}, is typi-

cally modeled in the STFT domain as [7]

xm
n,k =

Lh−1
∑

l=0

(hm
l,k)

∗sn−l,k + emn,k, (1)

where hm
l,k models the ATF between the speech source and m-th

microphone in the STFT domain, the length of ATF equals Lh, and

(.)∗ denotes the complex conjugate operator. The additive term emn,k

jointly represents modeling errors and the additive noise signal. The

convolutive model in (1) is often rewritten as

xm
n,k = dmn,k +

Lh−1
∑

l=D

(hm
l,k)

∗sn−l,k + emn,k, (2)
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where the signal

dmn,k =

D−1
∑

l=0

(hm
l,k)

∗sn−l,k (3)

is composed of the anechoic speech signal and early reflections at the

m-th microphone, and D corresponds to the duration of the early re-

flections. Dereverberation methods often aim to recover the anechoic

signal together with the early reflections, since the early reflections

tend to improve speech inteligibility [1].

In several methods it was proposed to replace the convolutive

model in (1) and (2) with an autoregressive model [6, 7, 9]. In [7, 15],

the observation model was further simplified by assuming emn,k =
0, ∀n, k,m. Under these assumptions, the signal observed at the

first microphone (m = 1) can be written in the well-known multi-

channel linear prediction form, i.e.,

x1
n,k = dn,k +

M
∑

m=1

(gm
k )H x

m
n−D,k (4)

where dn,k ≡ d1n,k is the desired signal, and (.)H denotes the conju-

gate transposition operator. The vector gm
k ∈ C

Lk is the regression

vector of order Lk for the m-th channel and xm
n,k is defined as

x
m
n,k =

[

xm
n,k, . . . , x

m
n−Lk+1,k

]T
, (5)

with (.)T denoting the transposition operator. The MCLP model (4)

can be written in a compact form using the multi-channel regression

vector gk ∈ C
MLk as

x1
n,k = dn,k + g

H
k xn−D,k (6)

with the following notation

gk =
[

(g1
k)

T , . . . , (gM
k )T

]T

, (7)

xn,k =
[

(x1
n,k)

T , . . . , (xM
n,k)

T
]T

. (8)

In the presented scenario the problem of speech dereverbera-

tion is formulated as a blind estimation of the desired signal dn,k,

consisting of the direct speech signal and early reflections, from the

reverberant observations xm
n,k, ∀m,n, k. From (4) it follows that the

desired signal can be estimated as

d̂n,k = x1
n,k − ĝ

H
k xn−D,k (9)

whereˆdenotes an estimated value. Therefore, dereverberation can

be performed by estimating the regression vectors ĝk, and calculat-

ing an estimate of the desired speech signal d̂n,k as in (9).

3. WPE METHOD

3.1. Original approach - Gaussian model

The original weighted prediction error (WPE) method proposed in

[7] is based on a time-varying power spectrum model (TVPS) of

the desired signal, assuming locally Gaussian distribution for the de-

sired speech coefficients. More specifically, the desired signal in

each time-frequency bin is modeled as a zero-mean random vari-

able with a circular complex Gaussian distribution and a time- and

frequency-dependent variance λn,k. The probability density func-

tion p (dn,k) of the desired signal is then given by

p (dn,k) =
1

πλn,k

e
−

|dn,k|2

λn,k (10)

Additionally, it is assumed that dn1,k1 and dn2,k2 are independent

for (n1, k1) �= (n2, k2).
The unknown parameters to be estimated from the reverberant

observations xm
n,k are the (time- and frequency-dependent) speech

variances λn,k and the (frequency-dependent) regression vectors gk,

modeling the ATFs. Note that we can work in each frequency bin in-

dependently, since the observation model (4) and the TVPS model

do not assume any dependency across different frequency bins. In

[7] a ML estimation of the parameters has been proposed, by maxi-

mizing the likelihood function

L (Θk) =

N
∏

n=1

p (dn,k) , (11)

where Θk = {gk, λ1,k, . . . , λN,k} is the set of unknown param-

eters for the k-th frequency bin. This estimation is equivalent to

minimization of the cost function

ℓ (Θk) =

N
∑

n=1

(

log λn,k +
|x1

n,k − gH
k xn−D,k|2

λn,k

)

(12)

which is obtained by taking the negative logarithm of (11) and ignor-

ing the constant terms. However, minimizing (12) with respect to the

parameters Θk can not be performed analytically, so an alternating

two-step optimization scheme was proposed. In the first step, (12)

is minimized with respect to gk, while the other parameters (vari-

ances λn,k) are kept fixed. In this case, the cost function (12) can be

rewritten as a function of gk as follows

ℓ (gk) =

N
∑

n=1

∣

∣

∣

1
√

λn,k

x1
n,k − 1

√

λn,k

g
H
k xn−D,k

∣

∣

∣

2

+ rk, (13)

where rk =
∑N

n=1 log λn,k does not depend on gk. Minimization

of (13) is a linear least squares problem in variable gk with a closed-

form solution (cf. Table 1). In the second step parameters swap

roles, i.e., (12) is minimized with respect to the unknown variances

λn,k while gk is kept fixed. In this case, each variance is obtained

as

λ̂n,k = argmin
λn,k>0

(

log λn,k +
|dn,k|2
λn,k

)

= |dn,k|2. (14)

This two-step procedure is repeated until some convergence criterion

is satisfied or a maximum number of iterations is exceeded. Addi-

tionally, a small positive constant εk is included as a lower bound

for the estimated variance, to prevent division by zero. The com-

plete procedure is outlined in Table 1.

In [7] it was proposed to use just a single iteration of the al-

gorithm, since it was observed that subsequent iterations did not

always increase the quality of the recovered signal and could even

lead to degradations. These degradations typically occurred for short

observed signals, and it was recently proposed to introduce addi-

tional information, through spectral priors, to mitigate the degrada-

tion [15].
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input: xm
n,k, ∀n,m ; Lk

initialization: λ̂n,k ← |x1
n,k|2

repeat

Ak ← ∑N

n=1

xn−D,kx
H
n−D,k

λ̂n,k

bk ← ∑N

n=1

xn−D,k(x
1
n,k)

∗

λ̂n,k

ĝk ← A−1
k bk

d̂n,k ← x1
n,k − ĝH

k xn−D,k

λ̂n,k ← max{|d̂n,k|2, εk}
until condition satisfied

Table 1. Outline of the WPE method based on the Gaussian distri-

bution

3.2. Proposed approach - Laplacian model

The assumption that the STFT coefficients of the desired signal can

be modeled using a Gaussian distribution results in a closed-form

solution for estimating the regression vector gk in WPE. However,

it is often stated that the STFT coefficients of speech signals can

be more accurately modeled using Laplacian or Gamma distribu-

tions [11, 12, 13]. Motivated by these facts, we propose to model

the STFT coefficients of the desired signal locally, in each time-

frequency bin, using a Laplacian distribution. We assume that the

real and imaginary parts of dn,k have a Laplacian distribution with

equal variance λn,k/2, and that they are independent. The probabil-

ity density function of the desired signal can then be written as

p (dn,k) =
1

λn,k

e
−2

|ℜ(dn,k)|+|�(dn,k)|√
λn,k (15)

where ℜ(.) and ℑ(.) denote the real and imaginary part of a complex

number. Similarly as in the original WPE method, the ML estimate

of the parameters Θk can now be obtained by minimizing the cost

function

ℓ̃ (Θk) =

N
∑

n=1

(

log λn,k + 2

∣

∣ℜ
(

dn,k

)∣

∣+
∣

∣ℑ
(

dn,k

)∣

∣

√

λn,k

)

(16)

which is obtained by taking the negative logarithm of the likelihood

function and ignoring the constant terms. Again, we resort to a two-

step alternating scheme to obtain estimates for the parameters Θk.

Step 1 - estimation of gk: Assuming that the variances λn,k are

fixed, the regression vector can be estimated by minimizing the cost

function (16) with respect to gk. In this case, the cost function (16)

can be rewritten as a function of gk as follows

ℓ̃ (gk) =

N
∑

n=1

2
√

λn,k

(

∣

∣

∣
ℜ
(

x1
n,k − g

H
k xn−D,k

)

∣

∣

∣
+

+
∣

∣

∣
ℑ
(

x1
n,k − g

H
k xn−D,k

)

∣

∣

∣

)

+ rk,

(17)

with rk does not depend on gk. The first term within the brackets in

(17) can be rewritten as

ℜ
(

x1
n,k − g

H
k xn−D,k

)

= ℜ(x1
n,k)− ḡ

T
k x̄n−D,k, (18)

with

x̄n,k =

[

ℜ(xn,k)
ℑ(xn,k)

]

, ḡk =

[

ℜ(gk)
ℑ(gk)

]

. (19)

Similarly, we have

ℑ
(

x1
n,k − g

H
k xn−D,k

)

= ℑ(x1
n,k)− ḡ

T
k x̃n−D,k, (20)

with x̃n,k =
[

ℑ(xn,k)
T −ℜ(xn,k)

T
]T

. The cost function (17)

can hence be rewritten as

ℓ̃ (gk) =

N
∑

n=1

2
√

λn,k

(

∣

∣

∣
ℜ
(

x1
n,k

)

− ḡ
T
k x̄n−D,k

∣

∣

∣
+

+
∣

∣

∣
ℑ
(

x1
n,k

)

− ḡ
T
k x̃n−D,k

∣

∣

∣

)

+ rk.

(21)

Minimizing (21) can be formulated as the following linear program-

ming (LP) problem [16]

mint,ḡk
‖t‖1

subject to t ≥ 0

|ℜ(x1
n,k)− ḡT

k x̄n−D,k| ≤
√

λn,k

2
t2n−1

|ℑ(x1
n,k)− ḡT

k x̃n−D,k| ≤
√

λn,k

2
t2n

(22)

with variables t ∈ R
2N , ḡk ∈ R

2MLk , where tn denotes the n-th

element of the vector t and ‖.‖1 is the ℓ1-norm.

Step 2 - estimation of λn,k: Assuming that the regression vec-

tor gk is fixed, the variances can be estimated by minimizing the cost

function in (16) with respect to λn,k. In this step, each variance is

obtained by solving

min
λn,k>0

(

log λn,k + 2
|ℜ(dn,k)|+ |ℑ(dn,k)|

√

λn,k

)

, (23)

yielding a closed-form solution

λn,k =
(

|ℜ(dn,k)|+ |ℑ(dn,k)|
)2

. (24)

This two-step procedure is repeated in an alternating fashion,

until some convergence criterion is satisfied or a maximum number

of iterations is exceeded. Again, a small positive constant εk is in-

cluded as a lower bound for the estimated variance. The complete

procedure is outlined in Table 2.

Although solving the LP problem in (22) is more complicated

than calculating the closed-form solution in the original WPE, it

should be noted that solvers for LP problems are a mature technol-

ogy [16]. Recent trends show that modern solvers, even for a wider

class of convex problems, are often fast enough to be used in real-

time systems [17].

input: xm
n,k, ∀n,m ; Lk

initialization: λ̂n,k ←
(

|ℜ(x1
n,k)|+ |ℑ(x1

n,k)|
)2

repeat

ĝk ← solve LP (22)

d̂n,k ← x1
n,k − ĝH

k xn−D,k

λ̂n,k ← max

{

(

|ℜ(d̂n,k)|+ |ℑ(d̂n,k)|
)2

, εk

}

until condition satisfied

Table 2. Outline of the proposed method based on the Laplacian

distribution

5174

zxw1989
高亮

zxw1989
高亮

zxw1989
高亮

zxw1989
高亮

zxw1989
高亮

zxw1989
高亮



4. EXPERIMENTS

To evaluate the performance of the proposed method, we performed

two experiments using sound samples of 10 different (5 male and 5

female) speakers, with one utterance for each of the speakers. The

average length of the utterances was 3.6s, and the sampling fre-

quency was equal to 8 kHz. The reverberant observations were gen-

erated by convolving each utterance with measured RIRs for M =
2 omni-directional microphones. In the first experiment we used

two RIRs from the MARDY database [18], with reverberation time

T60 ≈ 450ms, and the loudspeaker positioned centrally at a distance

of 1 m from the array. In the second experiment we considered an

acoustic scenario in a room with reverberation time T60 ≈ 550ms,

where the RIRs were measured using the swept-sine technique.

In both experiments the STFT was calculated using a 32ms

Hamming window with 50% overlap. The order of the multi-

channel regression vector was set to Lk = 15 in the first experiment,

and to Lk = 20 in the second experiment. In both experiments the

prediction delay was set to D = 3, and the small positive constant

was fixed to εk = 10−6. The linear programming problem (22) was

solved using the CVX software package [19].

The dereverberation performance was evaluated in terms of cep-

stral distance (CD) and the objective speech quality measure PESQ

[20]. The cepstral distance between two signals is defined as

CD =
10

log 10

√

√

√

√(c0 − ĉ0)2 + 2

12
∑

k=1

(ck − ĉk)2, (25)

where ck and ĉk are the cepstral coefficients of the anechoic speech

signal and the estimated desired signal, respectively. PESQ quan-

tifies the level of similarity between a reference signal and an esti-

mated signal, with the output in the range 1− 4.5. The PESQ score

was calculated with the anechoic speech signal as the reference sig-

nal. For each of the experiments we report the values of CD and

PESQ averaged over all of the speakers.

In Figure 1 we compare the original WPE method with the pro-

posed approach in both experimental setups for different number of

iterations. The iteration index zero denotes the value of a measure

calculated for the observed reverberant signal at the first microphone.

It can be seen that the proposed approach outperforms the original

WPE both in terms of cepstral distance and perceptual speech qual-

ity. The difference is especially visible for a single iteration. There-

fore, the proposed approach could be used in a single-iteration mode,

similar as was proposed in [7], yielding better performance than the

WPE with Gaussian distribution. Additionally, the presented results

illustrate that for more iterations both methods exhibit a similar be-

havior. Hence, it is reasonable to expect that the proposed approach

could also benefit by use of additional spectral priors [15], leading

to a further increase in the performance.

5. CONCLUSIONS

In this paper we have presented a method for speech dereverberation

based on the weighted prediction error method, where the desired

signal is modeled as a random variable with a Laplacian distribution.

Experimental results in two different acoustic scenarios demonstrate

that the proposed approach results in better performance, compared

to the original approach that assumes a Gaussian distribution, both in

terms of lower speech distortion and higher perceptual speech qual-

ity. Incorporation of additional prior knowledge, such as temporal

and spectral structure of the desired signal, remains an interesting

direction for future research.

(a) Experiment 1

(b) Experiment 2

Fig. 1. Performance for the original WPE and the proposed method

(in terms of average CD and PESQ) in two acoustic scenarios for

different number of iterations.
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