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Abstract: Speech emotion recognition (SER) plays a vital role in human–machine interaction. A large
number of SER schemes have been anticipated over the last decade. However, the performance of the
SER systems is challenging due to the high complexity of the systems, poor feature distinctiveness,
and noise. This paper presents the acoustic feature set based on Mel frequency cepstral coefficients
(MFCC), linear prediction cepstral coefficients (LPCC), wavelet packet transform (WPT), zero crossing
rate (ZCR), spectrum centroid, spectral roll-off, spectral kurtosis, root mean square (RMS), pitch,
jitter, and shimmer to improve the feature distinctiveness. Further, a lightweight compact one-
dimensional deep convolutional neural network (1-D DCNN) is used to minimize the computational
complexity and to represent the long-term dependencies of the speech emotion signal. The overall
effectiveness of the proposed SER systems’ performance is evaluated on the Berlin Database of
Emotional Speech (EMODB) and the Ryerson Audio-Visual Database of Emotional Speech and Song
(RAVDESS) datasets. The proposed system gives an overall accuracy of 93.31% and 94.18% for the
EMODB and RAVDESS datasets, respectively. The proposed MFCC and 1-D DCNN provide greater
accuracy and outpace the traditional SER techniques.

Keywords: affective computing; convolutional neural network; deep learning; MFCC; speech emo-
tion recognition

1. Introduction

Speech emotion recognition (SER) deals with the recognition of emotional content in
the speech signal irrespective of its semantic content. Humans can naturally perform SER as
a part of speech communication; the ability to perform automatic SER using computational
strategies is still an enduring topic of research. SER systems are extensively utilized in
various applications to understand the emotional status of humans such as call center
operators, car drivers, customer care centers, pilots, narcotics analysis, online learning
platforms, and many other human–machine interaction system users [1,2].

The generalized SER system encompasses two major phases: training and testing.
Machine learning or deep learning techniques were used to learn the classifier based on
hand-crafted characteristics of speech emotion signals during the training phase. During
the testing step, the real-time samples are compared to the trained model to see if it can
distinguish the specific emotion. Data preparation, feature extraction, feature selection, and
classification are all important steps in the SER process. To improve raw voice signals, data
preparation includes signal normalization, noise reduction, and artifact removal. Using
various feature extraction strategies, the feature extraction step aids in capturing the key
aspects of a certain emotion. The importance of feature selection in collecting crucial
characteristics to reduce the SER system’s complexity cannot be overstated. Lastly, different
machine learning or deep learning classifiers are employed for SER [3,4].

Speech emotion signal is a continuous time-domain signal that contains emotion as
well as information. Speech features can be local or global features depending upon the
feature extraction approach. Local features are known as segmental features or short-term
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features that represent temporal variations of the signal. Global attributes are also known
as long-term features or supra-segmental features representing the signal’s overall statistics.
SER systems can analyze the local and global speech signal features in four categories:
prosodic, spectral, voice-quality, and Teager energy operator (TEO)-based features [5].

Prosodic features are dependent on human hearing perception, such as rhythm and
intonation. The most extensively utilized prosodic features are pitch, fundamental fre-
quency, duration, and energy. Prosodic features are more indicative of happiness and
anger and less indicative of fear and sadness. Heterogeneous sound features do not affect
prosodic features [6]. Combination of prosodic features with spectral features has revealed
significant improvement in the SER [7]. Spectral features of speech emotion signals are
obtained by converting time-domain signal to frequency-domain signal. Spectral features
represent the characteristics of the vocal tract. The Mel frequency cepstral coefficients
(MFCC) scale is a well-accepted method for feature mining of speech signal. It gives
the short-term power spectrum of speech signal and describes the phonemes in terms of
the shape of the vocal tract. The Mel frequency scale correlates the perceived frequency
with actual frequency. MFCC performs poor in cases of additive noise and background
noise [8–10]. Linear predictive cepstral coefficients (LPCC) can be used to approximate
the human vocal cord. LPCC gives a poor performance in emotion recognition compared
with MFCC. Linear predictive coding (LPC) can be used for the encoding of low bit rate
signal with higher efficiency [11,12]. Voice quality features are generally used to capture
the physical characteristics of the vocal tract. Voice quality features comprise shimmer,
jitter, harmonics to noise ratio (H.N.R.), etc. Jitter and shimmer represent the variability of
frequency and amplitude of speech signal, respectively. Jitter is the quality of frequency
unsteadiness whereas shimmer is the performance metric of amplitude variability [13].
TEO-based features are normally utilized for anger and stress emotion recognition. As
per Teager, speech is shaped by a non-linear vortex-airflow association in the person’s
vocal system. Stressful conditions influence the muscle pressure of the speaker and lead to
variation in airflow during speech production. TEO features are basically used for stress
emotion detection [14,15].

The most commonly used classifiers for SER are support vector machine (SVM),
random forest (RF), Gaussian mixture model (GMM), K-nearest neighbor (KNN), hidden
arkov model (HMM), decision tree, dynamic time warping, etc. Traditional machine
learning-based approaches have shown inferior performance because of their dependency
on hand-crafted features, poor feature representation, inability to deal with complex and
large data, etc. [16–18].

Deep learning-based approaches emerge as better solutions for SER because of their
superior feature representation capability, ability to handle complex features, ability to learn
unlabeled data, and ability to handle larger datasets. Distinct deep learning algorithms
such as convolutional neural network (CNN), deep neural network (DNN), long short-term
memory (LSTM), etc., are successfully presented for automatic SER [19–21].

Recently, various one- and two-dimensional convolutional neural network-based sys-
tems have been presented for the SER. Kwon presented 1-D dilated CNN to represent
salient features and long-term dependencies of the speech emotion signal. It resulted in
73% and 90% accuracy on Interactive Emotional Dyadic Motion Capture (IEMOCAP) and
EMODB databases, respectively [22]. Further, 1-D dilated CNN is used along with hierar-
chical feature learning blocks with the help of a bidirectional gated recurrent unit (BiGRU)
to improve the signal quality in the spectral domain [23]. Zhao et al. [24] investigated
1-D and 2-D CNN along with LSTM for SER and observed that 2-D CNN–LSTM provides
significantly better results compared with 1-D CNN–LSTM on the EMODB dataset. They
suggested that the “black box” nature of the 2-D CNN poorly uncovers the details of speech
emotion signal. Most of the deep learning-based SER systems use speech spectrogram or
Mel frequency spectrogram as input, which escalates the computational difficulty because
of a large number of features [25]. The Mel frequency logarithmic spectrogram (MFLS)
has shown a better spectral representation of the emotion signal compared with the tradi-
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tional MFCC algorithm. The MFLS features along with 2-D DCNN have given 96.07% and
95.68% accuracy for the speaker-independent and speaker-dependent SER on the EMODB
dataset [26]. Zhao et al. proposed a combination of 1-D and 2-D CNN to capture high-level
emotional features along with Bayesian optimization to fasten the learning process. The
merging of 1-D and 2-D CNN has given the accuracy of 91.78% and 92.72% accuracy for
speaker-independent and speaker-dependent SER on the EMODB dataset [27]. Bilal [28]
presented chroma, spectral, root mean square, and MFCC features for the SER along with
spectrogram features to learn the emotional features from the speech. The set of these
acoustic features along with ResNet provided SER accuracy of 79.41% and 90.21% for the
RAVDESS and EMODB datasets, respectively. Chen at al. [29] investigated attention-based
convolution RNN (ACRNN) that accepts 3-D Mel-spectrograms as input for emotion fea-
ture representation. It provided high-level feature representation and concentrated on the
emotion specific content in speech. It resulted in SER accuracy of 82.82% for the EMODB
dataset. Meng et al. [30] presented an SER system that used 3-D Mel-log spectrograms as
an input to dilated CNN with BLSTM with attention mechanism to improve the long-term
dependency. It provided SER accuracy of 88.08% for the EMODB dataset. Misbah et al.,
in [31], presented SER based on Mel-Log spectrogram and DCNN. It provides 81.30%,
83.80%, 83.80%, and 82.10% accuracy on the RAVDESS, IEMOCAP, SAVEE, and EMODB
datasets, respectively. The classifiers used for classifications of emotions such as SVM,
KNN, and random forest shows less generalization capability. Sonawane et al. [32] ex-
plored MFCC–CNN for the real time SER for datasets obtained from social media sites. It
shows that the MFCC–CNN shows better performance than the traditional MFCC-based
SER techniques. Sajjad et al. [33] investigated SER based on CNN feature extractor that
accepts the short time Fourier transform spectrogram (STFT) as input and the radial basis
function network (RBFN) for similarity computation. It used bidirectional LSTM (BiLSTM)
to improve the precision of SER. It resulted in an accuracy of 72.25%, 85.57%, and 77.02% for
the IEMOCAP, EMODB, and RAVDESS datasets, respectively. It is observed that the feature
representation capability of the STFT is limited due to vast changes in spectral domain.
Kwon et al. [34] proposed deep stride CNN (DSCNN) that extracts discriminative and
important features from speech spectrogram to improve the SER precision and complexity
of the network. It has shown better representation of the local and global features of speech
signal. It has shown SER accuracy of 84.00% and 80.00% accuracy for the IEMOCAP and
RAVDESS datasets, respectively. Vryzas et al. [35] suggested that CNN–SVM for continuous
time frames of the speech signal. It is observed that the raw speech fails to provide better
local and global representation of emotional content in time and frequency domain. Ngoc-
Huynh et al. [36] presented SER scheme using a multi-level multi-head fusion (MLMHF)
attention mechanism, and RNN. It uses MFCC features as input and has shown better reso-
lution in time but fails to provide the generalization capability. Orhan et al. [37] proposed a
3-D CNN + LSTM using MFCC coefficients for SER that resulted in 96.18%, 87.50%, and
93.32% accuracy for the RAVDESS, SAVEE, and RML datasets, respectively. Liu et al. [38]
suggested data augmentation to minimize the gross loss in SER recognition along with the
CNN–LSTM model for feature representation. It used the log Mel spectrogram as the input
to the CNN–LSTM model for SER. Various SER techniques used the common feature set
and very little work is presented on the multiple acoustic features-based SER that provides
the representation capability in the time and frequency domains. The distinctiveness of
the SER depends upon the quality of speech features. Various SER techniques have used
MFCC spectrogram or MFCC coefficients as the input to deep learning frameworks. The
MFCC is capable of providing high-level features and neglects lower-order characteristics
of the signals. The raw speech features have poor feature variability and fail to capture
the precise arousal and valence level of the speech signal for SER [39,40]. Various machine
and deep learning algorithms provide limited performance for the real time SER because
of variability in the recording environment and language changes. Thus, there is need
to improve the distinctiveness of the speech features in a way that combines the various
local and global characteristics of the emotion signal. The huge trainable parameters of the
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traditional deep learning architectures lead to higher training and testing time and make it
less flexible for implementation on the standalone devices/processors [41–43].

This paper presents SER using MFCC and a one-dimensional convolutional neural
network to minimize the computational complexity of SER. The chief contributions of the
proposed article can be highlighted as:

• To present collaborative low-order and high-order features using various acoustic
features such as MFCC, LPCC, WPT, ZCR, RMS, spectrum centroid, spectral roll-off,
spectral kurtosis, formants, pitch, jitter, and shimmer for the improvement of speech
signal’s feature distinctiveness;

• To develop a lightweight 1-D deep convolutional neural network for complexity
reduction of deep learning frameworks for SER.

The overall system’s effectiveness is assessed using accuracy, recall, precision, and
F1-score on the EMODB and RAVDESS datasets.

The remaining paper is structured as follows: Section 2 delivers a detailed description
of various acoustics features considered for the implementation; Section 3 describes the
proposed SER methodology based on 1-D DCNN; Section 4 depicts the dataset information,
investigation results on the individual and cross-corpus datasets, and findings from the
results; finally, Section 5 gives a concise conclusion and future scope.

2. Acoustic Features

Acoustics features of the speech signal represent the physical properties of the speech
signal in terms of frequency, amplitude, and loudness. The proposed acoustic feature
set consists of distinct spectral features, time-domain features, and voice quality features
to characterize the speech emotion. Extracted acoustics features are Mel frequency cep-
stral coefficients (MFCC), linear prediction cepstral coefficients (LPCC), wavelet packet
transform (WPT), zero crossing rate (ZCR), spectrum centroid, spectral roll-off, root mean
square (RMS), spectral kurtosis (SK), jitter, shimmer, pitch frequency, formants, mean and
standard deviation of the formants. Before computing various features, the speech signal
is passed through a moving average filter to minimize the noise and disturbances in the
speech signal.

2.1. MFCC

MFCC provides the spectral information of the speech and characterizes the human
hearing perception. Figure 1 shows the process flow of computation of MFCC coefficients [4,7].
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During the MFCC coefficient extraction process, pre-emphasis normalizes the raw
signal speech signal. The pre-emphasis minimizes the noise and disturbances present in the
raw emotional speech (x(n)). Further, the filtered signal is alienated into 40 ms frames with
a frame shift of 50% (i.e., 20 ms). For 4 s speech signals, a total of 199 frames is generated
considering 40 ms frame width and 50% overlapping. Further, a single hamming window
with α = 0.46 and N number of samples per frame length (N) of 30 ms gathers the closest
frequency components together, which is given by Equation (1).

H(n) = (1− α)− α× cos
(

2πn
(N− 1)

)
, 0 ≤ n ≤ N− 1 (1)
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In the next step, Discrete Fourier Transform (DFT) is employed to convert time-
domain emotion speech signal into the frequency-domain equivalent (X(k)), as given in
Equation (2). Equation (3) provides the power spectrum of the DFT which exemplifies
the vocal tract characteristics. Then, the signal is passed through M(24) number of Mel
Frequency triangular filter banks (∇m(k)) to provide the speech-hearing perceptual infor-
mation as given in Equation (4). Equations (5) and (6) provides the conversion of linear to
Mel frequency and vice versa.

X(k) =
N−1

∑
n=0

x(n)×H(n)× e−j2πnk/N, 0 ≤ n, k ≤ N− 1 (2)

Xk =
1
N
|X(k)|2 (3)

ETm =
k=1

∑
k=0
∇m(k)× Xk; m = 1, 2, . . . M (4)

Mel = 2595 log
(

1 +
f

700

)
(5)

f = 70
(

10
Mel
2595 − 1

)
(6)

Afterward, discrete cosine transform (DCT) of log-filter bank energy signal provides L
number of cepstral coefficients as given by Equation (7).

MFCCi =
M

∑
m=1

log10(ETm)× cosj
(
(m + 0.5) πm

)
for j = 1, 2, . . . L

(7)

The MFCC provides a total of 39 features that encompass one feature as the energy
of speech signal, 12 MFCC coefficients, and 26 first- and second-order derivatives of the
MFCC features. The derivative features are essential for characterizing the transition in the
emotional speech [26,27].

2.2. RMS

RMS (xrms) provides the loudness of the emotion signal that is computed by consid-
ering the root mean squares of the amplitudes of the emotion speech samples (xi) [43,44].
Equation (8) provides the estimation of RMS of the emotion speech signal with N samples.

xrms =

√√√√ 1
N

N

∑
i=1

x2
i (8)

2.3. ZCR

ZCR provides the transition of signal over the zero line that indicates noisiness measure
in the speech signal. Equation (9) provides computation of ZCR in the time domain [44].
The sign function provides 1 value for positive sample amplitude and 0 for negative sample
amplitude over a time frame (t).

ZCRt =
1
2

(
N

∑
n=1

(sign(x[n])− sign(x[n− 1]

)
(9)

2.4. Spectrum Centroid

The spectrum centroid represents the center of gravity of the scale invariant Fourier
transform (SIFT) spectrum. It provides the spectral shape characteristic of the speech signal.
The higher value of spectrum centroid indicates the accumulation of higher frequency
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values [45]. Equation (10) gives the spectrum centroid (SC) for nb frequency bins, SIFT
magnitude (Mt(nb)) over time frame t.

SCt =
∑N

n=1 Mt(nb)× nb

∑N
n=1 nb

(10)

2.5. Spectral Roll-off

Spectral roll-off frequency (Frolloff) is a measure of spectral shape that provides the
frequency below which 85% of SIFT magnitude is concentrated. Equation (11) provides the
computation of spectral roll-off [44].

Frolloff

∑
n=1

Mt(nb) = 0.85×
N

∑
n=1

Mt(nb) (11)

2.6. LPCC

The LPCC is the spectral feature derived from the linear predictive analysis to represent
the emotion-specific phonetic representation of the speech signal. The LPCC is good at
providing human vocal tract characteristics that help to uniquely characterize the emotional
content in the speech [46–48]. In linear predictive analysis, the nth samples can be estimated
from the knowledge of previous p samples as given in Equation (12).

x(n) = a1x(n− 1) + a2x(n− 2) + a3x(n− 3) + . . . . . . + apx(n− p), (12)

where a1, a2, . . . ..ap are the constants over the speech frame. These linear predictor
coefficients predict the speech sample. Equation (13) is used to analyze the error between
predicted x̂(n) and actual sample x(n).

x(n) =x(n) – x̂(n)= x(n)−∑p
k=1 aks(n− k) (13)

To obtain the unique predictive coefficients, the sum of the squared difference of error
(en) between predicted x̂(n) and actual sample x(n) is computed using Equation (14). Here,
m represents the number of samples in the frame.

en = ∑
m

[
x(m)−

p

∑
k=1

akx(m− k)

]2

(14)

The LP coefficients are computed by solving Equation (15). The LPCC coefficients are
computed using Equations (15)–(18).

dEn

dak
= 0 for k = 1, 2, 3, . . . . . . ..p (15)

C0 = loge(p) (16)

LPCCm = am +
m−1

∑
k=1

k
m

Ckam−k; for 1 < m < p (17)

LPCCm =
m−1

∑
k=m−p

k
m

Ckam−k; for m > p (18)

The proposed approach considers total of 13 LPCC coefficients as features [46,47].

2.7. Spectral Kurtosis

The spectral kurtosis (SK) provides the series of transients along with their locations in
the spectral domain. It characterizes the non-Gaussianity or flatness of the speech spectrum
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around its centroid that shows the effects of variations in arousal and valence in emotion
on the speech spectrum [5,7,9]. Equation (19) is used to estimate the spectral kurtosis of the
speech signal.

SK =
∑b2

k=b1(fk − µ1)
4sk

(µ2)
4 ∑b2

k=b1 sk
(19)

Here, µ1 and µ2 represents the spectral centroid and spectral spread, respectively, sk is
spectral value over k bins, and b1 and b2 are the lower and upper bound of the bins where
spectral skewness of speech is estimated.

2.8. Jitter and Shimmer

Jitter and shimmer provide the changes over frequency and amplitude of the emotion
signal, respectively, caused due to irregular vocal fold vibrations. Jitter and shimmer depict
the breathiness, roughness, and hoarseness in the emotional sound. Equation (20) provides
the average absolute value of jitter [13].

Jitter =
1

N− 1

N−1

∑
i=1
|Ti − Ti+1| (20)

where Ti stands for the time period in sec and N represents number of periods. Equation
(21) represents average value of shimmer.

Shimmer =
1

N−1 ∑N−1
i=1 |Ai −Ai+1|
1
N ∑N

i=1 Ai
, (21)

where Ai is peak to peak amplitude of emotional speech and N depicts number of periods.

2.9. Pitch Frequency

Pitch (f0) is significant to exemplify the voiced part of speech. The pitch of the speech
is estimated by computing the difference between the peaks derived from autocorrelation
of the speech signal [5,7].

2.10. Formants

Formants indicate the peak frequencies in the speech spectrum that has higher energy.
It characterizes the resonance phenomenon of the vocal tract, which is very helpful in
characterizing the effect of emotion on the resonance phenomenon. The formants are
derived from the MFCC spectrogram and 3 formants—f1, f2, and f3—are considered for
evaluation. Further, the mean and standard deviation of the formants are computed
using three formants to provide the variations in the formants [5,7]. Equations (22)–(24)
provide formants (fm), mean of formants (fmu), and standard deviation of formants (fmσ),
respectively.

fm = {f1, f2, f3} (22)

fmu =
f1 + f2 + f3

3
(23)

fmσ =

√
∑3

i=1 (fi − fmu)
2

3
(24)

2.11. Wavelet Packet Decomposition Features

WPT permits complex information such as speech, images, music, emotion, and
patterns to be decomposed into basic forms at diverse positions and scales and consequently
reconstructed with high precision. WPT helps us to analyze the variations over the speech
due to different emotions. The Daubechies (db2) wavelet at various scales is used to
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decompose the wavelet packet basis function Ψi
j(n) using WPD for L-levels, as shown in

Equations (25) and (26) [49,50].

Ψ2i
j (n) = ∑

k
h(k)Ψi

j−1

(
n− 2j−1k

)
(25)

Ψ2i+1
j (n) = ∑

k
g(k)Ψi

j−1

(
n− 2j−1k

)
(26)

where g(k) and h(k) denotes, respectively, the high and low pass quadrature mirror filters
shown in Equations (27) and (28).

h(k) = 〈Ψ2i
j (u), Ψi

j−1

(
u− 2j−1k

)
〉 (27)

g(k) = 〈Ψ2i+1
j (u), Ψi

j−1

(
u− 2j−1k

)
〉 (28)

The emotion speech is separated into segments at level j using Equation (29).

x(n) = ∑
i.k

Xi
j(k)Ψ

i
j

(
n− 2jk

)
(29)

where Xi
j(k) is kth WPT at ith packet at j level. Equation (30) indicates the energy of the

local wavelet.
Xi

j(k) = 〈x(n), Ψi
j

(
n− 2jk

)
〉 (30)

The wavelet coefficient Xi
j(k) describes the localized WPT weights denoted by Ψi

j
(
n− 2jk

)
as given in Equation (31).

Xi
j(k) = 〈x(n), Ψi

j

(
n− 2jk

)
〉 (31)

Equation (32) gives distinct WPT set for L level.

XL(k) =


X0

L(k)
X1

L(k)
.
.

X2L−1

L (k)

 (32)

The speech signal is decomposed up to three levels using db2 filter. Seven statistical
features are extracted for the last decomposed level: mean, median, standard deviation,
variance, skewness, kurtosis, and energy of every wavelet packet. The different WPT
features provide the spectral changes in the speech signal due to changes in prosody and
intonation of emotion speech signal. The three-level decomposition of speech signal results
in total 56 WPT features.

Thus, the final feature vector consists of total 715 features. which is the concatenation
of 39 MFCC features, 1 RMS feature, 199 ZCR features, 199 spectrum centroid features, 13
LPCC features, 56 WPT features, 1 spectral roll-off feature, 199 spectral kurtosis features, 1
jitter, 1 shimmer, pitch frequency, three formants, mean and standard deviation of formants.
The feature representation (Feat), which is given as input to DCNN for SER, is given by
Equation (33).

Feat = {MFCC1−39, xrms, ZCR1−199, SC1−199, LPCC1−13, WPT1−56, Frolloff, SK1−199, Jitter, Shimmer, f0, fm1−3, fmu, fmσ } (33)

3. Proposed Methodology

Figure 2 illustrates the process of the proposed SER system. The proposed 1-D Deep
convolutional neural network (1-D DCNN) comprises three convolution layers (Conv),
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three rectified linear unit (ReLU) layers, two fully connected layers (FC), and a softmax
classifier layer.
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Figure 2. Illustration of proposed SER system.

The proposed compact 1-D DCNN accepts the 715 acoustic features (Feat) as input.
The first layer of CNN consists of two layers {Conv1(Filters: 32, Filter Size: 1×3, Stride: 1,
Padding: Yes)→ ReLU1 } that provide the output of 715× 1× 32. The convolution filter size
is selected as 1× 3, which helps to provide the local changes in the feature set and combines
the correlation between different features. The filter is stride with one pixel and the original
feature vector is zero padded to maintain the original dimension after convolution opera-
tion. The second CNN layer includes {Conv2 (Filters: 64, Filter Size: 1×3, Stride: 1, Padding:
Yes)→ ReLU2} that produces the feature map of 715 × 1 × 64; the third CNN layer encom-
passes {Conv3 (Filters : 128, Filter Size : 1× 3, Stride : 1, Padding : Yes) → ReLU3} that
results in feature maps of 715 × 1 × 128. The increasing number of filters in each layer
assists in improving the connectivity in the local and global features of the emotion. In each
convolution layer, the one-dimensional input is convolved with the convolution filter. It
provides the high-level characteristics of the speech emotion signal [51,52].

The convolution output z(n) of features Feat(n) and filter w(n) having size l is given in
Equation (34). Equation (35) represents convolution feature map where zl

i describes the ith

feature map of the lth layer, zl−1
j stands for jth feature of the (l− 1)th layer, wl

ij describes

the filter kernel of lth layer linked to jth feature, bl
i stands for bias, and σ depicts ReLU

activation function. The ReLU layer is simple and has a faster activation function that
overcomes the problem of vanishing gradient as given in Equation (36).

z(n) = Feat(n)×w(n) =
i−1

∑
m=0

Feat(m)×w(n−m) (34)

zl
i = σ

(
bl

i + ∑
j

zl−1
j ×wl

ij

)
(35)
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σ(z) = max(0, z) (36)

Following the 3 CNN layers, 2 fully connected layers are used having 20 and 7 hidden
layers, respectively. In the FC layer, the linear transformation is applied to the input feature
vector using the weight matrix. The non-linear activation function is applied for non-linear
transformation as given in Equation (37).

yjk(x) = f(
nH

∑
i=1

Wjkxi + wj0) (37)

where xi represent value from flattening feature vector, w0 stands for bias term, w represent
weight matrix, f stands for non-linear activation function, y is non-linear transformation
output, and nH provides no hidden layers.

Finally, the softmax classifier provides the probability of the output where maximum
probability of class label provides output class label, as given in Equations (38)–(40) [15].

zi = ∑
j

hjwji (38)

pi =
exp(zi)

∑n
j=1 exp

(
zj
) (39)

ŷ = arg
max

i
pi (40)

Here, hj is weight of penultimate layer and wji represent the weights of softmax and
penultimate layer, zi is input of softmax layer, pi is probability of class label, and ŷ is
predicted class label.

Table 1 provides the particulars of the feature maps of the distinct layers of the
proposed 1-D DCNN. The raw speech signal consists of 64,000 samples in the input vector;
whereas the multiple acoustic feature vector consists of 715 values. The length of the
input feature vector affects the total number of trainable parameters and the computation
time. The proposed network is trained using stochastic gradient descent with momentum
(SGDM). The system is trained for a batch size of 64 to cope with the memory limit. The
training process considers 200 epochs, cross entropy loss function, an initial learning rate
of 0.001, and momentum of 0.9. The training accuracy and training loss of the proposed
1-D DCNN are illustrated in Figures 3 and 4, respectively.

Table 1. Details of different layers of proposed 1-D DCNN.

Network Layers
Raw Speech + 1-D DCNN MFCC + 1-D DCNN

Size Stride Size Stride

Input Layer 64,000 × 1 - 715 × 1 -
Conv1 64,000 × 1 × 32 1 715 × 1 × 32 1
ReLU-1 64,000 × 1 × 32 1 715 × 1 × 32 1
Conv2 64,000 × 1 × 64 1 715 × 1 × 64 1
ReLU-2 64,000 × 1 × 64 1 715 × 1 × 64 1
Conv3 64,000 × 1 × 128 1 715 × 1 × 128 1
ReLU-3 64,000 × 1 × 128 1 715 × 1 × 128 1
FC 20 × 1 - 20 × 1 -
FC 7 × 1 - 7 × 1 -
Output 7 × 1 - 7 × 1 -
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4. System Implementation and Results

The proposed SER scheme is instigated using MATLAB R2021b (Mathworks, Ben-
galuru, India) on the NVIDIA Volta GPU (NVIDIA, Bengaluru, India) with a tensor core
(512 cores). The MATLAB deep learning toolbox is used for the construction of the deep
learning algorithm.

4.1. Dataset

The experimentations are carried on an open-source EMODB speech emotion database
that comprises 535 utterances of 7 emotions recorded from 10 professional actors in the
German language [53]. Additionally, the RAVDESS emotional speech dataset is used for
the performance evaluation of the proposed SER scheme. The RAVDESS consists of total
1440 samples recorded from 24 professional actors (12 male and 12 female). It encompasses
eight emotions: calm, surprise, neutral, happy, angry, sad, fearful, and disgust [54]. The
original EMODB database samples have variable lengths and are down-sampled at 16 kHz.
Therefore, all samples are cropped/appended to make each sample of 4 s duration. The data
is split in the ratio of 70:30 for training and testing, respectively, as shown in Tables 2 and 3.

Table 2. Details of EMODB database.

Samples
Speech Emotions (EMODB)

Anger Boredom Disgust Fear Happiness Neutral Sadness Total

Total Samples 126 79 46 70 73 78 63 535

Training Samples (70%) 87 55 31 50 51 54 44 372

Testing samples (30%) 39 24 15 20 22 24 19 163
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Table 3. Details of RAVDESS database.

Samples
Speech Emotions (RAVDESS)

Anger Calm Disgust Fear Happy Neutral Sadness Surprised Total

Total Samples 192 192 192 192 192 96 192 192 1440

Training Samples (70%) 134 134 134 134 134 67 134 134 1005

Testing samples (30%) 58 58 58 58 58 29 58 58 435

4.2. Results and Discussions

The effectiveness of the proposed 1-D DCNN with multiple acoustic features as input
is compared with 1-D DCNN with raw speech as input. The outcomes of the proposed
method are compared based on various performance metrics such as precision, recall,
accuracy, and F1-score as given in Equations (41)–(44). The precision and recall provide
the qualitative and quantitative performance of the proposed SER system. The F1-score
provides the harmonic mean of the precision and recall.

Precision =
TP

TP + FP
(41)

Recall =
TN

TN + FN
(42)

Accuracy(%) =
TP + TN

TP + TN + FP + FN
(43)

F1− score =
2× Precision× Recall

Precision + Recall
(44)

The outcomes of the proposed 1-D DCNN-based SER for the various emotions with
raw speech as input and MFCC coefficient and multiple acoustic features as input is given
in Table 4.

Table 4. Results of proposed system on EMODB database.

Emotion
Raw Speech + 1-D DCNN MFCC + 1-D DCNN Multiple Acoustic Features +

1-D DCNN

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Anger 97.44 0.97 0.97 0.97 100.00 1.00 0.98 0.99 100.00 1.00 0.98 0.99
Boredom 87.50 0.88 0.78 0.82 87.50 0.88 0.84 0.86 87.50 0.88 0.84 0.86
Disgust 86.67 0.87 0.93 0.90 80.00 0.80 1.00 0.89 93.33 0.93 1.00 0.97

Fear 85.00 0.85 0.89 0.87 90.00 0.90 0.90 0.90 95.00 0.95 0.95 0.95
Happiness 86.36 0.86 0.95 0.90 90.91 0.91 1.00 0.95 90.91 0.91 1.00 0.95
Neutral 91.67 0.92 0.88 0.90 95.83 0.96 0.88 0.92 91.67 0.92 0.88 0.90
Sadness 89.47 0.89 0.89 0.89 94.74 0.95 0.90 0.92 94.74 0.95 0.95 0.95

Overall 89.16 0.89 0.90 0.89 91.28 0.91 0.93 0.92 93.31 0.93 0.94 0.94

The experimental results show that compared to the raw speech signal and MFCC
coefficients, multiple acoustic features along with 1-D DCNN give a better representation
of the emotion signal and provide a higher discriminant feature. The proposed compact
1-D DCNN multiple acoustic features provide 93.31% accuracy for SER on the EMODB
dataset. It shows 4.61% and 2.21% improvement over the 1-D DCNN with raw features
and MFCC coefficients (39 coefficients), respectively. It gives highest 100% accuracy for
anger emotion and lowest 90.91% accuracy for the happiness emotion.

Table 5 illustrates the SER performance for the RAVDESS dataset. The effectiveness
of the proposed 1-D DCNN-based SER system provides average accuracy of 90.52%,
92.03%, and 94.18% for 1-D DCNN with raw speech, MFCC, and multiple acoustic features,
respectively, for the RAVDESS dataset. The 1-D DCNN along with multiple acoustic
features gives the highest (98.28%) accuracy for the anger emotion, and lowest accuracy
(91.38%) for the neutral emotion. It shows an overall improvement of 4.04% and 2.34%
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over the SER-based 1-D DCNN using raw speech and MFCC coefficients, respectively, for
the RAVDESS dataset. The proposed 1-D DCNN along with multiple acoustic features
provides superior accuracy for the RAVDESS dataset (94.10%) over the EMODB dataset
(93.31%). The higher number of samples and variability in the training samples of the
RAVDESS dataset provide finer SER performance compared with the EMODB dataset.

Table 5. Results of proposed system on RAVDESS database.

Emotion
Raw Speech + 1-D DCNN MFCC + 1-D DCNN Multiple Acoustic Features +

1-D DCNN

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Anger 94.83 0.95 0.93 0.94 98.28 0.98 0.89 0.93 98.28 0.98 0.93 0.96
Calm 91.38 0.91 0.90 0.91 91.38 0.91 0.93 0.92 93.10 0.93 0.93 0.93

Disgust 89.66 0.90 0.93 0.91 93.10 0.93 0.96 0.95 91.38 0.91 0.96 0.94
Fear 89.66 0.90 0.90 0.90 93.10 0.93 0.93 0.93 93.10 0.93 0.93 0.93

Happy 91.38 0.91 0.95 0.93 91.38 0.91 0.91 0.91 94.83 0.95 1.00 0.97
Neutral 82.76 0.83 0.77 0.80 82.76 0.83 0.86 0.84 93.10 0.93 0.82 0.87
Sadness 91.38 0.91 0.93 0.92 94.83 0.95 0.95 0.95 91.38 0.91 0.96 0.94

Surprised 93.10 0.93 0.92 0.92 91.38 0.91 0.95 0.93 96.55 0.97 0.95 0.96

Overall 90.52 0.91 0.90 0.90 92.03 0.92 0.92 0.92 94.18 0.94 0.94 0.94

The performance of the offered scheme is compared for different learning strategies
such as SGDM, Adaptive Moment Estimation (ADAM) and Root Mean Square Propagation
(RMSPROP) optimization algorithms, as shown in Figure 5. The proposed 1-D DCNN
provides noteworthy improvement in the SER accuracy for SGDM with mini batch training
(batch size of 64 and initial learning rate of 0.001) over ADAM and RMSPROP algorithm. It
provides SER accuracy of 94.18%, 92.00%, and 91.23% for SGDM, RMSPROP, and ADAM
optimization algorithm, respectively, for the RAVDESS dataset, whereas it results in 93.31%,
91.23%, and 92.5% accuracy for SGDM, RMSPROP, and ADAM optimization algorithm,
respectively, for the EMODB dataset.
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Additionally, the effectiveness of the proposed approach is evaluated on the real time
Marathi speech emotion dataset, as given in Table 6. The Marathi dataset consist of 250
samples per emotion for anger, happiness, neutral, and sadness, which are recorded at
16 Hz sampling frequency for a 4 s duration. The proposed 1-D DCNN along with multiple
acoustic features provides an overall accuracy of 89.94% for the four class SER. It provides
superior performance compared to DCNN with raw speech (83.33%) and DCNN with
MFCC coefficients (86.11%) for the real-time dataset without any pre-processing. The
DCNN with multiple acoustic features provides the highest (95.56%) accuracy for the anger
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emotion and the lowest (88.64%) accuracy for the happiness emotion. The results of the
real-time dataset can be improved in the future by considering an effective speech-enhanced
approach and more emotions.

Table 6. Results of proposed system on in-house Marathi speech emotion database.

Emotion
Raw Speech + 1-D DCNN MFCC + 1-D DCNN Multi-Feature + 1-D DCNN

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Anger 86.67 0.87 0.83 0.85 91.11 0.91 0.84 0.87 95.56 0.96 0.86 0.91
Happy 80.00 0.80 0.95 0.87 84.44 0.84 0.95 0.89 88.64 0.89 0.95 0.92
Neutral 84.44 0.84 0.75 0.79 86.67 0.87 0.81 0.84 88.89 0.89 0.93 0.91
Sadness 82.22 0.82 0.84 0.83 82.22 0.82 0.86 0.84 86.67 0.87 0.87 0.87

Overall 83.33 0.83 0.84 0.83 86.11 0.86 0.86 0.86 89.94 0.90 0.90 0.90

The proposed 1-D DCNN with multiple acoustic features results in 1.77 M trainable
parameters; those are lower compared with DCNN with raw speech as input and the
traditional state of the art. The lower trainable parameters help to minimize the training
time of the network and increase the implementation flexibility of the proposed algorithm
on the standalone devices. The computational complexity of the SER system is hugely
dependent upon overall trainable parameters and training time. The proposed architecture
needs 2980 s time for training the network. It is observed that the use of multiple distinctive
acoustic feature sets and lightweight CNN helps to minimize the training time of the
system compared with the existing state of the art. The proposed algorithm performance is
compared with previously used 1-D CNN architectures for SER on the EMODB database,
as given in Table 7. The multiple acoustic features help to improve the long-term depen-
dencies of the speech emotion signal. It provides the better phonetic representation of the
emotional signal by considering low-level and high-level features. The multiple acoustic
features provide spectral properties, a loudness measure, a spectral shape measure, and
an asymmetry measure, and roll-off frequency provides distinctive features for the SER
and improves the SER performance. The voice quality features such as RMS, Jitter, and
shimmer provide the intonation changes due to emotions on the speech signal.

Table 7. Comparison of the proposed SER with earlier approaches on the EMODB and RAVDESS
datasets.

Methods Features
Accuracy (%) Total Trainable

Parameters (Million)
Total Training Time

(s)EMODB RAVDESS

1-D Dilated CNN [23] Raw Speech 90.00 - - 3150
1-D CNN + LSTM [24] Raw Speech 86.73 - - -
DCNN [31] Mel Log Spectrogram 85.57 77.02 - -
RBFN-BiLSTM [33] STFT 85.57 77.02 >3 M -
ACRNN [29] 3-D Mel Spectrogram 82.82 - - 6811
ADRNN [30] 3-D Mel Spectrogram 88.98 - - 7187
Merged DCNN [27] Log Mel Spectrogram 91.78 - >10 M -

ResNet101 [28]
MFCC, RMS, Croma

Features, Spectral
Features, Spectrogram

90.21 79.41 44.5 M -

Proposed Method Raw Speech 89.16 90.52 163 M 8650

Proposed Method MFCC speech input-39
features 91.28 92.03 0.192 M 2650

Proposed Method
Multiple Acoustic

Features (Spectral, Time
domain, Voice quality)

93.31 94.18 1.77 M 2980

5. Conclusions and Future Scopes

This paper presents SER based on multiple acoustic features and 1-D deep convolu-
tional neural network. The multiple acoustic features set includes the distinct low-order
and high-order features of spectral, temporal, and voice quality feature domains to charac-
terize the effect of emotion on the various spectral, time-domain, and voice quality features.
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It assists in improving the quality of distinctiveness of the traditional low-order speech
features. In the case of the EMODB database, our model for raw speech gives 89.16%,
for MFCC features, 91.28% accuracy, and the proposed combination of multiple acoustic
features gives an improved accuracy of 93.31%. While evaluating the RAVDESS dataset, the
proposed system provides 80.52%, for MFCC features, 92.03% accuracy, and the proposed
combination of multiple acoustic features gives an improved accuracy of 94.18%.

The proposed 1-D DCNN improves the feature discriminancy of the MFCC coefficients.
The 1-D DCNN provides a simple, compact, and cost-effective solution for the hardware
implementation of the SER system. The proposed SER scheme shows an improvement of
1.91–7.85% in SER accuracy over the traditional SER techniques for the EMODB dataset. The
proposed algorithms need lower trainable parameters (1.77 M) and training time (2980 s),
and have shown superior improvement over recent traditional SER techniques. In future,
the class imbalance caused due to uneven training in the dataset can be minimized using
effective data augmentation techniques. Further, outcomes of the system can be evaluated
for the cross-corpus SER under stationary and non-stationary noisy conditions.
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37. Atila, O.; Şengür, A. Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition. Appl. Acoust. 2021,

182, 108260. [CrossRef]
38. Liu, J.; Wang, H. A speech emotion recognition framework for better discrimination of confusions. In Proceedings of the

Interspeech 2021, Brno, Czech Republic, 30 August–3 September 2021; pp. 4483–4487.
39. Gintautas, T.; Korvel, G.; Yayak, A.B.; Treigys, P.; Bernatavičienė, J.; Kostek, B. A study of cross-linguistic speech emotion
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