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Abstract One of the obstacles in developing speech

emotion recognition (SER) systems is the data scarcity

problem, i.e., the lack of labeled data for training

these systems. Data augmentation is an effective

method for increasing the amount of training data. In

this paper, we propose a cycle generative adversarial

network (Cycle-GAN) for data augmentation in the

SER systems. For each of the five emotions considered,

an adversarial network is designed to generate data that

has a similar distribution to the main data in that class

but has a different distribution to those of other classes.

These networks are trained in an adversarial way to

produce feature vectors similar to those in the training

set, which are then added to the original training sets.

Instead of using the common cross-entropy loss to

train Cycle-GANs, we use the Wasserstein divergence
to mitigate the gradient vanishing problem and to

generate high-quality samples. The proposed network

has been applied to SER using the EMO-DB dataset.

The quality of the generated data is evaluated using

two classifiers based on Support Vector Machine (SVM)
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and Deep Neural Network (DNN). The results showed

that the recognition accuracy in un-weighted average

recall (UAR) was about 83.33%, which is better than

the baseline methods compared.
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networks

1 Introduction

The data scarcity problem is one of the critical

challenges in developing speech emotion recognition

(SER) systems. This problem can be examined from

three aspects. The first aspect is related to the

dramatized emotions (generated by actors), used to

avoid legal and moral issues [1]. The second aspect is

the mislabelling of the emotions of the speakers, and

the third issue is related to the lack of balance in the

number of samples available for each class. To train an

emotion classifier, a balanced data set (equal number

of emotional samples in each class) is often required.

Some standard data augmentation techniques used

for images such as transfer and rotation [2] may not be

applicable for text or speech. Synonymous substitution

[3], which is mainly used to process text, is not

appropriate for emotion classification and recognition

from speech. Similarly, traditional data augmentation

methods for speech, such as changes in voice and sound

velocity [4], are also inappropriate for images or texts.

In contrast, the data augmentation method based on

generative adversarial networks (GANs) [12] is focused

on learning and simulating real data distribution and is

independent of the tasks. Therefore, GANs-based data

augmentation method is our focus in this paper.
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Recently, end-to-end methods are used for speech

emotion recognition [5, 6], where the input to the

systems are feature vectors and the output is class

labels. In [7], the features are extracted by convolution

filters. With the development of DNNs in SER, various

data augmentation methods have been proposed [8,

9]. Transfer learning can be used to address the

data sparsity problem [10], e.g. in image and speech

processing [11]. Deng et al. proposed a transfer learning

method by transferring knowledge learned from source

domain data to the target domain data [8].

One of the effective methods to augment data is

the GANs introduced by Goodfellow et al. [12], which

was shown to improve image recognition performance

[13]. Zhang et al. introduced GAN to produce high-

dimensional data and showed that data augmentation

by GANs performs better than the typical data

augmentation techniques [14], such as time warping,

frequency masking, and time masking. Hybrid methods

include four different combinations: LibriSpeech basic

(LB), LibriSpeech doubles (LD), Switchboard mild

(SM), and Switchboard strong (SS) [38].

Cycle adversarial data augmentation networks use

Jensen-Shannon divergence as a divergence criterion.

According to [15], if two data distributions are

less overlapped or not overlapped, Jensen-Shannon

divergence tends to be constant, which can lead

to a gradient vanishing problem. The method

proposed in this study can address this problem.

In training, source and target data distribution are

significantly overlapped, which makes it difficult for the

discriminator to distinguish between these two vector

groups. As a result, the discriminator network leads

to increased cross-entropy errors, and the generator

network then receives a gradient error. Moreover,

with the adversarial data augmentation networks,

other divergence methods such as the Wasserstein

divergence can be easily used for gradient descent.

As compared with the Jensen-Shannon divergence,

the Wasserstein divergence can measure the distance

between two data distributions even if they are not

overlapped. The hidden space generated by adversarial

data augmentation networks also makes it easy to

learn emotional information due to the low dimensions

of the vectors in the training data. In addition,

practical programs [16, 17] have shown that models

with the Wasserstein divergence are better than

those with other divergences, such as Jensen-Shannon

divergence and maximum mean discrepancy. Therefore,

the Wasserstein divergence based adversarial data

augmentation may offer improved performance in

emotion recognition.

In this paper, we present a Cycle-GAN for data

augmentation and then test it on SER with two

classifier networks. The Cycle-GAN generates samples

similar to actual data thereby augmenting the dataset

with additional samples for emotion classification. In

addition, we study the effectiveness of the GANs,

and replace the standard cross-entropy error by the

Wasserstein divergence to train the GAN to improve

the classification performance. We evaluate the method

using the EMO-DB database. The results show that the

proposed data augmentation technique improves the

SER performance on the EMO-DB dataset, and the

Cycle-GAN with Wasserstein divergence outperforms

the Cycle-GAN with the conventional cross-entropy

loss. We show that the synthetic samples generated

from an ordinary Cycle-GAN cover part of the actual

data while the clusters created by the Cycle-GAN using

Wasserstein distance (artificial samples generated from

our method) completely cover the feature space for each

five emotion classes.

Section 2 reviews existing methods for the data

scarcity problem. Section 3 proposes the suggested

network design and provides theoretical analysis.

Section 4 presents experiment details, including

dataset, features, experimental setup, and evaluation

protocols. Section 5 analyzes experimental results.

Finally, Section 6 concludes the paper.

2 Background

2.1 Related work

To address the data scarcity problem, we can use

data augmentation methods to expand the data set
by generating new samples using techniques, such as

adding noise to the data [32], pitch shifting and time-

stretching of the audio signal, varying the loudness of

the speech signal, applying random frequency filters,

and interpolating between samples in input space.

However, these methods usually change the data, and

may cause problems or introduce artefacts into the

data, such as rotation, adding noise, speech echoing,

and signal clipping [18]. Advanced data augmentation

methods are based on GANs and their variants, such

as Conditional-GANs and Cycle-GANs. Hu et al. used

a deep convolutional neural network to produce extra

features to train acoustic models and showed that

data augmentation can improve the performance of

speech recognition systems [19]. Sahu et al. synthesized

feature vectors with automatic adversarial encoders

using Gaussian mixed noise in the generator network

[20]. Sahu et al. also developed a model based on a

Conditional-GANs to generate artificial feature vectors

[9]. Several methods were used to train the Conditional-
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GANs, including generator initialization with detector

weights, as well as, using an automatic adversarial

encoder.

One fundamental issue in training GANs is that the

generator and the discriminator are trained in parallel.

Dynamic alternating training [14] can be used so that

the number of training epochs in the generator network

and the discriminator network do not have to match.

This is because the ultimate goal is not about the

number of training epochs, but the amount of training

in each network.

2.2 Generative Adversarial Networks

As mentioned before, GANs consist of two deep neural

networks. The generator network produces synthetic

data, and the discriminator network distinguishes the

real data from the synthetic data. The loss function of

GANs can be expressed as follows [21]:

min
G

max
D

V (D,G)= E
x∼pdata(x)

[logD(x)]

+ E
z∼pz(z)

[log(1−DG(z))]
(1)

where D is a discriminator, G is a generator, Z is noise,

pdata(x) is the original data distribution, and pz(z)

is the input noise distribution. In practice, according

to [22], we train G to maximize logD(x), instead of

training G to minimize log(1−DG(z)). This objective

function can mitigate the vanishing gradient problem

without compromising the equilibrium point of G and
D.

J (D) (D,G) =− E
x∼pdata(x)

[logD(x)]

− E
z∼pz(z)

[log(1−DG(z))]
(2)

J (G) (G) =− E
z∼pz(z)

[logD(G(z))] (3)

Figure 1 shows the network architecture designed.

The entire process of training a GAN is shown in

Algorithm 1.

Fig. 1 Diagram of the proposed SER system with Cycle-
GAN data augmentation.

Algorithm 1 Training a GAN in the vanishing

gradient method
Repeat for the number of training epoches:
While the stopping criterion is not met do:
for each k do:
Sample m data points with distribution pz(z).
z =

{
z(1), z(2), z(3), . . . , z(m)

}
Sample m data points with initial distribution p.
x =

{
x(1), x(2), x(3), . . . , x(m)

}
Calculate the loss of the discriminator network:
∇θd

1
m

∑
i

[
logD

(
x(i)

)
+ log

(
1−D

(
G

(
z(i)

)))]
end for
for each k do:
Sample m data points from the initial noise space pg(z).
z =

{
z(1), z(2), z(3), . . . , z(m)

}
Update the generator weights with the gradient descent
method:
∇θg

1
m

∑
i

[
log

(
1−D

(
G

(
z(i)

)))]
end for
end while

2.3 Cycle Generative Adversarial Networks

Cycle-GANs have been used for image generation for

non-paired data [23]. Figure 2 shows the architecture of

Cycle-GAN for data augmentation [25]. This network

includes two transfer functions, F and G, where G

learns how to transfer samples from the source domain

S to target domain T , and F is the inverse of G. Both

F and G may be considered as generators to produce

the target and source data, respectively. Moreover,

there are two adversarial discriminator networks, DT

and DS , where DT discriminates real targets from the

synthetic targets, while DS discriminates real sources

from synthetic sources. This network sets its target so

that F (G(S)) ≈ S and G(F (T )) ≈ T . Therefore, it is

called Cycle-GAN [24].

Fig. 2 The structure of Cycle-GANs.

The loss used in Cycle-GANs includes the

adversarial loss and the cycle consistency loss.

Removing adversity may be transformed into a part

of target data generation and a part of source data

generation. The loss function for target data generation

is as follows [24]:
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LGAN
(
G,DT , S, T

)
= E

t∼pt

[
logDT (t)

]
+ E

s∼ps

[log(1−DT (G (s)) ]
(4)

Losses are expressed as value functions.

In the generation process, the objective is

min
G

max
DT

LGAN
(
G,DT , S, T

)
, and to reproduce real

data, the objective is min
F

max
DS

LGAN
(
F,DS , T, S

)
.

Zou et al. have defined the cycle loss as follows [24]:

Lcyc (G,F )= E
t∼pt

[∥(G (F (t))−t) ∥1]

+ E
s∼ps

[∥(F (G(s))− s)∥1]
(5)

where the L1 norm may be substituted with other

criteria in these losses. The total losses for Cycle-GANs

are as follows:

L
(
G,F,DT ,DS

)
=LGAN

(
G,DT , S, T

)
+LGAN

(
F,DS , T, S

)
+λLcyc(G,F )

(6)

where λ controls the relative importance of both losses

[24]. We conducted an ablation study to analyze the

impact of the proposed regularization term Lcyc by

varying the corresponding weight λ using the EMO-

DB dataset, and observed that increasing λ improves

both the quality and diversity of the generated samples.

Nevertheless, as the weighting parameter λ becomes

larger than a threshold value e.g. 1.0, the training

becomes unstable, which results in low quality, and even

low diversity of synthesized samples. As a result, we

empirically set the weighting parameter λ = 1.0 for all

the experiments.

3 Methodology

3.1 The Proposed Method

For a labelled dataset X with N emotional classes,

artificial samples for each emotion are generated using

a separate Cycle-GAN. According to Figure 3, Cycle-

GAN transfers between source domain S and target

domain Ti, where S is a dataset without labels and

Ti is emotional sample i in the labeled dataset X.

Discriminator networks DT
i and DS

i are used to identify

the artificial target which cannot be distinguished from

real samples. The generator loss and discriminator

loss are introduced by LGAN
i

(
Gi,D

T
i , S,Ti

)
and

LGAN
i

(
Fi,D

S
i , S,Ti

)
, respectively. We have

LGAN
i

(
Gi,Fi,D

T
i ,D

S
i , S,Ti

)
=LGAN

i

(
Gi,D

T
i ,S,Ti

)
+ LGAN

i

(
Fi,D

S
i ,S,Ti

) (7)

Fig. 3 Detailed architecture of the proposed SER system.

The cycle loss function can have an impact on the

number training epochs in the Cycle-GANs. Therefore,

we translate the synthetic target Gi(S) back to the

source domain and compute the mean squared error

(MSE) between the real source S and reconstructed

data FiGi(S). This is similarly done for Ti and

reconstructed target data Gi(S). As a result, the total

loss function in each cycle will be as follows:

Lcyc
i (Gi,Fi, S,Ti) = E

s∼ps

[∥ (Fi(Gi(s)− s) ∥22]

+ E
t∼pt

[∥ (Gi(Fi(t)− t) ∥22]
(8)

3.2 Overcoming Gradient Vanishing Problem in

Training Cycle-GANs

To overcome the gradient vanishing problem in Cycle-

GANs, we suggest using the Wasserstein distance.

In extreme case, the gradient descent may be

stopped during the process of weight modification

and the training of generators and discriminators.

Considering two probability distributions Pr and Pg,

the Wasserstein distance is defined as follows:

W1 (Pr, Pg) = sup
∥f∥L≤1

E
x∼Pr

{f(x)} − E
x̃∼Pg

{f(x̃)} (9)

where ∥f∥L ≤ 1 shows that f satisfies the 1-Lipschitz

limitation [26]. It is worth mentioning that W1 is

invariant up to a positive scalar K if the Lipschitz

constraint is modified to be K. W1 is believed to be

more suitable for data distributed on low-dimensional

manifolds. If the weights are greater or smaller than the

expected limit, they will be changed into minimum or

maximum predefined. In the gradient penalty method,

the gradient penalty is based on Lipschitz, which is

derived from the fact that if gradients are at most

1 everywhere, they are 1-Lipschitz functions. Their

squared difference from one is used as a gradient

penalty. According to [27], weight clipping may lead to a

non-optimal solution. Gradient penalty was also applied

to overcome weight clipping limitations [16]. However,
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if there is a data sparsity problem, satisfying the K-

Lipschitz condition is difficult for the whole data set.

Accordingly, Wu et al. [27] suggested a new Wasserstein

divergence, where the Wasserstein distance is calculated

without applying Lipschitz condition:

LD = E
x∼Pr

{f(x)} − E
x̃∼Pg

{f (x̃)}+ λ E
x̃∼Pu

[∥∇f(x̃)∥p]

(10)

where λ controls the effect of gradient modification

on the target function and λ > 0. Pu is a Radon

distribution, and p is related to Lp space for function

f and p > 1, [27]. Finally, the loss function in the

generator and the discriminator is written as follows:

L
(WC−GAN)
G =Ep(x,y,z) {D (G (z, y))}{

−a

K∑
k=1

y(k)emo logC((G (z, y))k)

}
(11)

L
(WC−GAN)
D = Ep(x,z,x̆,y) {D(E(x)−D(G(z, y))}

{+λ[∥∇x̆∥p]}
(12)

where ()k denotes the kth element of a vector, C stands

for the auxiliary classifier, x̆ is a reconstructed sample

of the source, yemo is the output of emotion classifier,

and a determines the contributions of the classification

error to the loss in the generator. The structure of the

Cycle-GAN with the Wasserstein distance is shown in

Figure 2.

3.3 Recognizing samples generated by Cycle-GAN

Augmentation Network

Figure 4 shows that transferring data by Cycle-GAN

results in similarity between real and artificial data

distribution. A classification loss function is used

to ensure that the synthetic data can be correctly

allocated to their target emotion class, which is defined

here as the cross-entropy error:

Lcls = −
∑
i

yi log(C(Gi (S))) (13)

where yi is the label of the target emotions. The total

loss is defined as follows:

L =
∑
i

LGAN
i +λcyc

∑
i

Lcyc
i +λclsLcls (14)

where λcyc and λcls are the weights corresponding to

the Cycle-GAN loss and the classification loss.

Fig. 4 The difference between two mapping samples without
the classification loss and with classification loss.

4 Experiments

4.1 Dataset

We performed experiments on the EMO-DB dataset

[28], which is a small dataset of 535 training clips

with seven emotional classes. All speech signals

were recorded by ten professional actors in German.

This database includes seven emotions. We used five

emotions to perform the experiments: anger (127

samples), fear (69 samples), happiness (71 samples),

sadness (62 samples), and neutral (79 samples). We did

not use disgust (81 samples) and surprise (46 samples).

The data was recorded at a 48 kHz sampling rate and

then down-sampled to 16 kHz. The average length of

each audio clip is 2.8 seconds.

The other datasets that are often used in

speech emotion recognition include the Danish

Emotional Speech Database (DES) with 200 samples,

the Ryerson Audio-Visual Database of Emotional

Speech and Song (RAVDESS) with 2496 samples,

the Interactive Emotional Dyadic Motion Capture

Database (IEMOCAP) with 1150 samples, and the Vera

am Mittag Database (VAM) with 1018 samples. There

are also audio-visual datasets such as SEWA [37] and

MuSe-CAR [36] that are not discussed in this article

because we only focus on emotion recognition from

speech data. As it turns out, all of these databases suffer

from data shortages due to the lack of data samples

and are not suitable for deep neural network training.

As a suitable solution, we suggest creating a synthetic

dataset using GANs trained by available datasets. We

chose EMO-DB for the reason that this dataset contains

less training samples as compared to the remaining

datasets. Another reason for our choice was to compare

the results of our proposed data augmentation method

with other data augmentation methods.
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4.2 Experimental Setup

It is challenging to train the generators with high-

dimensional feature vectors. To address this issue, we

pre-trained both Gi and Fi generators based on the

reconstruction error between S and FiGi(S) and also

the reconstruction error between Ti and Gi (Fi (Ti)).

We used the OpenSMILE software to extract the

features, and then used the proposed method to

generate new feature vectors to increase the number of

training samples and to balance the number of samples

in the dataset. The dimension of the feature vector is

2185 for each training sample.

DNN with two hidden layers and 800 hidden

neurons were used in the proposed Cycle-GANs. We

used ResNet for the generator network and PatchGAN

for the discriminator network. In addition, DNN and

SVM networks were used as classifiers, and Leaky ReLU

was applied to all the layers. The linear kernel is used in

the SVM classifier. We also used the Xavier Algorithm

[29] and the Adam Optimizer [30] with a learning rate of

0.0002 which was reduced every 50 epochs. DNNs were

implemented using Tensorflow (V2.1) in Python, while

SVMs were implemented using Scikit-Learn Package.

To balance the training of G and D, the generator

weights were updated two times per epoch, and the

discriminator weights were updated one time per

epoch. Moreover, unilateral label smoothing [31] was

used to reduce the vulnerability of neural networks

to adversarial examples, i.e. by replacing the binary

output values 0 and 1 of the classifier with smoothed

values, e.g. 0.1 and 0.9.

5 Results

The augmented data were gradually and randomly

added to the original data, and two DNN and SVM

classifiers were used for SER. The L2 regulation

was used to train deep neural networks, and each

experiment was repeated three times, and the mean

absolute accuracy was reported as the performance

measure. Figure 5 shows the UAR results of the SVM

and DNN on the EMO-DB dataset.

We compared the performance of the proposed

method with those of the standard data augmentation

techniques, such as sample reproduction, adding

random noise to feature vectors and artificial sampling

(SMOTE) [33]. The performance of data augmentation

via adding noise depends on the amount of noise,

and the results may not be stable, as shown in

Figure 6. Generating synthetic data similar to the

primary samples helps deep neural networks learn data

distribution better, however, repetitive samples will not

lead to better network training. The SMOTE method

Fig. 5 Comparing classification results with real samples.

Fig. 6 Classification results with data augmented by
Gaussian noise.

is designed to augment samples in one class and cannot

be used to augment samples in all classes but it has a

relatively stable performance [33]. Figure 7 shows the

results of this method.

Fig. 7 Classification results with data augmented by the
SMOTE method.

The Cycle-GANs based data augmentation method

could also lead to the improvement of SVM

performance. Figure 8 shows the performance of two

classifiers by combing real and augmented data based

on a Cycle-GAN. The results show that augmenting

data helps SVM recognize metadata in feature space

and classify them with better performance. According

to Figure 9, it is possible to improve the performance

of the data augmentation approach based on the

Wasserstein distance introduced in Section 3. The

unweighted average recall is gradually augmented by
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Fig. 8 Classification results with data augmented by Cycle-
GAN.

adding artificial samples to the training set. These

results show that data augmentation based on Cycle-

GANs may generate new and meaningful emotional

vectors which help improve the performance of the

emotion classifier. Figure 10 shows the clusters

Fig. 9 Classification results with data augmented by Cycle-
GANs with the Wasserstein distance.

created by the Cycle-GAN using the Wasserstein

distance for the five emotional classes. In Figure 10(b),

artificial samples generated from the proposed method
completely cover the feature space for each emotion

class, while the samples generated from an ordinary

Cycle-GAN in Figure 10(a) cover only part of feature

space of the actual data.

Fig. 10 Data distribution of each class: (a) samples
generated by Cycle-GAN, (b) samples generated by Cycle-
GAN with the Wasserstein distance.

We compared our method with the methods in [32–

34] in Table 1. This table shows that with the proposed

method, the classifier can be better trained and our

method outperforms [35] with the handcrafted features.

Our method also outperforms Chen et al. [34], who used

3D-ACRNNs to extract features.

Table 1 Different data augmentation and SER techniques

Method Classifier WA% UAR%

Add noise [32] DNN 82.06 82.73

Add noise [32] SVM 81.12 80.25

SMOTE [33] DNN 82.43 81.51

SMOTE [33] SVM 80.93 79.51

Cycle-GAN DNN 83.55 82.50

Cycle-GAN SVM 81.50 80.30

Cycle-GAN + Wasserstein DNN 84.49 83.33

Cycle-GAN + Wasserstein SVM 81.07 80.08

2D-ACRNN [34] DNN – 79.38

3D-ACRNN [34] DNN – 82.82

6 Conclusion

We have presented a method for generating synthetic

samples based on Cycle-GAN to mitigate data scarcity

and to improve speech emotion classification. We

generated artificial data in the space of each emotional

class that completely covers the leading data space.

We showed that using the Wasserstein divergence

can overcome the vanishing gradient problem during

the training process. The results show that including

synthetic samples in the real samples can improve

the emotion recognition performance to as high as

83.33% in terms of UAR on the EMO-DB dataset.

As explained, we only dealt with the case where the

features were extracted by OpenSMILE software and

this can be extended by providing raw data to the

network.
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