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Abstract

Speech emotion recognition is a challenging problem partly be-

cause it is unclear what features are effective for the task. In

this paper we propose to utilize deep neural networks (DNNs)

to extract high level features from raw data and show that they

are effective for speech emotion recognition. We first produce

an emotion state probability distribution for each speech seg-

ment using DNNs. We then construct utterance-level features

from segment-level probability distributions. These utterance-

level features are then fed into an extreme learning machine

(ELM), a special simple and efficient single-hidden-layer neural

network, to identify utterance-level emotions. The experimen-

tal results demonstrate that the proposed approach effectively

learns emotional information from low-level features and leads

to 20% relative accuracy improvement compared to the state-

of-the-art approaches.

Index Terms: Emotion recognition, Deep neural networks, Ex-

treme learning machine

1. Introduction

Despite the great progress made in artificial intelligence, we

are still far from being able to naturally interact with machines,

partly because machines do not understand our emotion states.

Recently, speech emotion recognition, which aims to recognize

emotion states from speech signals, has been drawing increas-

ing attention. Speech emotion recognition is a very challenging

task of which extracting effective emotional features is an open

question [1, 2].

A deep neural network (DNN) is a feed-forward neural net-

work that has more than one hidden layers between its inputs

and outputs. It is capable of learning high-level representation

from the raw features and effectively classifying data [3, 4].

With sufficient training data and appropriate training strategies,

DNNs perform very well in many machine learning tasks (e.g.,

speech recognition [5]).

Feature analysis in emotion recognition is much less stud-

ied than that in speech recognition. Most previous studies em-

pirically chose features for emotion classification. In this study,

a DNN takes as input the conventional acoustic features within a

speech segment and produces segment-level emotion state prob-

ability distributions, from which utterance-level features are

constructed and used to determine the utterance-level emotion

state. Since the segment-level outputs already provide consid-

erable emotional information and the utterance-level classifica-
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tion does not involve too much training, it is unnecessary to use

DNNs for the utterance-level classification. Instead, we employ

a newly developed single-hidden-layer neural network, called

extreme learning machine (ELM) [6], to conduct utterance-level

emotion classification. ELM is very efficient and effective when

the training set is small and outperforms support vector ma-

chines (SVMs) in our study.

In the next section, we relate our work to prior speech emo-

tion recognition studies. We then describe our proposed ap-

proach in detail in Section 3. We show the experimental results

in Section 4 and conclude the paper in Section 5.

2. Relation to prior work

Speech emotion recognition aims to identify the high-level af-

fective status of an utterance from the low-level features. It can

be treated as a classification problem on sequences. In order to

perform emotion classification effectively, many acoustic fea-

tures have been investigated. Notable features include pitch-

related features, energy-related features, Mel-frequency cep-

strum coefficients (MFCC), linear predictor coefficients (LPC),

etc. Some studies used generative models, such as Gaussian

mixture models (GMMs) and Hidden Markov models (HMMs),

to learn the distribution of these low-level features, and then

use the Bayesian classifier or the maximum likelihood princi-

ple for emotion recognition [7, 8]. Some other studies trained

universal background models (UBMs) on the low-level features

and then generated supervectors for SVM classification [9, 10],

a technique widely used in speaker identification. A different

trend for emotion recognition is to apply statistical functions

to these low-level acoustic features to compute global statisti-

cal features for classification. The SVM is the most commonly

used classifier for global features[11, 12]. Some other classi-

fiers, such as decision trees [13] and K-nearest neighbor (KNN)

[14], have also been used in speech emotion recognition. These

approaches require very high-dimensional handcrafted features

chosen empirically.

Deep learning is an emerging field in machine learning

in recent years. A very promising characteristic of DNNs is

that they can learn high-level invariant features from raw data

[15, 4], which is potentially helpful for emotion recognition. A

few recent studies utilized DNNs for speech emotion recogni-

tion. Stuhlsatz et al. and Kim et al. train DNNs on utterance-

level statistical features. Rozgic et al. combine acoustic features

and lexical features to build a DNN based emotion recognition

system. Unlike these DNN based methods, which substitute

DNNs for other classifiers such as SVMs, our approach exploits
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Figure 1: Algorithm overview

DNNs to extract from short-term acoustic features the effective

emotional features that are fed into other classifiers for emotion

recognition.

3. Algorithm details

In this section, we describe the details of our algorithm. Fig. 1

shows the overview of the approach. We first divide the sig-

nal into segments and then extract the segment-level features to

train a DNN. The trained DNN computes the emotion state dis-

tribution for each segment. From these segment-level emotion

state distributions, utterance-level features are constructed and

fed into an ELM to determine the emotional state of the whole

utterance.

3.1. Segment-level feature extraction

The first stage of the algorithm is to extract features for each

segment in the whole utterance. The input signal is converted

into frames with overlapping windows. The feature vector

z(m) extracted for each frame m consists of MFCC features,

pitch-based features, and their delta feature across time frames.

The pitch-based features include pitch period τ0(m) and the
harmonics-to-noise ratio (HNR), which is computed as:

HNR(m) = 10 log
ACF (τ0(m))

ACF (0)− ACF (τ0(m))
(1)

where ACF (τ ) denotes the autocorrelation function at time τ .
Because the emotional information is often encoded in a rela-

tively long window, we form the segment-level feature vector

by stacking features in the neighboring frames as:

x(m) = [z(m− w), . . . , z(m), . . . , z(m+ w] (2)

where w is the window size on each side.

For the segment-level emotion recognition, the input to the

classifier is the segment-level feature and the training target is

the label of the utterance. In other words, we assign the same

label to all the segments in one utterance. Furthermore, since

not all segments in an utterance contain emotional information

and it is reasonable to assume that the segments with highest

energy contain most prominent emotional information, we only

choose segments with the highest energy in an utterance as the

training samples. In addition, motivated by the recent progress

in speech recognition [16, 17], we have attempted to train the

DNN directly using the filterbank or spectral features, but the

performance is not satisfactory.

3.2. Deep neural network training

With the segment-level features, we train a DNN to predict the

probabilities of each emotion state. The DNN can be treated as
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Figure 2: DNN outputs of an utterance. Each line corresponds

to the probability of an emotion state.

a segment-level emotion recognizer. Although it is not neces-

sary true that the emotion states in all segments is identical to

that of the whole utterance, we can find certain patterns from

the segment-level emotion states, which can be used to predict

utterance-level emotions by a higher-level classifier.

The number of input units of the DNN is consistent with the

segment-level feature vector size. It uses a softmax output layer

whose size is set to the number of possible emotions K. The

number of hidden layers and the hidden units are chosen from

cross-validation.

The trained DNN aims to produce a probability distribution

t over all the emotion states for each segment:

t = [P (E1), . . . , P (EK)]T (3)

Note that, in the test phase we also only use those segments with

the highest energy to be consistent with the training phase.

Fig. 2 shows an example of an utterance with the emo-

tion of excitement. The DNN has five outputs corresponding to

five different emotion states: excitement, frustration, happiness,

neutral and sadness. As shown in the figure, the probability

of each segment changes across the whole utterance. Different

emotions dominate different regions in the utterance, but ex-

citement has the highest probability in most segments. The true

emotion for this utterance is also excitement, which has been

reflected in the segment-level emotion states. Although not all

utterances have such prominent segment-level outputs, we can

use an utterance-level classifier to distinguish them.

3.3. Utterance-level features

Given the sequence of probability distribution over the emotion

states generated from the segment-level DNN, we can form the

emotion recognition problem as a sequence classification prob-

lem, i.e., based on the unit (segment) information, we need to

make decision for the whole sequence (utterance). We use a

special single-hidden-layer neural network with basic statisti-

cal feature to determine emotions at the utterance-level. We

also indicate that temporal dynamics play an important role in

speech emotion recognition, but our preliminary experiments

show that it does not lead to significant improvement compared

to a static classifier, which is partly because the DNN provides

good segment-level results which can be easily classified with a

simple classifier.

The features in the utterance-level classification are com-

puted from statistics of the segment-level probabilities. Specif-

ically, let Ps(Ek) denote the probability of the kth emotion for
the segment s. We compute the features for the utterance i for
all k = 1, . . . ,K

f
k

1 = max
s∈U

Ps(Ek), (4)
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f
k

2 = min
s∈U

Ps(Ek), (5)

f
k

3 =
1

|U |

∑

s∈U

Ps(Ek), (6)

f
k

4 =
|Ps(Ek) > θ|

|U |
, (7)

where, U denotes the set of all segments used in the segment-

level classification. The features fk

1 , f
k

2 , f
k

3 correspond to the

maximal, minimal and mean of segment-level probability of the

kth emotion over the utterance, respectively. The feature fk

4

is the percentage of segments which have high probability of

emotion k. This feature is not sensitive to the threshold θ, which

can be empirically chosen from a development set.

3.4. Extreme learning machine for utterance-level classifi-

cation

The utterance-level statistical features are fed into a classifier

for emotion recognition of the utterance. Since the number of

training utterances is small we use a recently developed clas-

sifier, called extreme learning machine (ELM) [6, 18] for this

purpose. ELM has been shown to achieve promising results

when the training set is small.

ELM is a single-hidden-layer neural network which re-

quires many more hidden units than typically needed by the

conventional neural networks (NNs) to achieve considerable

classification accuracy. The training strategy of ELM is very

simple. Unlike conventional NNs whose weights need to be

tuned using the backpropagation algorithm, in ELM the weights

between the input layer and the hidden layer are randomly as-

signed and then fixed. The weights between the hidden layer

and the output layer can be analytically determined through a

simple generalized inverse operation of the hidden layer output

matrices.

Specifically, given training data (xi, ti), i = 1, . . . , N ,
xi ∈ R

D is the input feature, and ti ∈ R
K is the target, the

ELM can be trained as follows:

1. Randomly assign values for the lower layer weight ma-

trix W ∈ R
D×L from an uniform distribution over [-

1,1], where L is the number of hidden units.

2. For each training sample xi, compute the hidden layer

outputs hi = σ(WT
xi), where σ is the sigmoid func-

tion.

3. The output layer weights U are computed as U =
(HH

T )−1
HT

T , where H = [h1, . . . ,hN ], T =
[t1, . . . , tN ],

Generally, the number of hidden units is much larger than

that of input units, so that the random projection in the lower

layer is capable to represent training data. The lower layer

weightsW randomly project the training data to a much higher

dimensional space where the projected data are potentially lin-

early separable. Further, random weights are chosen indepen-

dent of the training set and thus can generalize well to new data.

The training for ELMs only involves a pseudo-inverse calcula-

tion and is very fast for a small dataset. Another variant of the

ordinary ELM is the kernel based ELM [6], which defines the

kernel as the function of the inner product of two hidden layer

outputs, and the number of hidden units does not need to be

specified by the users. We will compare both ELMs in the ex-

periments.

We use the utterance-level features to train the ELM for the

utterance-level emotion classification. The output of the ELM

for each utterance is a K-dimensional vector corresponding to
the scores of each emotion state. The emotion with the highest

ELM score is chosen as the recognition result for the utterance.

4. Experimental results

4.1. Experimental setting

We use the Interactive Emotional Dyadic Motion Capture

(IEMOCAP) database [19] to evaluate our approach. The

database contains audiovisual data from 10 actors, and we

only use audio track for our evaluation. Each utterance in the

database is labeled by three human annotators using categorical

and dimensional labels. We use categorical labels in our study

and we only consider utterances with labels from five emotions:

excitement, frustration, happiness, neutral and surprise. Since

three annotators may give different labels for an utterance, in

our experiment, we choose those utterances which are given the

same label by at least two annotators to avoid ambiguity.

We train the model in the speaker-independent manner, i.e.,

we use utterances from 8 speakers to construct the training and

the development datasets, and use the other 2 speakers for test.

Note that, although previous study showed that normalizing fea-

tures on a per-speaker basis can significantly improve the per-

formance [20], we do not use it because we assume that speaker

identity information is not available in our study.

The input signal is sampled at 16 kHz and converted into

frames using a 25-ms window sliding at 10-ms each time. The

size of the segment level feature is set to 25 frames, includ-

ing 12 frames in each side. So the total length of a segment is

10 ms × 25 + (25 − 10) ms = 265 ms. In fact, emotional in-
formation is usually encoded in one or more speech segments

whose length varies on factors such as speakers and emotions.

It is still an open problem to determine the appropriate analysis

window for emotion recognition. Fortunately a speech segment

longer than 250 ms has been shown to contain sufficient emo-

tional information [14, 21]. We also tried longer segments up

to 500 ms, and achieved similar performance. In addition, 10%

segments with the highest energy in an utterance are used in the

training and the test phase. The threshold in Eq. (7) is set to

0.2.

The segment-level DNN has a 750-unit input layer corre-

sponding to the dimensionality of the feature vector. The DNN

contains three hidden layers and each hidden layer has 256 rec-

tified linear hidden units. Mini-batch gradient descend method

is used to learn the weights in DNN and the objective function

is cross-entropy. For ELM training, the number of hidden units

for ordinary ELM is set to 120, and the radius basis function

is used in the kernel ELM. All parameters are chosen from the

development set.

4.2. Results

We compare our approach with other emotion recognition ap-

proaches. The first one is an HMM based method. Schuller

et al. [7] used pitch-based and energy-based features in each

frame to train an HMM for emotion recognition. We replace

these features by the same segment-level features used in our

study which are found to perform better in the experiment. We

mention that Li et al. [22] use DNN to predict HMM states for

emotion estimation. We have attempted to implement the algo-

rithm, but the performance is similar to the conventional HMM

based method. Another approach is a state-of-the-art toolkit for

emotion recognition: OpenEAR [11]. It uses global statistical

features and SVM for emotion recognition. We used the pro-
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Figure 3: Comparison of different approaches in terms of

weighted and unweighted accuracies. “HMM” and “Open-

EAR” denote the two baseline approaches using HMM and

SVM respectively. “DNN-SVM”, “DNN-ELM”, and “DNN-

KELM” denote the proposed approach using segment-level

DNN and utterance-level SVM, ELM, and kernel ELM, respec-

tively.

vided code to extract a 988-dimensional feature vector for each

utterance for SVM training. In addition, in order to analyze

the performance of the ELM, we also use the proposed DNN

method to generate the segment-level outputs and then use an

SVM to predict utterance-level labels. We use two measures to

evaluate the performance: weighted accuracy and unweighted

accuracy. Weighted accuracy is the classification accuracy on

the whole test set, and unweighted accuracy is an average of

the recall for each emotion class, which better reflects overall

accuracy in the presence of imbalanced class.

Fig. 3 shows the comparison results in terms of weighted

and unweighted accuracies. Overall, the proposed DNN based

approaches significantly outperform the other two with 20%

relative accuracy improvement for both unweighted accuracy

(0.402 → 0.482) and weighted accuracy (0.451 → 0.543).
We found that the ordinary ELM and the kernel ELM perform

equally well, both outperform SVM by around 5% relatively.

It is also worth mentioning that the training time of ELMs is

around 10 times faster than that of SVMs in our experiments.

5. Conclusion

We proposed to utilize a DNN to estimate emotion states for

each speech segment in an utterance, construct an utterance-

level feature from segment-level estimations, and then employ

an ELM to recognize the emotions for the utterance. Our exper-

imental results indicate that this approach substantially boosts

the performance of emotion recognition from speech signals

and it is very promising to use neural networks to learn emo-

tional information from low-level acoustic features.
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