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Abstract

In this paper, a single-channel speech enhancement method based on Bayesian decision and spectral amplitude

estimation is proposed, in which the speech detection module and spectral amplitude estimation module are included,

and the two modules are strongly coupled. First, under the decisions of speech presence and speech absence, the

optimal speech amplitude estimators are obtained by minimizing a combined Bayesian risk function, respectively. Second,

using the obtained spectral amplitude estimators, the optimal speech detector is achieved by further minimizing the

combined Bayesian risk function. Finally, according to the detection results of speech detector, the optimal decision rule

is made and the optimal spectral amplitude estimator is chosen for enhancing noisy speech. Furthermore, by considering

both detection and estimation errors, we propose a combined cost function which incorporates two general weighted

distortion measures for the speech presence and speech absence of the spectral amplitudes, respectively. The

cost parameters in the cost function are employed to balance the speech distortion and residual noise caused

by missed detection and false alarm, respectively. In addition, we propose two adaptive calculation methods for

the perceptual weighted order p and the spectral amplitude order β concerned in the proposed cost function,

respectively. The objective and subjective test results indicate that the proposed method can achieve a more

significant segmental signal-noise ratio (SNR) improvement, a lower log-spectral distortion, and a better speech

quality than the reference methods.

Keywords: Speech enhancement; Bayesian decision; Spectral amplitude estimation; Combined Bayesian risk

function; General weighted cost function

1 Introduction
Speech enhancement could improve the quality of noisy

speech, which results in a broad range of applications,

such as mobile speech communication, robust speech

recognition, aids for the hearing impaired, and so on.

Therefore, speech enhancement has widely attracted

research, and a large number of speech enhancement

algorithms, for example, spectral subtraction (SS) method

[1], wavelet de-noising method [2], subspace method [3],

speech enhancement based on human auditory perceptual

model [4], the minimum mean square error (MMSE)

estimator of Ephraim-Malah [5], log-spectral amplitude

(LSA) estimator [6], and speech enhancement based on

speech presence uncertainty [7], have been proposed.

Some speech enhancement methods [1, 4–7] are often

operated in the discrete Fourier transform (DFT) domain,

that is, the enhanced speech is obtained by estimating

DFT coefficients of clean speech from the noisy speech.

As we all know, speech signal is present only in some

frames based on short-time analysis, and only some

frequency bins contain significant energy in each frame.

This means that the spectral amplitude of speech signal is

generally sparse. However, the existing speech enhance-

ment methods do not take the sparse characteristics into

consideration and often only focus on estimating the spec-

tral amplitude rather than detecting the speech presence

or speech absence. Although the SS method [1] could

detect the existence of speech by signal power in the fre-

quency domain, it is so simple that SS method often ran-

domly produces ‘music noise’ caused by falsely detecting

noise peaks as speech. Under the assumption of speech

presence uncertainty, Ephraim and Malah derived a short-

time spectral amplitude (STSA) estimator [5] by applying

speech presence uncertainty to the MMSE method, which
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can improve the enhancement performance of the MMSE

method [5]. Furthermore, combining the speech pres-

ence uncertainty with the LSA estimator [6], the

optimal modified log-spectral amplitude (OM-LSA)

estimator [8] was proposed. These speech estimators

based on the speech presence uncertainty can yield rea-

sonable enhancement results for the stationary noise envi-

ronments. However, under the non-stationary noise

conditions, the performance of these estimators may be

degraded since the time-varying noise energy results in a

false calculation about speech presence probability. In

addition, some speech enhancement methods employed

voice activity detection (VAD) [9, 10] to detect the exist-

ence of speech, but with the decrease of the signal-noise

ratio (SNR) and the increases of non-stationary character-

istics of the noise, the performance of the VAD methods

often become worse. Consequently, the performance of

speech enhancement is decreased. Moreover, the VAD

methods are usually carried out frame by frame, and

therefore, they cannot detect the existence of speech in

frequency bins. Considering the significance of speech

detection and estimation for speech enhancement, a

simultaneous detection and estimation approach (SDEA)

for speech enhancement was presented [11], which

includes the detection and estimation operations sim-

ultaneously. However, the quadratic spectral ampli-

tude (QSA) error was used as its cost function, which

limits the ability of noise reduction and affects the

enhancement performance of the method.

In order to solve the aforementioned problems, we

propose a single-channel speech enhancement method

based on Bayesian decision and spectral amplitude esti-

mation (BDSAE), in which the importance of the speech

detection and estimation for speech enhancement are

jointly considered. The speech detection module and

spectral amplitude estimation module are included in

this method, and the two modules are strongly coupled.

First, the optimal speech amplitude estimators under

each of the decisions (i.e., speech presence or speech

absence) are obtained by minimizing a combined Bayesian

risk function. Second, using the obtained spectral ampli-

tude estimators, the optimal speech detector for the exist-

ence of speech signal in spectral amplitudes is achieved by

further minimizing the combined Bayesian risk function.

Finally, according to the results of speech detector, the

decision rule is made, and thus the final optimal spectral

amplitude estimator is selected for enhancing noisy speech.

Furthermore, by taking into account both detection and

estimation errors, we propose a combined cost function, in

which the cost parameters are used to balance the speech

distortion and residual noise caused by missed detection

and false alarm, respectively. Moreover, the combined cost

function consists of two general weighted distortion

measures under the speech presence or speech absence

of spectral amplitudes, in which the perceptual weighted

order p [12–14] and the spectral amplitude order β [15, 16]

are jointly used. In order to obtain more flexible and effect-

ive gain functions, the parameters p and β are adaptively

estimated, that is, the parameter p is made to be a

frequency-dependent value, and the value of β is calcu-

lated according to the posterior SNR. To summarize,

the BDSAE method not only considers the sparse charac-

teristics of spectral amplitudes of speech signal (i.e., speech

detection) but also takes the full advantages of both the

traditional perceptual weighted estimators [12, 14] and

β-order spectral amplitude estimators [15, 16] (i.e., speech

estimation), which can obtain more flexible and effective

gain functions for speech enhancement. The experiment

results indicate that the proposed BDSAE method can

improve the quality of enhanced speech both in terms of

subjective and objective measures.

The remainder of this paper is organized as follows.

In Section 2, the proposed BDSAE speech enhance-

ment method is described. In Section 3, we present

the adaptive calculation methods for the perceptual

weighted order p and the spectral amplitude order β,

respectively. In Section 4, we describe the implementation

of the proposed BDSAE method. The performance evalu-

ation is presented in Section 5, and Section 6 gives the

conclusions.

2 The proposed BDSAE speech enhancement
method

In this section, we first present conventional spectral ampli-

tude estimation scheme for speech enhancement. Then, the

proposed speech enhancement scheme based on Bayesian

decision and spectral amplitude estimation is described.

Finally, we derive the optimal decision rule and spectral

amplitude estimator by introducing general weighted cost

functions.

2.1 Conventional spectral amplitude estimation scheme

Assuming that the clean speech signal x(n) is con-

taminated by an uncorrelated additive noise d(n),

then the noisy speech signal y(n) can be expressed

as: y(n) = x(n) + d(n). By taking a DFT of y(n), we can

obtain the following expression about y(n) in fre-

quency domain:

Y ωkð Þ ¼ X ωkð Þ þ D ωkð Þ ð1Þ

where n is the time domain index of the speech signal.

Y(ωk), X(ωk), and D(ωk) denote the kth DFT coefficients

of noisy speech, clean speech, and noise signal, respect-

ively. ωk = 2πk/N, k is the index of frequency bins, and N

is the frame length.

Since the human auditory system is not sensitive to

the phase spectrum, we can replace the phases of clean
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speech and noise signal by the one of the noisy speech,

and then we can rewrite Eq. (1) in polar form as follows:

Y ke
jθy kð Þ ¼ Xke

jθx kð Þ þ Dke
jθd kð Þ

≈Xke
jθy kð Þ þ Dke

jθy kð Þ

¼ Xk þ Dkð Þejθy kð Þ

ð2Þ

where Yk, Xk, and Dk denote the kth spectral magnitudes

of the noisy speech, clean speech, and noise signal, re-

spectively. θy(k), θx(k), and θd(k) are the phases corre-

sponding to the frequency bin k of the noisy speech,

clean speech, and noise signal, respectively.

From (2), we can obtain Yk = Xk +Dk. That is to say,

we can ignore the phases of clean speech and noise sig-

nal and mainly focus on estimating the spectral magni-

tude of clean speech from the noisy speech signal.

For the conventional Bayesian spectral amplitude esti-

mation methods [4–8], the speech spectral amplitude es-

timation X̂ k is obtained by minimizing the expectation

of a given cost function C Xk ; X̂ k

� �

, which can be defined

as follows:

X̂ k ¼ argminE C Xk ; X̂ k

� �� �

ð3Þ

where E{.} denotes the statistical expectation. The C

Xk ; X̂ k

� �

is the cost function.

However, these methods do not take the sparse char-

acteristics of spectral amplitudes of speech signal into

consideration, and thus, they just focus on estimating

the spectral amplitudes of speech signal rather than

speech detection and spectral amplitude estimation sim-

ultaneously. That is, for the speech presence or speech

absence of spectral amplitudes in each frequency bin,

the cost function C Xk ; X̂ k

� �

of the conventional methods

is the same, which limits the performance of speech en-

hancement. Therefore, by taking into account both speech

detection and estimation, we propose a new speech en-

hancement method based on Bayesian decision and spec-

tral amplitude estimation.

2.2 Bayesian decision and spectral amplitude estimation

scheme

In this section, we reformulate the speech enhancement

as a Bayesian decision and estimation problem under

two hypotheses with the framework of statistical deci-

sion theory [17, 18].

First, according to the sparsity of speech spectral

magnitude, some frequency bins are speech dominant

(i.e., speech presence) and some frequency bins are

noise dominant (i.e., speech absence). In this way, for

the kth spectral magnitude of the noisy speech Yk,

we let Hk 0 and Hk 1 denote, respectively, speech

absence and speech presence hypotheses in the fre-

quency bin k [11, 13]:

Hk
0 : Y k ¼ Dk

Hk
1 : Y k ¼ Xk þ Dk

ð4Þ

Then, the Bayesian decision is employed to detect

the two hypotheses, so we define two decision spaces

ηk j (j = 0, 1) for detecting the speech presence or

speech absence in the frequency bin k. In this way, if

the decision ηk 0 is made, the speech hypothesis Hk 0

is accepted, which means speech is absent in the fre-

quency bin k, and thus the corresponding enhanced

speech X̂ k = X̂ k;0 is obtained. Similarly, if the decision

ηk 1 is made, the speech hypothesis Hk 1 is detected,

which means speech is present in the frequency bin k,

and then the corresponding speech estimation X̂ k =

X̂ k;1 is achieved.

Finally, using the speech presence or not hypotheses

Hk i(i = 0, 1) and decision spaces ηk j(j = 0, 1), we can re-

formulate the speech enhancement as the Bayesian deci-

sion and spectral amplitude estimation problem, which

is presented as follows:

Let the cost function Cj Xk ; X̂ k

� �

denote the cost for

making a decision ηk j(and choosing the speech estima-

tor X̂ k;j ), and we can consider the detection decision η

(ηk 0 or ηk 1) as the function of Y(ωk), i.e., η = ψ(Y(ωk)).

Therefore, for making a decision η = ψ(Y(ωk)), the com-

bined cost function ~C Xk ; X̂ k

� �

�ψ Y ωkð Þð Þ can be pre-

sented as follows:

~C Xk ; X̂ k

� �

�ψ Y ωkð Þð Þ ¼
X1

j¼0
p ηkj jY ωkð Þ
� �

Cj Xk ; X̂ k

� �

ð5Þ

where p(ηk j|Y(ωk)) is a conditional decision probability.

For notation simplification, we omit the frequency bin

indices later.

Applying the combined cost function of (5) into (3),

the combined Bayesian risk function R can be defined by

the following:

R ¼ E ~C X; X̂
� �

�ψ Y ωð Þð Þ
	 


¼
Z

Ωy

Z

Ωx

~C X; X̂
� �

�ψ Y ωð Þð Þp Y ωð Þ;Xð ÞdXdY ωð Þ

¼
Z

Ωy

Z

Ωx

~C X; X̂
� �

�ψ Y ωð Þð Þp Y ωð ÞjXð Þp Xð ÞdXdY ωð Þ

ð6Þ

where Ωx and Ωy denote the spaces of clean speech and

noisy speech, respectively. p(X) is the priori probability
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of spectral magnitude which can be defined as follows

[11, 13]:

p Xð Þ ¼ qp XjH1ð Þ þ 1− qð Þp XjH0ð Þ ð7Þ

where q = p(H1) denotes the priori speech presence

probability, and p(X|H0) = δ(X) is the Dirac delta func-

tion [11].

Since the cost functions Cj X; X̂
� �

are different for

speech hypothesis H0 and hypothesis H1, we let Cij

X; X̂
� �

¼ Cj X; X̂ jH i

� �

denote the cost that is condi-

tioned on the true Hi and the decision ηj. Namely, the

cost function relies on both the true speech X under Hi

and the estimated speech X̂ under decision ηj. Thus, the

cost function couples the two modules of speech detec-

tion and spectral amplitude estimation. By substituting

(7) into (6), we can get

R ¼
Z

Ωy

dY ωð Þ
Z

Ωx

dXp Y ωð ÞjXð Þ
�

� p η0jY ωð Þ
� �

qp XjH1ð ÞC10 X; X̂
� �

þ 1−qð Þp XjH0ð ÞC00 X; X̂
� �	 


þ p η1jY ωð Þð Þ qp XjH1ð ÞC11 X; X̂
� �

þ 1−qð Þp XjH0ð ÞC01 X; X̂
� �	 


g
ð8Þ

Given the hypothesis-decision pair {Hi, ηj}, we define

the risk rij(Y(ω)) as follows [11]:

rij Y ωð Þð Þ ¼
Z

Ωx

Cij X; X̂
� �

p XjH ið Þp Y ωð ÞjXð ÞdX ð9Þ

According to (9), the combined Bayesian risk function

R in (8) can be rewritten as:

R ¼
Z

Ωy

dY ωð Þ
�

p η0jY ωð Þ
� �

qr10 Y ωð Þð Þ þ 1−qð Þr00 Y ωð Þð Þ½ �
þ p η1jY ωð Þð Þ qr11 Y ωð Þð Þ þ 1−qð Þr01 Y ωð Þð Þ½ �g

ð10Þ

In (10), since the decision probability p(ηj|Y(ω)) ∈ {0, 1}

is binary, for minimizing the combined Bayesian risk

function R, we first estimate the optimal spectral ampli-

tude X̂ j under each of the decisions ηj. Second, using the

obtained X̂ j, the optimal speech presence decision ηj can

be derived by further minimizing the combined Bayesian

risk function R. Namely, according to the two-stage

minimization process of (10), the optimal speech deci-

sion rule can be given by:

ηj

¼ η1; if q r10 Y ωð Þð Þ−r11 Y ωð Þð Þ½ � ≥ 1−qð Þ r01 Y ωð Þð Þ−r00 Y ωð Þð Þ½ �
η0; otherwise

�

ð11Þ

Under the speech presence decision ηj, the spectral

amplitude estimation X̂ j can be obtained from (10) by:

X̂ j ¼ argmin qr1j Y ωð Þð Þ þ 1− qð Þr0j Y ωð Þð Þ
� �

; j ¼ 0; 1

ð12Þ

Figure 1 shows the comparison of two schemes of

speech presence decision and spectral amplitude estima-

tion. Figure 1a is a conventional independent detection

and estimation system that consists of an estimator and

a detector. The estimator and detector are not coupled

which independently choose to accept or reject the esti-

mator output, such as the well-known SS method [1].

The SS method estimates the speech spectrum by sub-

tracting the estimated noise spectrum from the noisy

speech spectrum [1] and thresholding the result acco-

rding to some desired residual noise level. In fact, the

thresholding process is a detector in the frequency bins:

the speech spectral coefficients are assumed to be

present in noisy speech spectral coefficients if their ener-

gies are above the threshold; otherwise, the speech spec-

tral coefficients are considered to be absent in noisy

speech spectral coefficients. That is to say, the speech

estimator and detector are independent.

Figure 1b is the proposed speech detection and esti-

mation scheme, where the estimator is obtained by (12)

and the interrelated decision rule of (11) is used to choose

the appropriate estimator, X̂ 0 or X̂ 1 , for minimizing the

combined Bayesian risk R. Since the risk rij(Y(ω)) existing

both in (11) and (12) is a function of the speech estimation

Fig. 1 The comparison of speech presence decision and spectral magnitude estimation schemes. a Conventional independent detection and

estimation system. b Strongly coupled detection and estimation system
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X̂ j , the decision rule of (11) requires information of the

speech estimator under each of its own decisions, which

we can see the arrows between speech detection block and

speech estimation block in Fig. 1b. That is, the speech de-

tection and speech estimation are strongly coupled in the

proposed scheme. In this way, if the decision η0 is made,

the speech hypothesis H0 is accepted, which means speech

is absent in noisy speech spectral coefficients, and thus the

corresponding enhanced speech X̂ ¼ X̂ 0 is obtained. Simi-

larly, if the decision η1 is made, the speech hypothesis H1 is

detected, which means speech is present in noisy speech

spectral coefficients, therefore, the corresponding speech

estimation X̂ ¼ X̂ 1 is achieved.

2.3 The derivation of BDSAE based on the general

weighted cost functions

In this section, based on a general weighted cost func-

tions, we first derive the optimal speech existence deci-

sion rule of (11) and spectral amplitude estimators of

(12) for the BDSAE system by minimizing the combined

Bayesian risk function R. Then the gain’s change process

of the BDSAE system is analyzed. Next, we discuss the

influences of cost parameters in weighted cost functions

for the BDSAE system. Finally, the influences of p and β

parameters for the BDSAE system are demonstrated.

From (11) and (12), we can see that both the optimal

speech detector and spectral amplitude estimator con-

tain the risk rij(Y(ω)) which depends on the cost function

Cij(X, X̂ ). The cost function plays a significant role in

the Bayesian spectral amplitude estimator. For different

cost function, we can derive various kinds of spectral

amplitude estimators and obtain different speech en-

hancement performance. In this paper, not only the

speech estimation error need to be considered but also

the speech detection error should be taken into account.

Therefore, we present the cost function associated with

the hypothesis-decision pair {Hi, ηj} [11, 13]:

Cij X; X̂
� �

¼ cijdij X; X̂
� �

ð13Þ

where i and j are the indices of speech hypothesis and

decision space, respectively; dij X; X̂
� �

is the distortion

measure which is defined in (14); and cij is the cost par-

ameter which is used to balance the costs associated

with the hypothesis-decision pair {Hi, ηj}. The cost pa-

rameters c00 and c11 indicate the decision is correct,

namely, there is no cost need to balance, so their values

are equal to 1 here; c01 is used to balance the cost of

false alarm (i.e., the speech absence is detected as speech

presence), which can avoid too much noise residual in

the enhanced speech; and c10 is used to balance the cost

of miss detection (i.e., the speech presence is detected as

speech absence), which can control speech distortion in

the enhanced speech.

For speech hypothesis Hi (i = 0, 1), the general weighted

distortion measure dij X; X̂
� �

is defined as follows:

dij X; X̂
� �

¼
Xp Xβ

− X̂
β
j

� �2

; if H i ¼ H1

Gf Y
� �β

− X̂
β
j

� �2

; if H i ¼ H0

8

>

<

>

:

ð14Þ

where i and j are the indices of speech hypothesis and

decision space; Gf denotes gain floor factor, p is the per-

ceptual weighted order, and β is the spectral amplitude

order.

From (14) we can see that, for speech hypothesis H1,

the perceptual weighted order p [12–14] and the spectral

amplitude order β [15, 16] are jointly incorporated into

the distortion measure. For speech hypothesis H0, the

gain floor factor Gf is employed to the distortion meas-

ure which allows some comfort background noise level

in the enhanced speech.

1. Speech estimator: Assuming both X(ω) and D(ω) are

zero-mean, complex Gaussian variables with vari-

ances λx = E{X2} and λd = E{D2}, respectively. By sub-

stituting (9), (13), and (14) into (12), we have

X̂ j ¼ argmin
�

qc1j

Z

Ωx

Xp Xβ
− X̂

β
j

� �2

p XjH1ð Þp Y ωð ÞjXð ÞdX

þ 1− qð Þc0j
Z

Ωx

Gf Y
� �β

− X̂
β
j

� �2

p XjH0ð Þp Y ωð ÞjXð ÞdXg

ð15Þ

According to Bayesian criterion, by taking the deriva-

tive of (15) with respect to X̂ j and setting it to zero, we

can get

qc1j

Z

Ωx

−2βX̂
β−1
j Xp Xβ

− X̂ β
� �

p XjH1ð Þp Y ωð ÞjXð ÞdX

− 1− qð Þc0j2βX̂ β−1
j Gf Y

� �β
− X̂

β
j

� �

p Y ωð ÞjH0ð Þ ¼ 0

ð16Þ

By solving (16), we have

X̂
β
j qc1j

Z

Ωx

Xpp XjH1ð Þp Y ωð ÞjXð ÞdX þ 1−qð Þc0jp Y ωð ÞjH0ð Þ
� 

¼ qc1j

Z

Ωx

Xpþβp XjH1ð Þp Y ωð ÞjXð ÞdX þ 1− qð Þc0j Gf Y
� �β

p Y ωð ÞjH0ð Þ
� 

ð17Þ

Dividing (1-q)p(Y(ω)|H0) on both sides of (17), we can

obtain

Deng and Bao EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:28 Page 5 of 18



X̂
β
j c1jΛ Y ωð Þð Þ

Z

Ωx

Xpp XjY ωð Þð ÞdX þ c0j

� 

¼ c1jΛ Y ωð Þð Þ
Z

Ωx

Xpþβp XjY ωð Þð ÞdX þ c0j Gf Y
� �β

ð18Þ

where Λ Y ωð Þð Þ ¼ q
1−q

p Y ωð ÞjH1ð Þ
p Y ωð ÞjH0ð Þ is the generalized likeli-

hood ratio.

By solving (18) for X̂
β
j , we have

X̂
β
j ¼

c1jΛ Y ωð Þð Þ
Z

Ωx

Xpþβp XjY ωð Þð ÞdX þ c0j Gf Y
� �β

c1jΛ Y ωð Þð Þ
Z

Ωx

Xpp XjY ωð Þð ÞdX þ c0j

ð19Þ

According to [16], we have

Z

∞

0

Xμp XjY ωð Þð ÞdX ¼ ϕμ=2Γ
μ

2
þ 1

� �

Φ −

μ

2
; 1;−ν

� �

ð20Þ

where μ denotes the spectral amplitude order. Г(∙) is the

gamma function, and Ф(∙) denotes the confluent hyper-

geometric function. For ϕμ/2 of (20), we can simplify it

as follows:

ϕμ=2 ¼ λxλd

λx þ λd

� �μ=2

¼ λx

1þ ξ

� �μ=2

¼ ξλd

1þ ξ

� �μ=2

¼ ξY 2

1þ ξð Þγ
γ

γ

� �μ=2

¼
ffiffiffi

v
p

γ
Y

� �μ

ð21Þ

where λx = E{X2} and λd = E{D2} are the speech and noise

variances, respectively. ξ is a priori SNR, γ is a posteriori

SNR, and ν is the function of ξ and γ. Here, ξ, γ, and ν

are defined as follows [12]:

ξ ¼ λx

λd
; γ ¼ Y 2

λd
; v ¼ ξ

1þ ξ
γ ð22Þ

By substituting (20), (21), and (22) into (19), we can

derive the optimal spectral amplitude estimation X̂ j

under the speech decision ηj (j = 0, 1):

X̂ j ¼
c1jΛ Y ωð Þð Þ

ffiffiffi

v
p

γ

� �β

Γ
pþ β

2
þ 1

� �

Φ −
pþ β

2
; 1;−v

� �

" #

þ c0jG
β
f

c1jΛ Y ωð Þð Þ Γ
p

2
þ 1

� �

Φ −
p

2
; 1;−v

� �h i

þ c0j

0

B

B

B

B

@

1

C

C

C

C

A

1=β

Y

¼ Gj ξ; γ; p; βð Þ⋅Y

ð23Þ

where Gj(ξ, γ, p, β) is the gain function of BDSAE

method under the speech decision ηj.

2. Speech detector: From (11), we can find that, in

order to obtain an optimal speech presence decision

rule, the risk rij(Y(ω)) requires to be calculated, so

for speech hypothesis H1, we have

r1j Y ωð Þð Þ

¼
c1j exp −

γ
1þ ξ

� �

πλd 1þ ξð Þ

�

ϕ p=2þβð ÞΓ
p

2
þ βþ 1

� �

Φ −
p

2
þ β

� �

; 1;−v
� �

þ GjY
� �2β

ϕ p=2ð ÞΓ
p

2
þ 1

� �

Φ −

p

2
; 1;−v

� �

−2 GjY
� �β

ϕ p=2þβ=2ð ÞΓ
pþ β

2
þ 1

� �

Φ −
pþ β

2
; 1;−v

� �

2

6

6

6

6

4

3

7

7

7

7

5

ð24Þ

where ξ is a priori SNR, γ is a posteriori SNR, and ν is

the function of ξ and γ, which have been defined in (22).

ϕ = λxλd/(λx + λd), the variances of speech and noise λx
and λd can be expressed as λx = E{X2}, λd = E{D2}, re-

spectively. The detailed procedure for deriving risk

r1j(Y(ω)) is given in Appendix 1.

For speech hypothesis H0, we can obtain

r0j Y ωð Þð Þ ¼ c0j Gf Y
� �β

− GjY
� �β

� �2 1

πλd
exp −

Y 2

λd

� �

¼ c0j

πλd
G

β
f −G

β
j

� �2

Y 2β exp −γð Þ

ð25Þ

where γ is a posteriori SNR and λd is the variance of the

noise. The derivation details of risk r0j(Y(ω)) is given in

Appendix 2. Therefore, by substituting r1j(Y(ω))and

r0j(Y(ω)) into (11), we can obtain the optimal speech

presence decision rule.

To conclude the above results, BDSAE from noisy

speech requires the following:

(a)Calculating the gain function under each of the

speech decisions ηj by (23);

(b)Finding the optimal decision ηj by (11) according

to (24) and (25), then the optimal gain function

associated with the optimal decision ηj is

achieved. Therefore, the corresponding speech

estimation is obtained by applying the gain to

the noisy speech.

3. Gains analysis: Figure 2 demonstrates the gain’s

change process of BDSAE system versus the value

of (γ − 1) that referred to as the instantaneous SNR,

where the parameters c01 = 1.5, c10 = 5, q = 0.8, and

Gf = −15 dB, respectively. Here, we just call the gain
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function Gj(ξ, γ, p, β) as Gj for convenience. The G0

(blue dashed line) and G1 (blue dotted line) are the

gains under the decision η0 and η1, respectively. The

G (red solid line) denotes the gain of BDSAE system.

As shown in Fig. 2a, for a priori SNR of ξ = 5 dB, as

long as the instantaneous SNR is higher than about

3 dB, the speech decision changes from η0 to η1, thus

the optimal system gain G changes from G0 to G1. Simi-

larly, as shown in Fig. 2b, for a priori SNR of ξ = −5 dB,

as long as the instantaneous SNR is higher than

about −1 dB, the speech decision changes from η1 to

η0, thus the optimal system gain G changes from G1

to G0. Note that if there is an ideal speech detector,

a more significantly non-continuous gain would be

obtained. However, in the proposed BDSAE scheme,

although the speech detector is not ideal, it is opti-

mized to minimize the combined Bayesian risk func-

tion R, that is, the non-continuous system gain G of

the proposed BDSAE is optimal, which could obtain

good enhancement performance shown in Section 5.

4. Influence of cost parameters: In addition, from (23)

we can see that, in the proposed BDSAE method,

the non-continuous system gain G depends on the

cost parameters cij as well as parameters p and β. If

the cost parameter c01 associated with false alarm is

much less than the generalized likelihood ratio Λ(Y(ω)),

that is, the speech is definitely present in the spectral

amplitude, the BDSAE gain function G1(ξ, γ, p, β)

under the decision η1 can be approximated as follows:

Gappr ξ; γð Þ ≈

ffiffi

v
p

γ

� �β

Γ pþ β
2

þ 1
� �

Φ −
pþ β
2

; 1;−v
� �

� 

Γ p
2
þ 1

� �

Φ −
p
2
; 1;−v

� �	 


0

B

B

@

1

C

C

A

1=β

ð26Þ

In this way, the gain function G1(ξ, γ, p, β) is equal to

Gappr(ξ, γ), which means a good enhancement effect can

be obtained under correct decision η1. However, if the

cost parameter c01 is much larger than the generalized like-

lihood ratio Λ(Y(ω)), the speech is absent in the spectral

amplitude. In this case, the BDSAE gain function G1(ξ, γ, p,

β) under the decision η1 (i.e., false alarm) is equal to Gf ap-

proximately (i.e., G1(ξ, γ, p, β) ≈Gf), and thus the cost of

false alarm is compensated and the residual noise in the en-

hanced speech signals can be reduced effectively. On the

other hand, if the cost parameter c10 associated with missed

detection is much smaller than the inverse of generalized

likelihood ratio Λ(Y(ω)), the BDSAE gain function G0(ξ, γ,

p, β) under the decision η0 is equal to Gf approximately

(i.e., G0(ξ, γ, p, β) ≈Gf). Therefore, it can remove noise

greatly when speech is definitely absent. On the contrary, if

the cost parameter c10 is much greater than the inverse of

Λ(Y(ω)), the BDSAE gain function G0(ξ, γ, p, β) under the

decision η0 (i.e., miss decision) is equivalent to the gain

function Gappr(ξ, γ) of (26) (i.e., G0(ξ, γ, p, β) ≈Gappr(ξ, γ)), so

the cost of miss decision can be compensated and the

speech distortion can be reduced as well. Here, in order to

obtain a better trade-off between speech distortion and

noise reduction, the empirical values of cost parameters c01
and c10 are chosen the same as 1.5.

5. Influence of p and β parameters: Furthermore, the p

and β parameters are also more important to system

gain G of the BDSAE method. Figure 3 shows their

influences on gain function Gj(ξ, γ, p, β) for different p

and β values, where the parameters c01 = 1.5, c10 = 5,

q = 0.8, and Gf = −15 dB, respectively. Here, the value

of (γ − 1) is referred to as the instantaneous SNR.

As shown in Fig. 3a, given a fixed parameter β = 0.5 and

the a priori SNR ξ = −5 dB, the gain G0 and G1 of BDSAE

estimator always increase with the increasing of parameter

Fig. 2 Gains of Bayesian decision and estimation system versus

instantaneous SNR (γ− 1). a System gain change from G0 to G1, for the

case of p= 0.5, β= 0.5, and a priori SNR ξ= 5 dB. b System gain change

from G1 to G0, for the case of p=−0.5, β= 1.5, and a priori SNR ξ=−5 dB

Deng and Bao EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:28 Page 7 of 18



p when instantaneous SNR (γ − 1) varies from −20 to

15 dB. That is, for different p values, we can obtain differ-

ent system gain G values, and the corresponding noise re-

ductions can be achieved.

From Fig. 3b, we can see that the gain G0 and G1 of

BDSAE estimator also always increase with the in-

creasing of parameter β for a fixed p = 2 and the a

priori SNR ξ = −5 dB when instantaneous SNR (γ − 1)

varies from −20 to 15 dB. Namely, for the different β

values, the system gain G values are different, and the

noise reduction obtained is also different. In this way,

we can obtain the appropriate system gain G values by

adaptively choosing the right p and β values, which

can yield effective noise reduction and good speech

enhancement performance. The adaptive calculation

methods of p and β parameters will be presented in

Section 3.

3 Adaptive calculation of p and β parameters
From the aforementioned analysis, we can see that the

perceptually weighted order p and the spectral amplitude

order β play an important role in speech enhancement,

which can result in a better enhancement performance by

choosing appropriate values for p and β. Therefore, in this

section, we will present an adaptive calculation method

for p and β, respectively.

3.1 Adaptive calculation of parameter p

For the calculation of parameter p, in [12], the method

did not consider the variability of p, and just a fixed p

Fig. 3 Gains of BDSAE estimator versus instantaneous SNR (γ − 1) for different p and β values. a Gains versus instantaneous SNR (γ − 1) for

different p values, for the case of β = 0.5 and a priori SNR ξ = −5 dB. b Gains versus instantaneous SNR (γ − 1) for different β values, for the

case of p = 2 and a priori SNR ξ = −5 dB
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value was chosen for the trade-off between noise reduc-

tion and speech distortion. Since no flexible gain was

introduced, the enhancement performance of the esti-

mator was limited. In [14], the variability of parameter p

was considered, and an adaptive calculation method of p

was presented, in which the parameter p was considered

as a polynomial of the sub-band SNR and auditory per-

ceptual parameter. In this way, for a larger STSA and a

smaller STSA, the speech estimation errors can be pe-

nalized differently. However, the method shown in [14]

needs to calculate the masking thresholds, and thus the

pre-enhancement process is required, which increases

the computational complexity greatly.

Since most of the speech energy is located at the lower

frequencies (i.e., larger STSA) and at the higher frequen-

cies, the speech energy is weakened (i.e., smaller STSA)

[19], for the lower frequencies, the value of parameter p

should be high and vice versa for the higher frequencies.

That is, the estimation error at the higher frequencies is

penalized more heavily than that at the lower frequen-

cies. In this way, the residual noise can be suppressed

effectively at the higher frequencies, and the speech dis-

tortion at the lower frequencies can be reduced at the

same time. Therefore, on the basis of such idea, we propose

a new adaptive calculation method for parameter p.

First, the appropriate lower bound and higher bound

of parameter p for high frequency and low frequency re-

quire to be chosen, respectively. As discussed in [12],

the p value with more negative produced more noise re-

duction but the greater speech distortion was introduced

as well. Moreover, the p = −1 was suggested as a good

trade-off between the noise reduction and speech distor-

tion in [12]. Therefore, we choose pmin = −1 as the lower

bound of parameter p for high frequency. According to

[14], in order to reduce the speech distortion at lower

frequencies, pmax is set up to 4.0 as the upper bound of

parameter p for low frequency in this paper.

Second, since the speech energy usually decreases as

frequency increases, for the calculation of p value at the

intermediate frequencies, the linear decreasing of p is

proposed as a function of the frequency, i.e.,

p kð Þ ¼ pmax−
k pmax−pminð Þ

N
ð27Þ

where k is the index of frequency bins, N is the frame

length, and p(k) denotes the p value of the kth frequency

bin.

According to (27), we can obtain the decreased gain

from lower frequency to higher frequency, and a larger

noise reduction can be achieved at high frequencies, and

thus the speech distortion at the higher frequencies is

inevitable because the larger STSA sometimes exists at

the higher frequencies. In order to reduce the speech

distortion at the higher frequencies, we employ the sub-

band SNR to modify p. First, the 21 critical sub-bands

[20] are divided for each frame of noisy observation.

Then the variable ~p is assumed to be a linear function of

the critical sub-band SNR Ξ(b, k), where b is the index

of the critical bands. Finally, the range of ~p is limited as

[~pmin , ~pmax ] to obtain a trade-off between the noise re-

duction and speech distortion [16]. In this way, the value

of ~p can be calculated by the following:

~p kð Þ ¼ max min μ ⋅Ξ b; kð Þ þ υ; ~pmax½ �; ~pminf g ð28Þ

where b denotes the index of the critical bands and k is

the index of frequency bins. Ξ(b, k) denotes the kth sub-

band SNR that belongs to the bth band. The constants μ

and υ are set to 0.45 and 1.5, respectively, and the mini-

mum and maximum values of ~p are set to 0.4 and 4.0,

respectively, i.e., ~pmin = 0.4 and ~pmax = 4.0.

According to (27) and (28), the final parameter p is

obtained by weighting p and ~p:

p̂ kð Þ ¼ ε⋅~p kð Þ þ 1− εð Þ ⋅p kð Þ ð29Þ

where the weighting factor ε is related to the sub-band

SNR Ξ(b, k), which is defined by the following:

ε ¼ 1

1þ exp − Ξ b; kð Þ−Ξ0ð Þð Þ ð30Þ

where Ξ0 is a constant. Here, Ξ0 = 3.22 and Ξ(b, k) is de-

fined as follows:

Ξ b; kð Þ ¼

X

Bup bð Þ

k¼Blow bð Þ
Y b; kð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λd b; kð Þ
p

�

�

�

�

�

�

2

X

Bup bð Þ

k¼Blow bð Þ
λd b; kð Þ

ð31Þ

in which b denotes the index of the critical bands, k is

the index of frequency bins. Bup(b) and Blow(b) denote

the upper and lower frequency bound of the bth critical

band, respectively. Y(b, k) denotes the kth spectral

amplitude of noisy speech that belongs to the bth band,

and λd(b, k) is the kth noise variances that belongs to

the bth band.

3.2 Adaptive calculation of parameter β

For the calculation of β, in [15] and [16], the calculation

methods of parameter β are based on overall SNR of each

frame, and a linear relationship between β and frame SNR

was applied. The β only monotonically increases or de-

creases with the frame SNR increases or decreases. That is,

the value of β is fixed and does not vary with the frequency

bins in each frame, so it cannot obtain flexible gain, the en-

hancement performance is limited. For this problem, a so-

lution was proposed in [14], in which the parameter β was

Deng and Bao EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:28 Page 9 of 18



interpreted as the compression rate of the spectral ampli-

tude and calculated based on the critical band. That is, the

β value is different for different critical band, which can

result in a more flexible gain. However, there is no consen-

sus on the degree of compressive nonlinearity at the lower

and intermediate frequencies, which might influence the

accuracy of β value. Therefore, in this paper, we propose a

new calculation method for the parameter β that varies

with the frequency bins.

As we know, the higher the a posterior SNR γ(k) of (12),

the larger the speech presence probability, so β should be

larger for reducing speech distortion and vice versa. There-

fore, according to γ(k), we can employ a monotonically in-

creasing sigmoid function [21] to calculate the value of β.

First, since the strong correlation exists between the

adjacent frequency bins, the average posterior SNR ~γ kð Þ
is obtained by applying a normalized window to γ(k),

~γ kð Þ ¼
X

Lh

i¼−Lh

h ið Þγ k− ið Þ ð32Þ

where h is a normalized hamming window with length

2Lh + 1 and Lh = 5.

Second, the β value is often limited to the range of

[0.001, 4.0] for the trade-off between noise reduction

and speech distortion [14–16]. Therefore, the sigmoid

function is employed to map the ~γ kð Þ into (0, βmax) for

parameter β, then we have

β kð Þ ¼ βmax

1þ exp −α ~γ kð Þ−γ0
� �� � ð33Þ

where α is used to control the steepness of the sigmoid

function, γ0 is the position of the inflection point, and

βmax is a constant. They are set to 0.42, 3.5, and 4.0, re-

spectively. And β(k) denotes the β value of the kth fre-

quency bin.

Finally, we limit the minimum value of β to 0.001, that

is, the final β is obtained by:

β̂ kð Þ ¼ max β kð Þ; βmin

� �

ð34Þ

where k is the index of frequency bins, βmin = 0.001.

Figure 4 gives the variation of β values versus a poster-

ior SNR γ(k).

As shown in Fig. 4, the β value of the proposed method

is a monotonically increasing function with respect to

γ(k). Namely, the larger noise reduction can be yielded as

γ(k) decreases, and the lower speech distortion can be

achieved when γ(k) increases.

4 Implementation of the proposed method

In this section, we present the implementation of the

proposed BDSAE method. The block diagram of the im-

plementation is given in Fig. 5. Firstly, the noisy speech

is windowed and transformed into frequency domain by

DFT. Secondly, the minima controlled recursive aver-

aging (MCRA) method [22] is employed to estimate the

noise power spectrum. Thirdly, using the spectral ampli-

tude of the noisy speech and the estimated noise power

spectrum, the critical sub-band SNRs are obtained.

Fourthly, the parameters p and β are adaptively calcu-

lated according to the critical sub-band SNRs and a

posteriori SNRs. Finally, combining a posteriori SNR

and a priori SNR obtained by a decision-directed (DD)

method [5], the optimal spectral amplitude estimator

and decision rule of the BDSAE method are derived by

further minimizing the combined Bayesian risk func-

tion R, which are used to enhance DFT coefficients of

the noisy speech. Then the inverse Fourier transform

and the overlap-adding algorithm are performed to

obtain the enhanced speech signal in the time domain.

5 Performance evaluation
In this section, we discuss the performance evaluation of

the proposed BDSAE method. First, the experimental

setup of the proposed method is described. Then, we

compare the objective and subjective experimental re-

sults between the proposed method and the reference

methods.

5.1 Experimental setup

In order to evaluate the performance of the proposed

BDSAE method for speech enhancement, white Gaussian

noise, street noise, and interior Volvo car noise from ITU-T

noise database and babble noise, factory noise, and Fl6

cockpit noise from NOISEX-92 [23] database were used

in the test experiments. Twenty-four speech sentences

were taken from the Chinese sub-database of NTT

speech database, where 12 sentences produced by two fe-

male speakers (i.e., six sentences for each female speaker)

Fig. 4 The variation of β values versus the a posterior SNR γ(k)
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and another 12 sentences produced by two male speakers

(i.e., six sentences for each male speaker). All these speech

signals and noises are re-sampled at 16 kHz, and all the

signals were 8 s in duration. Frame size N is 512 samples,

and the samples are sine windowed with 50 % overlap

between adjacent frames. The noisy speech signals were

produced according to ITU-T P.56 standard [24], and the

input SNRs of noisy speech are 0, 5, 10, and 15 dB,

respectively.

In the experiments, the MMSE STSA estimator [5],

the SDEA estimator [11], the weighted Euclidean distor-

tion measure (WEDM) estimator [12], and the β-STSA

estimator [16] are chosen as the reference methods for

comparing with the proposed BDSAE method. The DD

method [5] is applied to all these reference methods and

the BDSAE method. The MCRA algorithm [22] is used

for these methods to estimate noise power spectrum from

noisy speech signals. All the reference methods we used

were implemented according to the referenced papers,

and the corresponding parameters of the methods were

not tuned as well.

For the performance evaluation of the speech enhance-

ment methods, the segmental SNR (SNRseg) measure [25],

the log-spectral distortion (LSD) measure [11], and the

perceptual evaluation of speech quality (PESQ) [26] were

used as objective quality evaluation methods. Furthermore,

the Multiple Stimuli with Hidden Reference and Anchor

(MUSHRA) listening test [27] was employed to evaluate

the subjective quality.

5.2 Objective quality tests

In this subsection, we describe various objective quality

tests. Before we provide rigorous quantitative results, we

briefly discuss spectrograms of the signals processed by

the proposed system and the reference systems.

1. Spectrograms: Figure 6 shows the spectrograms of

the input noisy speech (mixed with white Gaussian

noise for 0 dB) and the enhanced speech signals

obtained by the various enhancement methods.

From Fig. 6, we can see that the proposed method

outperforms the reference methods.

2. Segmental SNR: The SNRseg [25] measure can be

employed to evaluate the objective quality of

enhanced speech signals of different speech

enhancement methods. The SNRseg is measured by

calculating the SNR for each frame of speech and

averaging these SNRs over all test speech sequences,

which can be defined by the following:

SNRseg ¼
1

L

X

L−1

l¼0

10 ⋅ log10

XNlþN−1

n¼Nl
x2 nð Þ

XNlþN−1

n¼Nl
x nð Þ− x̂ nð Þ½ �2

0

@

1

A

ð35Þ

where n denotes the index of signal samples, N is the

frame length. l is frame index, and L is the total number

of frames. x(n) denotes the clean speech signal, and x̂ nð Þ
denotes the enhanced speech signal.

For different input SNRs (i.e., 0, 5, 10, and 15 dB),

Fig. 7 gives the comparison of SNRseg improvement for

different enhancement methods under White Gaussian

noise. Figure 8 gives the comparison of SNRseg improve-

ment for different enhancement methods under factory

noise.

From Figs. 7 and 8, we can see that, in the case of

white Gaussian noise and Factory noise, the SNRseg

improvement of the WEDM method is much better

than the other reference methods, but a little worse

than the proposed BDSAE method. The SNRseg im-

provements of the BDSAE method are nearly 5.0

and 3.0 dB larger than the WEDM method in the

white Gaussian noise and factory noise conditions,

respectively.

Fig. 5 The block diagram of the proposed method

Deng and Bao EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:28 Page 11 of 18



For each input SNR, the average SNRseg improvement

of various enhancement methods for six types of noise

are presented in Table 1.

From Table 1, we can find that BDSAE method pro-

duce much higher average SNRseg improvement than the

reference methods. Furthermore, for each input SNR, in

comparison with the WEDM method whose perfor-

mance is better than the other reference methods, the

average SNRseg improvement of the BDSAE method is

increased about 3.3 dB for all test noise signals. There-

fore, according to the experimental results of Figs. 7 and

8 and Table 1, it is obvious that the BDSAE method per-

forms better than the reference methods.

3. LSD: The LSD measure [11] is also used to evaluate

the objective quality of the enhanced speech, which

measures the similarity between the clean speech

spectrum and the estimated speech spectrum. The

definition of LSD is given as:

dLSD ¼ 1

L

X

L−1

l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N−1

k¼0

10 log10
X̂ l; kð Þ
�

�

�

�
2

X l; kð Þj j2

" #2
v

u

u

t ð36Þ

where l is the frame index, k is the index of frequency

bins, L is the total frames, and N is the frame length.

Fig. 6 The speech spectrogram comparison for the various enhancement methods

Fig. 7 Comparison of SNRseg improvement under White Gaussian noise
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X(l, k) denotes the DFT coefficient of the clean speech

signal and X̂ l; kð Þ denotes the DFT coefficient of the en-

hanced speech signal.

According to the idea of [11], the log-spectrum dynamic

range of speech signal is confined to about 50 dB for the

LSD experiments. The LSD test results are shown in Figs. 9

and 10 for the case of white Gaussian noise and factory

noise, respectively. The average LSD test results are given

in Table 2 for different input SNRs.

From Figs. 9 and 10, we can see that, in the white

Gaussian noise and Factory noise conditions, all speech

enhancement methods can obviously reduce the LSD

comparing with the noisy speech, where the BDSAE

method can obtain much lower LSD than the other

reference methods for four SNR conditions. By com-

paring with the WEDM method whose LSD is lower

than the other reference methods, the average LSDs of

the BDSAE method are decreased about 3.0 and 1.5 dB

for different input SNRs in the white Gaussian noise and

factory noise conditions, respectively.

From Table 2, we can see that, by comparing with the

LSD of noisy speech, all speech enhancement methods

can reduce the LSD to some extent. The average LSD of

the BDSAE method is lower than the reference methods

in various input SNRs. That is, the proposed method

outperforms the reference methods.

4. PESQ: The PESQ [26] is widely used to assess the

objective quality of speech signals, and a higher

PESQ score corresponds to a better speech quality.

For the case of white Gaussian noise and factory

noise, the PESQ test results are compared in Figs. 11

and 12, respectively. The total average PESQ scores

of six types of noise are given in Table 3 for four

kinds of input SNRs.

From Figs. 11 and 12, we can see that, for the case of

white Gaussian noise and Factory noise, in comparison with

the reference methods, the BDSAE method yields higher

average PESQ scores for various input SNR conditions.

From Table 3, we can find that the average PESQ

scores of the enhanced speech signals are all higher

than noisy speech signals, which illustrates that the quality

of enhanced speech signals produced by all kinds of en-

hancement methods are improved obviously. In addition,

by comparing with the reference methods, the BDSAE

method produces higher average PESQ scores for various

input SNR conditions. Therefore, it is further confirmed

that the proposed BDSAE method is superior to the refer-

ence algorithms.

5.3 Subjective quality tests

The quality of enhanced speech is generally assessed by

subjective perception, such as speech intelligibility, nat-

uralness, and articulation. The MUSHRA listening test

[27] is a commonly used method for the subjective

evaluation of audio quality. It requires fewer partici-

pants to obtain a statistically significant result [27] ref-

erence. Therefore, we employed the MUSHRA listening

test to evaluate the subjective quality of enhanced

speech. In the MUSHRA test, the subjects are provided

with the signals under test as well as one reference and

a hidden anchor. The subjects are asked to grade the

different signals on a quality scale between 0 and 100,

Fig. 8 Comparison of SNRseg improvement under factory noise

Table 1 Test results of SNRseg improvement

Enhancement
methods

SNRseg improvement

0 dB 5 dB 10 dB 15 dB

MMSE 11.22 10.23 9.25 8.13

WEDM 14.15 13.22 12.16 10.85

β-STSA 11.97 11.13 10.31 9.44

SDEA 13.99 12.86 11.78 10.54

BDSAE 17.45 16.53 15.64 14.48
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100 being the best score. As the hidden anchor, we

used a speech signal having an SNR of 5 dB less than

the noisy speech to be enhanced [20]. The listeners were

allowed to listen to each test speech several times and

always had access to the clean speech reference.

Six male and four female listeners whose ages are from

20 to 30 years old participated in the MUSHRA tests.

Two speech sentences (i.e., one male speaker, one female

speaker) were randomly chosen from the aforementioned

twenty-four speech sentences, and the corresponding noisy

speech sentences contaminated by the aforementioned six

types of noise under the different input SNRs (i.e., 0, 5, 10,

and 15 dB) were chosen from noisy speech data set which

is discussed in Section 5.1. All these noisy speeches were

enhanced by the speech enhancement methods and were

used for the MUSHRA test. After all the listeners had

graded the test signals, a statistical analysis of the re-

sults was conducted for the different speech enhan-

cement methods for different input SNRs. Figure 13

shows the MUSHRA listening test results, with the

average MUSHRA scores together with the 95 % confi-

dence intervals.

From Fig. 13, we can find that, for four input SNR condi-

tions, the WEDM method yields higher average MUSHRA

scores than the other reference methods but lower than the

BDSAE method. That is, the proposed BDSAE method per-

forms better than the state-of-the-art reference methods for

the subjective quality.

5.4 Discussion

From the aforementioned experimental results, we can

see that the proposed BDSAE approach performs better

than the reference methods. Herein, we discuss its ad-

vantages to the reference methods.

As we know, the spectral amplitudes of speech signal

are generally sparse since only some frequency bins con-

tain significant energy in each speech frame. However,

the reference methods do not take the sparse character-

istics into consideration and often only focus on estimat-

ing the speech spectral amplitude rather than detecting

their existence in the frequency bins. In this way, for the

speech presence or speech absence in the frequency

bins, they only use the same gain function to estimate

Fig. 9 Comparison of LSD under white Gaussian noise

Fig. 10 Comparison of LSD under factory noise
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clean speech from noisy speech, which limits their en-

hancement performance.

For the proposed BDSAE approach, the sparse charac-

teristics of spectral amplitudes of speech signal are

considered. That is, under speech presence or speech ab-

sence in frequency bins, the cost functions are different

which result in different gain functions. Then the speech

detector is derived to choose the optimal gain function to

estimate clean speech. In this way, for speech presence or

speech absence in frequency bins, the gain functions are

different and optimal, respectively, which can yield better

speech enhancement performance. Moreover, the speech

distortion and residual noise resulted from the detector

error (i.e., missed detection and false alarm) can be com-

pensated by cost parameters cij, which is discussed in

Section 2.3 (i.e., (4) Influence of cost parameters).

In addition, the p and β parameters are induced to

cost functions of the BDSAE approach, and the values of

p and β are adaptive calculation as the frequency bins.

Therefore, we can obtain more flexible and effective gain

functions under speech presence and speech absence in

frequency bin, which can yield effective noise reduction

and good speech enhancement performance.

As can be seen from (23), the proposed BDSAE approach

requires the calculation of two gain functions, G0 and G1,

and the decision rule, in which the mainly computational

complexity is focus on calculating the gamma function Г(∙)

and the confluent hyper-geometric function Ф(∙). However,

for the four reference methods (i.e., MMSE, WEDM,

β-STSA, and SDEA) listed in Section 5.1, they also

require to calculate the two functions of Г(∙) and Ф(∙).

Therefore, the computational complexity of the pro-

posed BDSAE approach is at the same level compared

to the four reference methods. In addition, the proposed

BDSAE approach is implemented frame by frame, and thus,

there is no any delay existed.

To implement the proposed BDSAE method for real-

time realization, the computational complexity involved

in (23) could be further simplified. Here, we apply the

idea of looking up a table [14, 16] for simplifying the

gain function Gj(ξ, γ, p, β) of (23). For the numerator

and the denominator of (23), the algebraic product of

the gamma function Γ(.) and the confluent hyper-geometric

function Φ(.) can be considered as the function of variables

φ and ν, namely, Ψ(φ, ν) = Γ(φ + 1)Φ(−φ, 1; ν). The variable

φ is the function of parameters p and β in the BDSAE esti-

mator, i.e., φ1= (p + β)/2, φ2 = p/2. In this way, the gain

function Gj(ξ, γ, p, β) of Eq. (23) can be simplified as

follows:

Gj ζ; γ; p; βð Þ ¼
c1jΛ Y ωð Þð Þ

ffiffi

v
p
�

γ

� �β

Ψ φ1;−vð Þ þ c0jG
β
f

c1jΛ Y ωð Þð ÞΨ φ2;−vð Þ þ c0j

0

B

@

1

C

A

1
β=

Therefore, according to [14] and [16], the Ψ(φ, ν) is

designed for looking up a table which relies on variables

φ and ν. The computational complexity of the proposed

method is reduced greatly by the above simplification.

6 Conclusions

We present a single-channel speech enhancement method

based on BDSAE. The optimal speech decision rule and

Table 2 Test results of LSD

Enhancement
methods

LSD

0 dB 5 dB 10 dB 15 dB

Noisy speech 19.62 16.14 12.95 10.11

MMSE 11.07 8.89 7.04 5.50

WEDM 9.45 7.51 5.84 4.46

β-STSA 10.73 8.52 6.56 4.89

SDEA 9.68 7.90 6.37 5.09

BDSAE 7.49 6.08 4.85 3.86

Fig. 11 Comparison of PESQ under White Gaussian noise
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spectral amplitude estimator are derived by jointly minim-

izing the combined Bayesian risk function which considers

both detection and estimation errors. Under presence and

absence of spectral amplitude, the general weighted cost

function is proposed, in which the perceptually weighted

order p and the spectral amplitude order β are jointly

used. In order to obtain flexible gain values for the BDSAE

method, the adaptive estimation methods for the p and β

parameters are presented, respectively. Furthermore, the

cost parameters in the cost function are employed to bal-

ance the speech distortion and residual noise caused by

missed detection and false alarm, respectively. Therefore,

the BDSAE method not only considers the sparse charac-

teristics of the spectral amplitudes of speech signal but

also takes the full advantages of both the traditional

perceptual weighted estimators and β-order spectral

amplitude estimators, which can obtain more flexible and

effective gain functions. Finally, we took the objective and

subjective quality tests for the enhanced speech based on

SNRseg, LSD, PESQ, and MUSHRA listening tests, respect-

ively. The test results indicate that the proposed BDSAE

method can achieve a more significant performance im-

provement than the reference methods.

7 Appendix 1—the derivation procedure of

r1j(Y(ωk)) of Eq. (24)
In this appendix, we derive the r1j(Y(ωk)) of Eq. (24) and

ignore the frequency bin k for notation simplification.

Under speech hypothesis H1, by substituting speech

presence cost function d1j(X, X ) into r1j(Y(ω)) of (9),

we can obtain

r1j Y ωð Þð Þ ¼ c1j

Z

Ωx

Xp Xβ
− GjY
� �β

� �2

p XjH1ð Þp Y ωð ÞjXð ÞdX

ð37Þ

where we just call Gj(ξ, γ, p, β) as Gj for convenience

and X̂ ¼ GjY .

According to [28], we can get the multiplication of the

two probability density functions as follows:

p XjH1ð Þp Y ωð ÞjXð Þ ¼
Z

2π

0

p x; θjH1ð Þp Y ωð Þjx; θð Þdθ

ð38Þ

where x is the implementation of amplitude variable X

and θ is the implementation of phase variable of X(ω).

In this way, the (37) can be rewritten as follows:

r1j Y ωð Þð Þ ¼ c1j

Z

∞

0

Z

2π

0

xp xβ− GjY
� �β

� �2

p x; θjH1ð Þp Y ωð Þjx; θð Þdθdx

ð39Þ

where the probability density functions of (39) can be

defined as follows [28]:

p x; θjH1ð Þ ¼ x

πλx
exp −

x2

λx

� �

ð40Þ

Fig. 12 Comparison of PESQ under factory noise

Table 3 Test results of PESQ

Enhancement
methods

PESQ scores

0 dB 5 dB 10 dB 15 dB

Noisy speech 1.615 1.945 2.316 2.686

MMSE 2.013 2.403 2.716 2.973

WEDM 2.239 2.558 2.828 3.089

β-STSA 2.160 2.482 2.774 3.042

SDEA 2.105 2.451 2.752 3.025

BDSAE 2.340 2.651 2.926 3.189
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p Y ωð Þjx; θð Þ ¼ 1

πλd
exp −

Y ωð Þ−X ωð Þj j2
λd

� �

ð41Þ

By applying the two probability density functions of

(40) and (41), we can obtain

p x; θjH1ð Þp Y ωð Þjx; θð Þ

¼ x

π2λxλd
exp − γ þ x2

λx
−

2Yx cos θ−θ
0

� �

λd

0

@

1

A

0

@

1

A

ð42Þ

According to [11, 29], we have

Z

2π

0

exp
2Yx cos θ−θ

0
� �

λd

0

@

1

Adθ ¼ 2πJ0 i
2Y

λd
x

� �

ð43Þ

where J0(.) denotes the zero-order Bessel function.

By substituting (42) and (43) into (39), we can get

r1j Y ωð Þð Þ ¼ 2c1j exp −γð Þ
πλxλd

Z

∞

0

xpþ1 xβ− GjY
� �β

� �2

exp −
x2

λx

� �

J0 i
2Y

λd
x

� �

dx

¼ 2c1j exp −γð Þ
πλxλd

Z

∞

0

x2βþpþ1 þ xpþ1 GjY
� �2β

− 2xβþpþ1 GjY
� �β

h i

exp −
x2

λx

� �

J0 i
2Y

λd
x

� �

dx

ð44Þ

where λx and λd are the speech and noise variances and

γ is a posteriori SNR.

Simplifying (44), we obtain

r1j Y ωð Þð Þ ¼ 2c1j exp −γð Þ
πλxλd

⋅

Z

∞

0

x2βþpþ1 exp −
x2

λx

� �

J0 i
2Y

λd
x

� �

dx

þ GjY
� �2β

Z

∞

0

xpþ1 exp −
x2

λx

� �

J0 i
2Y

λd
x

� �

dx

−2 GjY
� �β

Z

∞

0

xβþpþ1 exp −
x2

λx

� �

J0 i
2Y

λd
x

� �

dx

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð45Þ

Following ([29], eq. 6.631.1), we have

Z

∞

0

xμ exp −ax2
� �

Jv bxð Þdx

¼ bvΓ 0:5vþ 0:5μþ 0:5ð Þ
2vþ1a0:5 vþμþ1ð ÞΓ vþ 1ð ÞΦ

μþ vþ 1

2
; vþ 1;−

b2

4a

� �

ð46Þ

By substituting (46) into (45), we can obtain (47) which

is the same with (24).

r1j Y ωð Þð Þ

¼
c1j exp −

γ
1þξ

� �

πλd 1þ ξð Þ

⋅

ϕ p=2þβð ÞΓ
p

2
þ βþ 1

� �

Φ −
p

2
þ β

� �

; 1;−v
� �

þ GjY
� �2β

ϕ p=2ð ÞΓ
p

2
þ 1

� �

Φ −
p

2
; 1;−v

� �

−2 GjY
� �β

ϕ p=2þβ=2ð ÞΓ
pþ β

2
þ 1

� �

Φ −
pþ β

2
; 1;−v

� �

2

6

6

6

6

4

3

7

7

7

7

5

ð47Þ

8 Appendix 2—the derivation procedure of

r0j(Y(ω)) of Eq. (25)
In this appendix, we derive the r0j(Y(ω)) of Eq. (25) and

call Gj(ξ, γ, p, β) as Gj for convenience. Under hypothesis

Fig. 13 Comparison of the MUSHRA score
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H0, by substituting speech absence cost function d0j(X,

X ) into r0j(Y(ω)) of (9), we can obtain

r0j Y ωð Þð Þ ¼ c0j

Z

∞

0

Gf Y
� �β

− GjY
� �β

� �2

p XjH0ð Þp Y ωð ÞjXð ÞdX

ð48Þ

Following (7), we have p(X|H0) = δ(X). Then the Dirac

delta function is substituted into (48), we can obtain

r0j Y ωð Þð Þ ¼ c0j Gf Y
� �β

− GjY
� �β

� �2

p Y ωð ÞjH0ð Þ ð49Þ

According to [28], the p(Y(ω)|H0) of (49) can be

defined as:

p Y ωð ÞjH0ð Þ ¼ 1

πλd
exp −

Y 2

λd

� �

ð50Þ

where λd denotes the variance of noise signal.

By substituting (50) into (49), we can obtain (51)

which is (25).

r0j Y ωð Þð Þ ¼ c0j Gf Y
� �β

− GjY
� �β

� �2 1

πλd
exp −

Y 2

λd

� �

¼ c0j

πλd
G

β
f −G

β
j

� �2

Y 2β exp −γð Þ

ð51Þ
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