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Abstract—The traditional minimum mean-square error
(MMSE) estimator of the short-time spectral amplitude is based
on the minimization of the Bayesian squared-error cost function.
The squared-error cost function, however, is not subjectively
meaningful in that it does not necessarily produce estimators that
emphasize spectral peak (formants) information or estimators
which take into account auditory masking effects. To overcome
the shortcomings of the MMSE estimator, we propose in this
paper Bayesian estimators of the short-time spectral magnitude
of speech based on perceptually motivated cost functions. In par-
ticular, we use variants of speech distortion measures, such as the
Itakura–Saito and weighted likelihood-ratio distortion measures,
which have been used successfully in speech recognition. Three
classes of Bayesian estimators of the speech magnitude spectrum
are derived. The first class of estimators emphasizes spectral
peak information, the second class uses a weighted-Euclidean
cost function that implicitly takes into account auditory masking
effects, and the third class of estimators is designed to penalize
spectral attenuation. Of the three classes of Bayesian estimators,
the estimators that implicitly take into account auditory masking
effect performed the best in terms of having less residual noise
and better speech quality.

Index Terms—Minimum mean-square error (MMSE) esti-
mators, perceptually-motivated speech enhancement, speech
distortion measures, speech enhancement.

I. INTRODUCTION

S INGLE-CHANNEL speech enhancement algorithms based
on minimum mean-square error (MMSE) estimation of the

short-time spectral magnitude have received a lot of attention
in the past two decades [1]–[6], and are often compared against
new algorithms. The MMSE estimators have been very popular,
partly because they have been shown to be successful in elimi-
nating musical noise [7].

It is known from estimation theory, that the MMSE estimator
minimizes the Bayes risk based on a squared-error cost function
[8]. The squared-error cost function is most commonly used be-
cause it is mathematically tractable and easy to evaluate. It might
not be subjectively meaningful, however, in that small and large
squared estimation errors might not necessarily correspond to
good and poor speech quality respectively. Also, the squared
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error criterion might not necessarily produce estimators that pre-
serve spectral peak (formant) information or estimators that take
into account auditory masking effects. Lastly, the squared error
cost function treats positive and negative estimation errors the
same way. But the perceptual effect of positive error (i.e., the es-
timated magnitude is smaller than the true magnitude) and neg-
ative error (i.e., the estimated magnitude is larger than the true
magnitude) is not the same in speech enhancement applications.
Hence, the positive and negative errors need not be weighted
equally.

To overcome the above problems and shortcomings of the
squared-error cost function, we propose in this paper Bayesian
estimators of the short-time spectral magnitude of speech
based on perceptually motivated distortion measures. In par-
ticular, we use variants of speech distortion measures, such
as the Itakura–Saito and weighted likelihood-ratio distortion
measures, which have been applied successfully in speech
recognition applications [9]–[11]. These distortion measures
have been shown to be subjectively more meaningful than
the squared error measure and have been applied to speech
recognition tasks [12].

Three classes of Bayesian estimators are derived in this paper
based on these distortion measures. In the first class, Bayesian
estimators are derived that place more emphasis on spectral
peaks (formants) than on spectral valleys. In the second class,
Bayesian estimators are derived that take into account audi-
tory masking effects. Lastly, in the third class, a Bayesian es-
timator is derived which preserves weak (low-energy) segments
of speech, such as fricatives and stop consonants. This was done
by using a distortion measure which penalizes positive estima-
tion errors more than negative errors. MMSE estimators do not
typically do well with such low-energy speech segments be-
cause of the low segmental SNR associated with such segments.

This paper is organized as follows. Section II provides an
overview of general Bayesian estimators, Section III derives
the perceptually motivated Bayesian estimators, Section IV
presents the experimental results, and Section V presents the
conclusions.

II. GENERAL BAYESIAN ESTIMATORS: BACKGROUND

Let be the sampled noisy speech signal
consisting of the clean signal and the noise signal .
Taking the short-time Fourier transform of , we get

(1)
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for and , where is
the frame length in samples. The above equation can also be
expressed in polar form as

(2)

where denote the magnitudes and
denote the phases at frequency

bin of the noisy speech, clean speech and noise respectively.
In this paper, we are interested in estimating the magnitude

spectrum, from the noisy complex speech spectrum, .
Let denote the error in estimating the magnitude

at frequency bin , and let denote a non-

negative function of . The average cost, i.e., ,
is known as the Bayes risk , and is given by

(3)

Minimizing the Bayes risk with respect to for a given
cost function results in a variety of estimators. If we use the
squared-error cost function in (3),
and we minimize the inner integral with respect to , while
holding fixed, then we get the traditional MMSE esti-
mator [1]. If we use the “hit-or-miss” function
for , then we get the MAP estimator [8]. If we use
the following cost function:

(4)

then we get the log-MMSE estimator [2]. Non-linear cost
functions that incorporated psychoacoustic constraints were
proposed in [4], [5]. However, due to the nonlinearity of
the constraints, no closed form solution was derived for the
Bayesian estimators [4].

In summary, different Bayesian estimators of can be de-
rived depending on the choice of the cost function. Aside from
the cost functions used in [4], [5], and the log square-error cost
function used in [2] (since loudness is often modeled by a log
function), the squared-error type cost functions used in [1]–[3],
[6] were not necessarily subjectively meaningful. Next, we de-
rive Bayesian estimators of based on perceptually motivated
cost functions in place of the squared-error cost function. We
refer to these cost functions as “distortion measures,” as they do
not necessarily satisfy the metric requirements of symmetry and
triangle inequality [10].

III. PERCEPTUALLY MOTIVATED BAYESIAN ESTIMATORS OF

THE SPEECH MAGNITUDE SPECTRUM

A. Psychoacoustically Motivated Distortion Measure

The proposed distortion measure is motivated by the per-
ceptual weighting technique used in low-rate analysis-by-syn-
thesis speech coders [13]. In most low-rate speech coders (e.g.,
CELP), the excitation used for LPC synthesis is selected in a

closed-loop fashion using a perceptually weighted error crite-
rion [14], [15]. This error criterion exploits the masking proper-
ties of the auditory system. More specifically, it is based on the
fact that the auditory system has a limited ability in detecting
quantization noise near the high-energy regions of the spectrum
(e.g., near the formant peaks). Quantization noise near the for-
mant peaks is masked by the formant peaks, and is therefore not
audible. Auditory masking can be exploited by shaping the fre-
quency spectrum of the error (estimation error in our case) so
that less emphasis is placed near the formant peaks and more
emphasis is placed on the spectral valleys, where any amount of
noise present will be audible. We are referring here to simulta-
neous masking and not temporal masking (forward or backward
masking) which extends in time outside the period the masker
is present. Non-stationary masking effects such as forward and
backward masking are not modeled in this work.

In speech coding, the perceptually-weighted error criterion is
implemented by weighting the error spectrum with a filter which
has the shape of the inverse spectrum of the original signal.
That way, spectral peaks are not emphasized as much as spectral
valleys. As a crude approximation to this perceptual weighting
filter, we considered weighting the estimation error by .
We therefore considered the following cost function:

(5)

It is clear that the above distortion measure penalizes the estima-
tion error more heavily when is small (spectral valley) than
when is large (spectral peak). The following Bayesian risk
(corresponding to the inner integral in (3), and denoted hence-
forth as ) was then minimized

(6)

Taking the derivative of with respect to and setting it equal
to zero, we get

(7)

Solving for we get

(8)

Using the Gaussian statistical model, it can be shown (see Ap-
pendix A) that evaluates to

(9)

where denotes the confluent hypergeometric function
[16, eq. 9.210.1], denotes the gamma function and

. It is easy to show that can also be written
as

(10)
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Fig. 1. Plot of the magnitude spectrum, X , of a 30-ms segment of the vowel /iy/ taken from the word “heed” (F1 = 344 Hz, F2 = 2450 Hz). Plots of the
spectra X , 1=X and 1=X are superimposed for comparison. The latter spectra are shifted relative to X for better visual clarity.

where , ,
, and .

Using (10), we can also express (9) as

(11)

where . The above confluent hypergeometric
function can also be written in terms of a Bessel function [17,
eq. A1.31b], thereby simplifying the above estimator to

(12)

where denotes the modified Bessel function of order zero.
It is worthwhile noting that the above estimator becomes the
Wiener estimator when . To prove that, after substituting
in (12) the approximation of the Bessel function,

(for ), we get

(13)

which is the Wiener estimator.
Next, we considered generalizing the cost function given in

(5) to weigh the estimation error by , i.e.,

(14)

Note that the above distortion measure emphasizes spectral
peaks when , but emphasizes spectral valleys when

. This is illustrated in Fig. 1. For , the above
distortion measure is similar to the model distortion measure
proposed by Itakura [11] for comparing two autoregressive
speech models. The cost function used in (5) is obtained by
setting . We refer to the above distortion measure as
the weighted Euclidean distortion measure, since it can be

written as , where
is a diagonal matrix, having as the th diagonal element,

. Using (14), the following risk is then minimized:

(15)

Taking the derivative of with respect to and setting it equal
to zero, we get

(16)
Solving for we get

(17)

Note that the above Bayesian estimator is the ratio of the
( ) moment of the posterior pdf and
the th moment of , i.e., it can be written as:

. In our case, is not
restricted to be an integer, however. Note also that when ,
we get the traditional MMSE estimator derived in [1].



860 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING , VOL. 13, NO. 5, SEPTEMBER 2005

Using the Gaussian statistical model [1], we can show (see
Appendix A) that evaluates to

(18)
The above equation allows us to express in terms of a non-
linear gain function which is a function
of both the a priori SNR and posteriori SNR , much like
the gain function of the MMSE estimator [1]. Fig. 2 plots the
gain function as a function of the instantaneous SNR
( ) for a fixed value of ( in top panel and

in bottom panel ) for several values of the power
exponent . For comparative purposes, the gain functions of the
MMSE [1] and log-MMSE [2] estimators are superimposed. As
can be seen, the shape of the gain function is sim-
ilar to that of the MMSE and log-MMSE gain functions. The
amount of attenuation seems to be dependent on the value of
the power exponent . Large and positive values of provide
small attenuation, while large and negative values of provide
heavier attenuation.

Note that for large values of the gain function
converges to the MMSE gain function. In fact, con-
verges to the Wiener gain function for and consequently
for . This can be proven by substituting in (18) the
following asymptotic approximation of the confluent hypergeo-
metric function [17, eq. A1.16b]:

(19)

In doing so, we get

(20)

which is the Wiener estimator.

B. Itakura–Saito Measure

The Itakura–Saito measure [18] has been used successfully in
speech recognition for comparing a reference power spectrum

against a test spectrum according to

(21)
Due to its asymmetric nature, the IS measure is known to pro-
vide more emphasis on spectral peaks than spectral valleys.

In this paper, we consider the IS distortion measure between
the estimated and true short-time power spectra at the th fre-
quency bin (rather than over the whole spectrum)

(22)

Note that , since . It is
easy to show that minimization of the following Bayesian risk:

(23)

yields the following magnitude-squared estimator

(24)

which is also the MMSE estimator of the short-time power spec-
trum. So, the Bayesian estimator resulting from minimization of
the IS distortion measure is the same as the MMSE estimator re-
sulting from minimization of the following distortion measure:

It is worthwhile noting that minimization of the IS measure
based on the magnitude spectra (i.e., ) of the
signal, i.e., minimization of the following Bayesian risk:

(25)

results in the MMSE estimator: . To verify
this, after taking the derivative of given in (25) with respect
to , and setting it equal to zero, we get

(26)

After solving for , we get , which is the
MMSE estimator of .

C. Measure

As mentioned earlier, the IS measure is asymmetric since
. A symmetric distortion measure

was derived in [9] by combining the two forms of the IS mea-
sure to get a new distortion measure, termed measure. The

measure considered here is given by

(27)
The measure was shown in [9] to be nearly identical to
the log spectral distortion ((4)) for small estimation errors but
to differ markedly for large errors. This is illustrated in Fig. 3
which plots the measure against the log spectral distortion
measure, given in (4). We can therefore conclude
that compared to the log spectral difference measure [(4)], the

measure penalizes large estimation errors more heavily,
but penalizes small estimation errors equally.

After minimizing the risk

(28)
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Fig. 2. Gain functions of the weighted-Euclidean distance estimator [(18)] as a function of the instantaneous SNR (
 � 1) and for several values of the power
exponent p. Top panel plots the gain functions for � = �5 dB and bottom panel plots the gain function for � = 5 dB. The gain functions of the MMSE and
log-MMSE estimators are also plotted for comparison.

with respect to we get the following magnitude-squared es-
timator:

(29)

Note that the numerator is the traditional MMSE estimator [1],

and the denominator is the estimator derived in (8). Substituting
(9) for the denominator and the MMSE estimator [1] for the
numerator, we get

(30)
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Fig. 3. Plot of the cosh distortion measure d (V ) = cosh(V )� 1, where V = logX � log X̂ . The log spectral distortion measure [(4)] is also plotted
(dashed line) for comparison.

The above estimator can also be expressed in terms of Bessel
functions using [17, eq. A1.31a, A1.31c] as

(31)

where denotes the modified Bessel function of order .
Wanting to exploit auditory masking effects, as we did with

the weighted Euclidean distortion measure, we also considered
the following weighted distortion measure:

(32)

Minimization of the above weighted- based Bayesian risk,
leads to the following magnitude-squared estimator:

(33)

It is easy to show (see derivation in Appendix A) that the above
estimator evaluates to

(34)
Fig. 4 plots the gain function as a
function of ( ) for several values of and for .
For comparative purposes we also superimpose the gain func-
tion of the log-MMSE estimator. The power exponent clearly
influences attenuation with negative values providing more at-
tenuation than positive values. When , we get the “un-
weighted” estimator given in (30). Note that the es-
timator given in (30) provides slightly more attenuation than
the log-MMSE estimator. Only the parametric gain curves for

were plotted in Fig. 4. The shape of the gain func-
tions obtained for other values of is similar.

D. Weighted Likelihood Ratio

As mentioned earlier, the IS measure places more emphasis
on spectral peaks than spectral valleys. To further increase the
sensitivity of distortion measure to the spectral peaks, Shikano
and Sugiyama [19] proposed the weighted likelihood ratio
(WLR) distortion measure which has the following form:

(35)

The WLR measure can be considered to be a variant of the log
spectral difference measure given in (4). The weighting func-
tion used in is the linear spectral difference
( ) which weights log spectral peaks more than spectral
valleys. In contrast, the measure implicitly uses
the log spectral difference, ( ), as the weighting
function, thereby weighting spectral peaks and valleys equally.

After differentiating the Bayesian risk

(36)

with respect to , we get the following nonlinear equation in

(37)

where

(38)
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Fig. 4. Gain function of the weighted-cosh estimator [(34)] as a function of the instantaneous SNR (
 � 1) and for several values of the power exponent p. The
a priori SNR is fixed at � = �5 dB. The gain function of the log-MMSE estimator is also plotted for comparison.

and is the MMSE estimator [1]. The
term above was derived in [2]. It is easy

to show that the function in (37)
is monotonically increasing in (0, ) with

(given that ) and , and therefore has a

single zero. That is, the solution of the nonlinear equation in
(37) yields a unique estimator. Numerical techniques [20] can
be used to find the single zero of .

E. Modified Itakura–Saito Distortion Measure

With the exception of the asymmetric IS measure, the other
distortion measures discussed so far were symmetric. The sym-
metry property is certainly desirable in pattern recognition ap-
plications, where we would like the distortion measure to yield
the same value regardless of whether we compare the reference
spectrum (or parametric model) against the test spectrum or
the test spectrum against the reference spectrum. In speech en-
hancement applications, however, the distortion measure need
not be symmetric, as we may want to penalize positive errors
more than negative errors or vice versa. A positive estimation
error ( ) would suggest that the estimated spectral
amplitude is attenuated since , while a negative error
( ) would suggest that the estimated amplitude is
amplified, since . The perceptual effects of these two
types of error, however, are not equivalent and therefore the pos-
itive and negative errors need not be weighted equally. Wanting
to prevent attenuation of the weak speech segments (e.g., stops,
fricatives), we chose a distortion measure that penalizes the pos-
itive errors more heavily than the negative errors.

The following distortion measure was therefore considered:

(39)

which is referred to as the modified IS (MIS) measure. Note that
the original IS measure had the form

where , whereas in our case,
. Fig. 5 plots the above measure as a function of

. As can be seen, the above distortion measure is indeed
nonsymmetric in that it penalizes the positive errors ( or
equivalently, ) more than the negative errors. After
minimizing the Bayesian risk

(40)
with respect to , we get the following estimator:

(41)

The integral in the above equation evaluates to (see derivation
in Appendix B)

(42)
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Fig. 5. Plot of the modified Itakura–Saito distortion measure d (V ) = exp(V )� V � 1, where V = X � X̂ . The squared error measure (V ) used in
the MMSE estimator is also plotted (dashed line) for comparison.

where denotes the Gaussian hypergeometric func-
tion [16, eq. 9.100]. In our implementation, we truncated the
above infinite series to the first terms as follows:

(43)

Good performance was obtained using in the range of 30 to
40. Due to highly nonlinear nature of the resulting estimator,
we are unable to plot its gain function. We can easily prove,
however, that the above estimator always provides less attenua-
tion than the MMSE estimator. Acknowledging the fact that the
integral in (41) is , and after using Jensen’s in-
equality, we have

(44)

IV. RESULTS

The proposed estimators were evaluated using both objective
measures and subjective listening tests. Twenty sentences from
the TIMIT database were used for the objective evaluation of the
proposed estimators, ten produced by female speakers and ten

Fig. 6. Performance, in terms of segmental SNR improvement (dB), of the
weighted Euclidean estimator [(18)] for different values of p and for different
input SNR levels. The performance of the MMSE estimator is also shown for
comparison.

produced by male speakers. The TIMIT sentences were down-
sampled to 8 kHz. Speech-shaped noise constructed from the
long-term spectrum of the TIMIT sentences was added to the
clean speech files at 0, 5, and 10 dB SNR. An estimate of the
noise spectrum was obtained from the initial 100-ms segment
of each sentence. The noise spectrum estimate was not updated
in subsequent frames.

The proposed estimators were applied to 20-ms duration
frames of speech using a Hamming window, with 50% overlap
between frames. The “decision-directed” approach [1] was used
in all proposed Bayesian estimators to compute the a priori
SNR , with . The enhanced signal was combined
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TABLE I
COMPARISON BETWEEN THE LOG-MMSE [2] AND WLR BAYESIAN ESTIMATORS [(37)] IN TERMS OF

SEGMENTAL SNR IMPROVEMENT (DB) AND IN TERMS OF THE IS MEASURE

Fig. 7. Performance, in terms of segmental SNR improvement (dB), of the
weighted cosh estimator [(34)] for different values of p and for different input
SNR levels. The performance of the log-MMSE estimator is also shown for
comparison.

using the overlap and add approach. For comparative purposes,
we evaluated the performance of the MMSE and log-MMSE
estimators. MATLAB implementations of the proposed estima-
tors are available upon request from the author.

A. Objective Evaluations

Objective measures, in terms of the segmental SNR, were
used to evaluate the performance of the proposed Bayesian esti-
mators of the speech magnitude spectrum. We first compared the
performance obtained with the weighted Euclidean Bayesian es-
timator [(18)] against the performance obtained with the MMSE
estimator [1]. For the implementation of the func-
tion in (18), we used the first 100 terms of the confluent hy-
pergeometric series. The results are shown in Fig. 6 in terms
of segmental SNR improvement (over the noisy speech) for dif-
ferent values of and for three input SNRs (0, 5, 10 dB). Clearly,
better performance is obtained with negative values of . Lis-
tening tests indicated that the residual noise is reduced signif-
icantly when . Speech distortion is introduced however
when takes on large negative values, particularly when gets
close to . Hence, the value of controls the tradeoff between
speech distortion and residual noise. A good compromise was
found with (see next section).

Fig. 7 compares the performance obtained with the and
weighted- estimators, against the performance obtained
with the log-MMSE estimator [2]. The estimator based on
the weighted- measure performs a little better than the
log-MMSE estimator for , and performs equally

TABLE II
COMPARISON BETWEEN THE MMSE [1] AND MIS BAYESIAN ESTIMATORS

[(43) WITH Q = 40] IN TERMS OF SEGMENTAL SNR IMPROVEMENT (DB)

well for higher SNR levels. Listening tests (see next section)
indicated that the residual noise is reduced significantly by
the weighted- Bayesian estimators when . Speech
distortion is introduced however when gets close to . A
good compromise between residual noise and speech distortion
was found with .

Table I compares the performance obtained with the
weighted-likelihood Bayesian estimator against the per-
formance obtained with the log-MMSE estimator. Brent’s
algorithm [20] was used to solve for the WLR estimator sat-
isfying (37). In addition to the segmental SNR measure, we
also evaluated the performance of the two estimators using the
Itakura–Saito distortion measure. This was done to assess the
spectral-peak matching ability of the WLR estimator. Large im-
provement in IS values was indeed observed for
with the WLR estimator.

Table II compares the performance obtained with the MMSE
estimator against the performance obtained with the MIS es-
timator [(43)] using . For the implementation of the

function in (43), we used the first 40 terms of the
Gaussian hypergeometric series. Overall, the MMSE estimator
performs better, however, closer examination of some of the en-
hanced signals revealed that the MIS Bayesian estimator does
a better job in preserving weak (low-energy) speech segments
such as stops and fricatives. This is illustrated in Fig. 8 which
compares the enhanced signals obtained with the two estima-
tors. Note that the fricative /s/ at , 1.4 and 2.4 secs is
hardly present in the signal enhanced by the MMSE estimator,
but is quite evident in the signal enhanced by the MIS esti-
mator. The MMSE estimator, however, does a better job in en-
hancing the voiced segments of speech and preserving the con-
sonant-to-vowel amplitude ratio. Informal listening tests indi-
cated that the quality of speech produced by the MIS estimator
was sensitive to the number of terms, , used to truncate the
infinite series in (43). We found that in the range of 30 to 40
gives modest performance, but the MIS estimator becomes very
aggressive with “musical”-type of noise if a smaller number of
terms is used.
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Fig. 8. Top panel shows the waveform of the TIMIT sentence “She was so beautiful, so valiant, so pitiable.” produced by a male speaker. Second panel from the
top shows the noisy waveform at 0 dB SNR. The bottom two panels show the enhanced signals by the MMSE and MIS Bayesian estimators. Note that the fricative
/s/ at t � 0:4, 1.4 and 2.4 secs is hardly present in the signal enhanced by the MMSE estimator, but is quite evident in the signal enhanced by the MIS estimator.

B. Subjective Evaluations

Ten TIMIT sentences (subset of the sentences used for the
objective evaluations) produced by five male and five male
speakers were used in the listening tests. Five normal-hearing
listeners, age 20–25 yrs, participated in the listening tests [all
listeners were paid for their participation]. Listeners were pre-
sented randomly with 30 pairs ( )
of sentences processed by the MMSE estimator and the
weighted-Euclidean based Bayesian estimators using
and . In a different listening session, listeners
were presented with 30 pairs of sentences processed by the
log-MMSE estimator and the weighted- based Bayesian
estimators using and . Subjects were
asked to (1) choose the sentence they prefer in terms of being
more natural and having less distortion, and (2) indicate which
sentence had more residual noise.

The results, scored in terms of preference percentage, are
given in Table III. Results indicated that the value of clearly in-
fluenced the amount of distortion perceived, with large negative
value of producing more distortion than small negative values
of . Small values of produce speech with little distortion,
but with more residual noise. Subjects preferred the quality of
speech produced by the MMSE estimator over speech enhanced
by the weighted-Euclidean estimator for large negative values
of , i.e., when . Subjects also preferred the quality of

TABLE III
TOP TWO ROWS GIVE THE MEAN PERCENT PREFERENCE SCORES FOR SPEECH

ENHANCED BY THE PROPOSED WEIGHTED EUCLIDEAN ESTIMATORS

OVER THE MMSE ESTIMATOR. BOTTOM TWO ROWS GIVE THE MEAN

PERCENT-PREFERENCE SCORES FOR SPEECH ENHANCED BY THE PROPOSED

WEIGHTED-cosh ESTIMATORS OVER THE LOG-MMSE ESTIMATOR

speech produced by the log-MMSE estimator over speech en-
hanced by the weighted- estimator when . For
moderately smaller values of , however, subjects preferred the
quality of speech produced by the proposed weighted-Euclidean
estimator ( ) over speech enhanced by the MMSE esti-
mator. Quality of speech by the log-MMSE estimator and the
weighted- estimator ( ) was found to be compa-
rable ( ), but with substantially lower residual noise
reported for the weighted- estimator. Listeners overwhelm-
ingly reported that speech produced by the proposed estimators
had less residual noise than either the MMSE or log-MMSE es-
timators.
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Fig. 9. Top panel shows the waveform of the TIMIT sentence “The angry boy answered, but didn’t look up.” produced by a female speaker. Second panel from the
top shows the noisy waveform at 5 dB SNR. The remaining panels show the enhanced signals produced by the MMSE, log-MMSE, weighted-Euclidean estimator
(p = �1:5) and weighted-cosh estimator (p = �0:9). Note that the residual noise is significantly reduced by the proposed estimators.

V. SUMMARY AND CONCLUSIONS

The present study focused on the derivation of perceptu-
ally-motivated Bayesian estimators of the magnitude spectrum.
Several other perceptually-motivated methods were proposed
in [21]–[23] but used a different approach for incorporating
psychoacoustic constraints.

Six different Bayesian estimators of the spectral magnitude
were derived in this paper. Unlike the previous MMSE estima-
tors derived in [1], [2], the proposed Bayesian estimators are
based on perceptually motivated distortion measures. Based on
the evaluation of the proposed estimators, we can draw the fol-
lowing conclusions.

1) Bayesian estimators which over-emphasize spectral peak
information performed the worst. These include the tra-
ditional MMSE estimator [1], the WLR estimator [(37)]
and the estimators given in (18) and (34) with .
The enhanced speech signal produced by these estima-
tors (including the traditional MMSE estimator) had a
significant amount of residual noise which was audible
(see Fig. 9). This was confirmed by listening tests. We
believe that this is due to the fact that the estimation error
produced by these estimators is small near the spectral
peaks (where it is masked anyway) and large in the spec-
tral valleys, where the residual noise is audible [15].

2) Bayesian estimators that emphasize spectral valleys
more than the spectral peaks performed the best in
terms of having less residual noise and better speech
quality (see Fig. 9). These include the estimator given
in (18) with and the estimator given in (34)
with . Listening tests confirmed that the
weighted-Euclidean estimator ( ) performed
significantly better than the MMSE estimator. The
weighted- estimator ( ) performed compa-
rably with the log-MMSE estimator, but with substan-
tially reduced residual noise. This class of estimators
exploits implicitly auditory masking effects by taking
into account the fact that estimation errors near the
spectral peaks are masked.

3) The derived Bayesian estimators based on the
Itakura–Saito measure of the magnitude and power
spectrum were identical to the MMSE estimator of the
magnitude and power-spectrum, respectively.

4) The Bayesian estimator based on the asymmetric MIS
measure seems to perform well in preserving weak
speech segments (e.g., fricatives) but not in enhancing
voiced segments. This was based on visual inspection of
spectrograms and waveforms of the enhanced signals.
This estimator was designed to penalize positive errors
more than negative errors, thereby avoiding spectral
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attenuation. Although the performance of the MIS
Bayesian estimator was not consistently or equally well
for all voiced and unvoiced speech segments, conceiv-
ably, a hybrid estimator can be implemented which uses
the MIS estimator for unvoiced segments and a different
estimator (e.g., (18) with ) for voiced segments.

APPENDIX A

In this Appendix, we derive the estimators given in (8), (18),
(29) and (33). Assuming the Gaussian statistical model [1], we
know that [2]

(45)
Using [16, eq. 6.631.1, 8.406.3, 9.212.1] it is easy to show that
[2]

(46)

By setting in the above equation, we can evaluate the
integral in (8) to get (9).

The above equation is similarly used in (17) to evaluate the
estimator given in (18). The restriction on the value of to be
larger than comes from the evaluation of the integral in the
numerator of (45). From [16, eq. 6.631.1], the power exponent
of the term has to be larger than , which leads to the
condition that .

The estimator in (29) and the weighted- estimator
in (33) are derived in a similar way using (46).

APPENDIX B

In this Appendix, we evaluate the MIS Bayesian estimator
given in (41). Using Bayes’ rule, we can write

(47)

After using the Gaussian statistical model, and after integrating
over , we get

(48)

where indicates the modified Bessel function of order zero.
After using the following identity for the exponential term [17,
eq. A.1.47c]:

(49)

in (48), we get

(50)

The above integrals can be evaluated using [16, eq. 6.633.1,
8.406.3] to

(51)

where denotes the Gaussian hypergeometric
function [16, eq. 9.100]. Finally, substituting

in (47), we get

(52)

Using , we can express the above equation
as

(53)

The Gaussian hypergeometric infinite series
is known to converge if or equivalently if

. Simulation results indicated that this condition
was rarely violated even at extremely low SNR conditions.
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