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This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum
a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function
of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for
Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted
to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-
Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the
commonly applied Ephraim-Malah algorithm.
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1. INTRODUCTION

The reduction of acoustical background noise using a single
microphone is an important subject to improve the quality of
speech communication systems in the context of digital hear-
ing aids, speech recognition, hands-free telephony, or tele-
conferencing. Although single-microphone speech enhance-
ment has been a research topic for decades, the estimation
of a clean speech signal from its noisy observation remains
a challenging task, especially due to the wide variety of envi-
ronmental noises.

If the disturbing noise is assumed to be truly environ-
mental, that is, its origin is, for example, machines, cars, or
several persons talking at the same time, the specific proper-
ties of speech such as nonwhiteness, nonstationarity and non-
Gaussianity compared to unwanted noise allow a differentia-
tion between speech and noise.

Nonwhiteness means that the short-time spectrum of
speech is generally less flat than that of acoustic noise. This

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

property can be exploited by separating speech and noise in
the spectral domain. The concept of spectral domain noise
attenuation has been introduced more than twenty years ago
by Boll [1] as the subtraction of an estimated noise spectral
magnitude from the noisy spectral magnitude.

To estimate the noise power spectral density, the sec-
ond property, nonstationarity, is exploited by averaging DFT
squared magnitudes in noise-only phases or by tracking
spectral minima over time [2]. Noise reduction by spectral
domain weighting has frequently been plagued by musical
tones, that is, annoying fluctuations in the residual noise sig-
nal. This is especially due to the subtraction of an expecta-
tion in terms of the noise power spectral density from an in-
stantaneous value. To overcome this problem, improved al-
gorithms have been proposed by Ephraim and Malah [3, 4].
The clean speech spectral amplitude is estimated with respect
to the minimization of a statistical error criterion. Together
with a recursive estimation of the underlying speech vari-
ance, the approach results in a good speech quality without
audible musical noise.

Recently, the third property, non-Gaussianity, has been
included in the spectral domain noise reduction framework
by Martin [5, 6]. The statistical estimation of the speech
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Figure 1: Overview of the single-channel speech enhancement system (l: time index, k: frequency index).

spectrum requires a statistical model of the undisturbed
speech and noise spectral coefficients. It is well known that
speech samples have a super-Gaussian distribution, which
causes the speech spectral coefficients to be super-Gaussian
distributed as well. By including a super-Gaussian model of
speech, the mean squared error of a statistical estimator can
be decreased compared to an estimation with an underlying
Gaussian model. Whereas the proposed estimators by Martin
with underlying Gamma or Laplace PDFs for real and imagi-
nary parts of speech and noise DFT coefficients [5, 6] are op-
timal with respect to the mean squared estimation error of
the estimated complex speech DFT coefficient, they are sub-
optimal for the estimation of the speech spectral amplitude.

Spectral amplitude estimation can be considered more
advantageous due to the perceptual unimportance of the
phase [7]. Ephraim and Malah have proposed two estimators
that minimize the squared or logarithmic error of the speech
spectral amplitude under a Gaussian model of the complex
speech and noise DFT coefficients [3, 4].

In this contribution spectral amplitude estimators with
super-Gaussian speech modelling are introduced. The prob-
ability density function of the speech spectral amplitude is
approximated by a function with two parameters. With a
proper choice of the parameters, for example, the proba-
bility density of the amplitude of a complex random vari-
able (RV) with both independent Laplace and Gamma com-
ponents can be approximated with high accuracy. Also, the
parameters of the underlying PDF can be optimally fit-
ted to the real distribution of the speech spectral ampli-
tude for a specific noise reduction algorithm. Using this
statistical model, computationally efficient speech estima-
tors can be found by applying the maximum a posteriori
(MAP) estimation rule. The resulting estimators, which are
super-Gaussian extensions of the MAP estimators derived by
Wolfe and Godsill [8], outperform the commonly applied
Ephraim-Malah estimators by the more accurate statistical
model.

The remainder of the paper is organized as follows.
Section 2 gives an overview of the single-channel noise re-
duction by spectral weighting. Section 3 introduces the un-
derlying statistical model for the speech and noise spec-
tral amplitudes along with comparisons to experimental
data. In Section 4 the statistical model is applied to derive

a MAP estimator for the speech spectral amplitude and a
joint MAP estimator for the speech spectral amplitude and
phase. Finally, in Section 5, experimental results are pre-
sented.

2. OVERVIEW

Figure 1 shows an overview of the single-channel speech en-
hancement system examined in this work [9]. The noisy time
signal y(l) sampled at regular time intervals l·T is composed
of clean speech s(l) and additive noise n(l):

y(l) = s(l) + n(l). (1)

After segmentation and windowing with a function h(l), for
example, Hann window, the DFT coefficient of frame λ and
frequency bin k is calculated with

Y(λ, k) =
L−1
∑

l=0

y(λQ + l)h(l)e− j2πlk/L, (2)

L denotes the DFT frame size. For the noise reduction system
applied in this work, L = 256 is used at a sampling frequency
of 20 kHz. For the computation of the next DFT, the window
is shifted by Q samples. To decrease the disturbing effects of
cyclic convolution, we apply half overlapping Hann windows
with 16 zeros at the beginning and end. The effective frame
size is thus only 224 samples, which corresponds to a frame
size of 11.2 milliseconds and a frame shift of 5.6 milliseconds,
respectively.

The noisy DFT coefficient Y consists of speech part S and
noise N :

Y(λ, k) = S(λ, k) + N(λ, k), (3)

with S = SRe + jSIm and N = NRe + jNIm, where SRe = Re{S}
and SIm = Im{S}. In polar coordinates the noisy DFT coeffi-
cient of amplitude R and phase ϑ is written as

R(λ, k)e jϑ(λ,k) = A(λ, k)e jα(λ,k) + B(λ, k)e jβ(λ,k). (4)

The speech DFT amplitude is termed as A, the noise DFT
amplitude as B, and the respective phases as α, β.
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The SNR estimation block calculates a priori SNR ξ and
a posteriori SNR γ for each DFT bin k. The SNR calcula-
tion requires an estimate of the noise power spectral density
σ2
N (λ, k). It can be estimated by averaging DFT squared mag-

nitudes in periods of speech pauses. Assuming that noise is
stationary, the measured PSD can be saved and applied as an
estimate during following speech activity. This method re-
quires a reliable voice activity detector (e.g., [10]). However,
a VAD is difficult to tune and its application at low SNRs of-
ten results in clipped speech. Therefore, we apply minimum
statistics, which tracks minima of the smoothed periodogram
over a time period that greatly exceeds the speech short-time
stationarity [2].

Based on the noise estimates σ̂2
N and the observed Fourier

amplitudes R the a priori and the a posteriori SNRs are esti-
mated by

ξ̂(λ, k) = σ̂2
S (λ, k)

σ̂2
N (λ, k)

, γ̂(λ, k) = R2(λ, k)

σ̂2
N (λ, k)

. (5)

Here, σ2
S denotes the instantaneous power spectral density of

the speech. Whereas the a posteriori SNRs γ can directly be
computed, the a priori SNRs ξ have to be estimated. This is
performed using a recursive approach proposed by Ephraim
and Malah [3]:

ξ̂(λ, k) = αsnr
Â2(λ− 1, k)

σ̂2
N (λ, k)

+
(

1− αsnr

)

F
[

γ
(

λ̂, k
)

− 1
]

,

F[x] =







x, x > 0,

0, else.

(6)

An alternative estimation approach which incorporates fre-
quency correlation is presented in [11]. It is frequently ar-
gued [12, 13] that the recursive approach is essential for a
high quality of the enhanced signal. A high smoothing factor
αsnr greatly reduces the dynamics of the instantaneous SNR
in speech pauses and thus reduces musical tones. However
the a priori SNR will then comprise a delayed version of the
speech. Since the a priori SNR has a high impact on the noise
reduction amount, it is useful to lower limit the a priori SNR
according to

ξ̃(λ, k) =







ξ̂(λ, k), ξ̂(λ, k) > ξthr,

ξthr, else.
(7)

The task of the speech estimation block is the calculation of
spectral weights G for the noisy spectral components Y , such
that the estimated speech DFT coefficient Ŝ is calculated by

Ŝ(λ, k) = G
(

ξ̂(λ, k), γ̂(λ, k)
)

· Y(λ, k). (8)

After IFFT and overlap-add, the enhanced time signal ŝ(l) is
obtained.

3. STATISTICAL MODEL

We introduce the statistical model for the speech and noise
spectral amplitudes. For the sake of brevity the frame index
λ and frequency index k are omitted, however the following
considerations hold independently for every frequency bin k
and frame λ.

Motivated by the central limit theorem, real and imag-
inary parts of both speech and noise DFT coefficients are
very often modelled as zero-mean independent Gaussian
[3, 14, 15] with equal variance. This is due to the properties
of the DFT:

Y(λ, k) =
L−1
∑

l=0

y(λQ + l) cos

(

2πkl

L

)

− j
L−1
∑

l=0

y(λQ + l) sin

(

2πkl

L

)

,

(9)

where L samples are added after multiplication with modula-
tion terms. The central limit theorem states that the distribu-
tion of the DFT coefficients will converge towards a Gaussian
PDF regardless of the PDF of the time samples y(l), if suc-
cessive samples are statistically independent. This also holds
if the correlation in y(l) is short compared to the analysis
frame size [14].

For many relevant acoustic noises this assumption holds.
Moreover, multiple noise sources or reverberation often re-
duce the noise correlation in between the analysis frame size,
so that the Gaussian assumption is fulfilled. The variance of
the noise DFT coefficient σ2

N is assumed to split equally into
real and imaginary parts. Thus, the probability density func-
tion of real and imaginary parts of noise Fourier coefficients
can be modelled as

p
(

NRe

)

= 1√
πσN

exp

{

− N2
Re

σ2
N

}

. (10)

Based on (10) and the assumption of statistically indepen-
dent real and imaginary parts, the PDF of the noisy spectrum
Y conditioned on the speech amplitude A and phase α can be
written as joint Gaussian:

p(Y |A,α) = 1

πσ2
N

exp

(

−
∣

∣Y − Ae jα
∣

∣

2

σ2
N

)

. (11)

A Rice PDF is obtained for the density of the noisy amplitude
given the speech amplitude A after polar integration of (11)
[15]:

p(R|A) = 2R

σ2
N

exp

{

− R2 + A2

σ2
N

}

I0

(

2AR

σ2
N

)

, (12)

where I0 denotes the modified Bessel function of the first
kind and zeroth order.

Considering speech, the span of correlation with typical
frame sizes from 10 milliseconds to 30 milliseconds cannot
be neglected. The smaller the frame size, the less Gaussian
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Figure 2: Contour lines of complex Gaussian model with independent Cartesian coordinates and of complex Laplace model with indepen-
dent Cartesian coordinates (σ2

S = 1).

will the distribution of the speech real and imaginary parts
of the Fourier coefficients will be. It is well known, that the
PDFs of speech samples in the time domain are much better
modelled by a Laplace or Gamma density [16]. In the fre-
quency domain similar distributions can be observed. Mar-
tin [5, 6] has abandoned the Gaussian speech model accord-
ing to

p
(

SRe

)

= 1√
πσS

exp

{

− S2
Re

σ2
S

}

. (13)

Instead, the Laplace probability density function

p
(

SRe

)

= 1

σS
exp

{

− 2
∣

∣SRe

∣

∣

σS

}

(14)

and Gamma PDFs for statistical independent real and imag-
inary parts have been proposed:

p
(

SRe

)

=
4
√

3
∣

∣SRe

∣

∣

−1/2

2 4
√

2
√
πσS

exp

{

−
√

3
∣

∣SRe

∣

∣

√
2σS

}

. (15)

The same equations hold for the imaginary parts.

3.1. Modelling the spectral amplitudes

In the following a simple statistical model for the speech and
noise spectral amplitudes will be presented [17], which is sig-
nificantly closer to the real distribution than the commonly
applied Gaussian model.

The spectral amplitudes are of special importance, be-
cause the phase of the Fourier coefficients can be considered
unimportant from a perceptual point of view [7, 18]. Hence,
spectral amplitude estimators are more advantageous and a
statistical model for the amplitude alone is needed.

Considering noise, the Gaussian assumptions hold due
to comparably low correlation in the analysis frame. Assum-
ing statistical independence of real and imaginary parts the
PDF of the noise amplitude B can easily be found as Rayleigh
distributed by polar integration

p(B) =
∫ 2π

0
B · p

(

NRe,NIm

)

dβ = 2B

σ2
N

exp

{

− B2

σ2
N

}

. (16)

For the calculation of an appropriate PDF for A, the Gauss,
Laplace, and Gamma PDFs for real and imaginary parts are
taken into account. The real and imaginary parts of the
Fourier coefficients can be considered statistically indepen-
dent with high accuracy. Then, p(A) can in general be calcu-
lated by

p(A) =
∫ 2π

0
A · p(A cosα) · p(A sinα)dα, (17)

with the PDFs according to (13), (14), or (15) for p(SRe =
A cosα), p(SIm = A sinα).

Figure 2 shows contour lines of a complex Gaussian or
Laplace PDF with independent Cartesian components. Com-
pared to the Gaussian PDF, the Laplace PDF has a higher
peak, a low amplitude and decreases slower towards higher
amplitudes visible by the greater distances of the contour
lines compared to the complex Gaussian PDF. While the
complex Gaussian PDF is rotational invariant, the Laplace
amplitude depends on the phase.

Considering Gaussian components, the rotational invari-
ance greatly facilitates the polar integration. Similar to (16)
the amplitude is Rayleigh distributed:

p(A) = 2A

σ2
S

exp

{

− A2

σ2
S

}

. (18)
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Figure 3: Measured histograms of amplitudes of complex 1.000.000
random variables with independent Cartesian Laplace (solid) or
Gamma (dashed) components along with Rayleigh PDF (dotted)
(σ2

S = 1).

The PDF of the amplitude of a complex Laplace or Gamma
random variable with independent Cartesian components
varies with the angle α. This makes an analytic calculation

of the distribution A =
√

S2
Re + S2

Im for (14) or (15) difficult,
if not impossible.

Instead of an analytic solution to (17) we are looking
for a function that approximates the real PDF of the spec-
tral amplitudes with high accuracy regardless of the under-
lying joint distribution of real and imaginary parts of the
Fourier coefficients. However, as indication about how the
function should look like the amplitude of a complex Laplace
or Gamma PDF with independent components is taken into
account.

Figure 3 plots histograms of the amplitude A =
√

S2
Re + S2

Im of 1.000.000 Laplace and Gamma, respectively,
distributed independent random values SRe, SIm of variance
σ2
S /2. Whereas the Laplace-distributed random variables can

easily be generated using the inverse distribution function
method [19], the Gamma-distributed random values were
generated according to [20]. Compared to the Rayleigh-
distributed amplitude of a complex Gaussian random vari-
able, low values are more likely, but the PDF decreases more
slowly towards high values.

The fast decay of the Rayleigh PDF results from the
second-order term of A in the argument of the exponential
function in (18) similar to the decay of the Gauss function in
(13). Similarly, the measured PDFs of the complex Laplace
and Gamma amplitudes can be assumed to decay like (14)
and (15) with a linear argument in the exponential function.

Apparently, the slope of the Gamma amplitude PDF dif-
fers from that of the Laplace amplitude PDF. Hence, a pa-

rameter µ is introduced, which enables to approximate both.
After normalizing A by the standard deviation σS we thus as-
sume

p(A) ∼ exp

{

− µ
A

σS

}

. (19)

At low values of A the PDF of the Laplace and Gamma am-
plitudes is much higher than the Rayleigh PDF as shown in
Figure 3. Considering the Rayleigh PDF according to (18),
the behavior at low values is mainly due to the linear term of
A, whereas the exponential term plays a minor role at small
values.

Both the PDF of the Laplace amplitude and the PDF of
the Gamma amplitude can be approximated by abandoning
a linear term in A. Instead, A is taken to the power of a pa-
rameter ν after normalization to the standard deviation of
speech, that is, p(A) ∼ (A/σS)ν in order to be able to approx-
imate a large variety of PDFs. The smaller the parameter ν,
the larger the proposed PDF at low values. The term hardly
influences the behavior of the function at a high value due to
the dominance of the exponential decay

p(A) ∼ Aν

σν

S
exp

{

− µ
A

σS

}

. (20)

After taking
∫∞

0 p(A)dA = 1 into account, the approximating
function with parameters ν, µ is finally obtained using [21,
equation 3.381.4]:

p(A) = µν+1

Γ(ν + 1)

Aν

σν+1
S

exp

{

− µ
A

σS

}

. (21)

Here, Γ denotes the Gamma function.
Figure 4 shows the approximation of the measured his-

togram of the amplitude of 1.000.000 complex Laplace or
Gamma random values with independent components with
σ2
S = 1 by (21) using different sets of parameters ν, µ.

Apparently, (21) allows a very accurate approximation for
both Laplace and Gamma components. To approximate the
Laplace amplitude, we applied the parameter set (ν = 1,
µ = 2.5). To approximate the Gamma amplitude we used
(ν = 0.01, µ = 1.5). PDFs in between both or closer to the
Rayleigh PDF can be approximated with different sets of pa-
rameters ν, µ.

3.1.1. Matching with experimental data

The real PDF of the speech amplitude will not be exactly
like the Laplace or Gamma amplitude approximation but
somewhere in between. Also, it will depend on parameters
of the noise reduction system such as the analysis frame size.
At a larger frame size the correlation decreases relative to
the analysis frame size and thus the distribution will be less
super-Gaussian. The task is therefore to find a set of param-
eters (ν, µ) which outperforms the above sets for Laplace or
Gamma amplitude approximation for a given system.
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Figure 4: Approximation of amplitudes of complex random val-
ues with Laplace and Gamma components using (21). (a) Laplace
components: (ν = 1, µ = 2.5). (b) Gamma components: (ν = 0.01,
µ = 1.5).

To measure the probability density function of the speech
complex DFT coefficients S or speech DFT amplitudes A, a
histogram is built using 1-hour speech from different speak-
ers. Ideally, DFT bins, which solely contain speech of equal
variance, should be taken into account.

In practice, the speech variance in a frequency bin is
strongly time variant and can only be estimated in a time
frame and frequency bin with a certain estimation error.
Thus, we apply (6), which is commonly considered as the
best performing method to estimate the speech variance in
the form of the a priori SNR. Hereby, the histogram measure-
ment process also incorporates the same method of estimat-
ing the time-varying speech variance as the noise reduction
system. Data is collected for the histogram at time instances,
when the frequency bin is dominated by speech. For that pur-
pose a high and narrow a priori SNR interval is predefined,
for example, 19–21 dB. The width of the interval is a trade-
off between the amount of data obtained and the demand to
pick samples of same variance.

Figure 5a shows the contour lines of the measured speech
DFT coefficients. The data shown has been obtained by
building separate histograms for each frequency and nor-
malizing each histogram to σ2

S = 1 for an averaged his-
togram over the frequency. Compared to the Gaussian con-
tour lines in Figure 2, a slower decrease towards high am-

plitudes and faster increase towards low amplitudes is vis-
ible. Also, the observed data hardly shows any dependency
on the phase as in the Laplace contour lines in Figure 2 as
shown for the complex Laplace PDF in Figures 5b, 5c, 5d,
5e, 5e, 5f, and 5g which depict the histogram of phases for
the six specific contour lines. Approximately, the phases can
be considered as uniformly distributed. The variation visible
for A = 0.005 is probably due to the low amount of data
available here.

Figure 6a a plots the histogram of the speech ampli-
tude, which is obtained by integration over the phase of the
two-dimensional histogram along with the analytic Rayleigh
PDF and the approximation according to (21) with the pa-
rameter set for Laplace and Gamma amplitude approxima-
tions, respectively. Figure 6b shows a zoom into the higher
regions. Apparently, (21) provides a much better fit for the
speech amplitude than the Rayleigh PDF for both Laplace
and Gamma amplitude approximations. For low arguments,
the Rayleigh PDF rises too slowly, while for large arguments,
the density function decays too fast. The real PDF of the
speech amplitude lies between the Laplace and Gamma am-
plitude approximations for the data measured with our sys-
tem the Gamma amplitude approximation.

To find a set (ν, µ) that approximates the real PDF best, a
distance measure between the analytic function and the his-
togram with N bins is numerically minimized. The Kullback
divergence [22] can be considered optimal from an informa-
tion theoretical point of view. Given two random variables of
probability density p1(x) and p2(x), then I(2 : 1) describes
the mean information per observation of process 2 for dis-
crimination in favor of process 2 and I(1 : 2) for discrimina-
tion in favor of process 1:

I(1 : 2) =
∫

p1(x) log
p1(x)

p2(x)
dx,

I(2 : 1) =
∫

p2(x) log
p2(x)

p1(x)
dx.

(22)

The sum J(1 : 2) = I(1 : 2) + I(2 : 1) is a measure of diver-
gence between the two processes. To differentiate between the
analytical pA(n) and the histogram PDF ph(n) with N bins,
the divergence can be calculated by

J(A : h) =
N
∑

n=1

(

ph(n)− pA(n)
)

log

(

ph(n)

pA(n)

)

. (23)

Figure 7 shows the best p(A) according to (21) determined
by minimizing the Kullback divergence. The analytical PDF
now fits even better to the observed data than the Laplace or
Gamma amplitude approximation. To illustrate the improve-
ment provided by the new model, Table 1 shows the Kullback
divergences between measured data and model functions.
The divergences have been normalized to that of the Rayleigh
PDF, that is, the Gaussian model. When using the Laplace or
Gamma amplitude approximation, the Kullback divergence
is significantly lower than that for the Gaussian model. By
determining an optimal parameter set, the divergence fur-
ther decreases.
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Figure 5: (a) Contour lines of measured speech DFT coefficients. ((b), (c), (d), (e), (f), (g)) Histogram of speech DFT phases for six different
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Figure 7: (a) Histogram of speech DFT amplitudes and fitted approximation by (21) according to Kullback divergence (σ2
S = 1). (b) Zoom

into the area 1.5 ≤ A ≤ 3.

3.1.2. Reverberant signal

The acoustic environment will influence the distribution of
the speech spectral amplitude. Especially if the desired acous-
tic source is located at larger distances from the microphone,
for example, in a hearing aid application, reverberation will
degrade the amount of correlation in between an analysis

frame and thus will lead to a less super-Gaussian distribu-
tion.

To examine the amount of influence of reverberation, the
scenario depicted in Figure 8 is considered. The acoustical
impulse response in a reverberant room from a source to
a microphone was simulated with the image method [23],
which models the reflecting walls by several image sources.
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Table 1: Normalized Kullback divergence between measured speech PDF and different model functions.

p(A) ν, µ J(A : h)/J(A : h)Rayleigh

Rayleigh (18) — 1

Laplace amplitude approximation (21) 1, 2.5 0.35

Gamma amplitude approximation (21) 0.01, 1.5 0.05

Kullback fit (21) 0.126, 1.74 0.045

Room dimensions:

Lx = Ly = 7 m

Lz = 3 m

Reflection coeff.:

ζ = 0.72

Reverb. time:

T0 = 0.2 s

Position source:

(5 m, 2 m, 1.5 m)

Position microphone:

(5 m, 5 m, 1.5 m)

2 m

2 m

Microphone

Speech source

2 m

2 m

Ly

Lx

Figure 8: Simulation of impulse response between speech source
and microphone in a reverberant room using the image method.

The intensity of the sound from an image source at the mi-
crophone array is determined by a frequency-independent
reflection coefficient ζ and by the distance to the micro-
phone. In our experiment, the reverberation time was set
to T0 = 0.2 seconds, which corresponds to a reflection
coefficient of ζ = 0.72 according to Eyring’s formula

ζ = exp

{

− 13.82/

(

c

(

1

Lx
+

1

Ly
+

1

Lz

)

T0

)}

. (24)

The histogram of the speech amplitude was then taken as be-
fore after convolving the database of speech with the impulse
response delivered by the image method.

Figure 9 plots the histogram along with the approxi-
mation with parameters fitted according to the Kullback
divergence. As expected, the speech spectral amplitude is
now less super-Gaussian distributed. However the opti-
mal parameters with respect to the Kullback divergence
(i.e., ν = 0.264, µ = 1.82) are still much closer to the val-
ues originally obtained from the Kullback fit than to those
of the Laplace amplitude approximation or even from the
Rayleigh PDF. It can be concluded that accuracy of the statis-
tical model is only slightly affected by reverberation. Whereas
a slight performance gain can be expected when adapting the
parameters of the statistical model during run-time, the gain
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Figure 9: (a) Histogram of speech amplitudes in reverberant room
and fitted approximation (21) according to Kullback divergence
(σ2

S = 1). (b) Zoom into the area 1.5 ≤ A ≤ 3.

might not justify the additional computational complexity of
an acoustic classifier. Thus, in the following the fixed param-
eter set (ν = 0.126, µ = 1.74) is considered as optimal.
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Figure 10: Histogram of noise DFT amplitudes B for (a) white uniform distributed noise, (b) fan noise, and (c) cafeteria noise (σ2
N = 1)

fitted with Rayleigh PDF and Laplace amplitude approximation.

3.1.3. Spectral amplitude of noise

Compared to speech, the span of noise correlation in an anal-
ysis frame is much lower. Thus, the PDF of the real and
imaginary parts of the noise spectral coefficients will ac-
cording to the central limit theorem be closer to a Gaus-
sian function. Martin [5, 6] has proposed spectral estima-
tors with Laplace or Gaussian noise model (and Laplace and
Gamma models for the speech coefficients). A Laplace model
for noise is motivated by the observation that environmental
noises are also super-Gaussian distributed to a certain degree.
Figure 10 plots histograms of DFT amplitudes measured for
three different noise classes. For building the histograms, the
frequency- and time-dependent noise variances σ2

N were es-
timated using the same system as applied in the noise re-
duction algorithm, that is, minimum statistics [2]. Spectral
amplitudes with corresponding estimated noise variances in-
side a narrow predefined interval were then collected for the
histogram database. To plot the histogram together with the
Rayleigh function (18) and the super-Gaussian model func-
tion (21) in Figure 10 the collected database was normalized
to σ2

N = 1.
For the white noise, which was uniformly distributed in

the time domain, a Rayleigh function perfectly models the
PDF of the noise spectral amplitude. This is because there
is no correlation in a time frame, resulting in Gaussian-
distributed real and imaginary parts of Fourier coefficients
according to the central limit theorem. For fan noise, the PDF
slightly changes towards the Laplace amplitude approxima-
tion, while the effect is more visible for the cafeteria noise,
which contains speech components from many speakers.

The deviation for the measured histogram from the Rayleigh
model is low compared to that of speech. In the follow-
ing, the Gaussian assumption for the noise will therefore be
kept.

4. SPEECH ESTIMATORS

The task of the speech estimator lies in calculating an esti-
mate for the speech spectral amplitude Â = G · R given the
observed noisy coefficient Y or the noisy amplitude R and
the variances of speech σ2

S and noise σ2
N . With probability

one, the estimate will not be identical to the real value, there-
fore a cost function C(A, Â) is introduced [24], which assigns
a value to each combination of undisturbed and estimated
speech spectral amplitudes. The Bayesian estimators aim at
minimizing the expectation of the cost according to

E
{

C
(

A, Â
)}

=
∫∞

−∞

∫∞

0
C
(

A, Â
)

p(A,Y)dAdY. (25)

For C(A, Â) = (A − Â)2 the Ephraim-Malah or conditional
expectation estimator [3] is obtained:

G =
√
v

γ
· Γ(1.5)F1(−0.5, 1,−v), v = γ

ξ

1 + ξ
, (26)

where the confluent hypergeometric series F1 can be calcu-
lated with

F1(−0.5, 1,−v) = e−v/2
[

(1 + v)I0

(

v

2

)

+ vI1

(

v

2

)]

, (27)
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where I0, I1 denote the modified Bessel function of zeroth
and first order. The cost function C(A, Â) = logA − log Â
leads to the logarithmic Ephraim-Malah estimator [4]. Al-
ternatively the β-order MMSE estimator [25] allows an esti-
mation in between both rules.

By choosing a uniform cost function according to

C =







0,
∣

∣S− Ŝ
∣

∣ < ǫ,

1, else.
(28)

MAP estimators can be obtained, which are in general com-
putationally more efficient.

Wolfe and Godsill [8, 26] introduced alternatives to the
Ephraim-Malah spectral amplitude estimator based on the
maximum a posteriori estimation rule. The spectral weights
obtained by the MAP estimators are similar to those of the
Ephraim and Malah estimator, thus a quality improvement
cannot be expected. However, straightforward implementa-
tions without the use of computational expensive Bessel or
exponential function are possible.

In the following, we introduce two speech spectral am-
plitude estimators, which keep the computational simplicity
of the Wolfe and Godsill estimators but also achieve a quality
gain by applying the super-Gaussian speech model according
to (21) and a Gaussian model for noise.

First, a MAP estimator for the speech spectral amplitude
is derived. Secondly, a joint MAP estimator for the amplitude
and phase is introduced. Both estimators are extensions of
the MAP estimators proposed by [8].

4.1. MAP spectral amplitude estimator

A computationally efficient MAP solution following

Â = arg max
A

p(A|R) = arg max
A

p(R|A)p(A)

p(R)
(29)

similar to [26], where Gaussian-distributed SRe, SIm are as-
sumed, can be found. Now, the super-Gaussian function (21)
is used to model the PDF of the speech spectral amplitude
p(A). The Gaussian assumption of noise allows to apply (12)
for p(R|A). We need to maximize only p(R|A) · p(A), since
p(R) is independent of A. A closed form solution can be
found if the modified Bessel function I0 is considered asymp-
totically with

I0(x) ≈ 1√
2πx

ex. (30)

Figure 11 shows that the approximation is reasonable for
larger arguments and becomes erroneous for low arguments.

After insertion of (30) and (21) in (12) we get

p(R|A)p(A) ∼ Aν−1/2 exp

{

− A2

σ2
N

− A

(

µ

σS
− 2R

σ2
N

)}

. (31)

Note that the approximation of the Bessel function has intro-
duced a negative exponent for ν > 0.5.

102

101

100

0 1 2 3 4 5 6

X

f(
x)

Bessel function

Approximation

Figure 11: Modified Bessel function of zeroth-order f (x) = I0(x)
and approximation (30), f (x) = (1/

√
2πx)ex.

Instead of differentiating p(R|A)p(A), the maximization
can be performed better after applying the natural logarithm,
because the product of the polynomial and exponential con-
verts into a sum:

d log
[

p(R|A)p(A)
]

dA
=
(

ν− 1

2

)

1

A
− 2A

σ2
N

− µ

σS
+

2R

σ2
N

!=0. (32)

After multiplication with A, one reasonable solution Â = GR
to the quadratic equation is found, because the second solu-
tion delivers spectral amplitudes A < 0 at least for ν > 0.5.
The second derivative at Â is negative, thus a local maximum
is guaranteed:

G = u +

√

u2 +
ν− 1/2

2γ
, u = 1

2
− µ

4
√

γξ
. (33)

Whereas the MAP spectral amplitude estimator is very
useful for an estimation with an underlying Laplace model
of the DFT coefficients, it cannot be applied using a Gamma
model or the optimal parameter set. This is due to the inac-
curacy introduced by the approximation of the Bessel func-
tion (30). For ν < 0.5, the approximated a posteriori density
p(A|R) has a pole at A = 0, which will misplace the maxi-
mum found by (33).

Figure 12 shows the dependency of the weights on the
a posteriori SNR γ for two a priori SNRs ξ for the param-
eter set (ν, µ), that approximates the amplitude of a com-
plex Laplace PDF. Most of the time, the weights of the super-
Gaussian estimator are smaller than those of the Ephraim-
Malah algorithm due to the larger value of p(A) at low am-
plitudes compared to the Rayleigh PDF. At high a posteri-
ori SNRs the Ephraim-Malah weights converge towards the
Wiener weights, that is, ξ/(1 + ξ). The weights of the super-
Gaussian MAP estimator however increase due to the slower
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Figure 12: Weights of the super-Gaussian MAP estimator with
Laplace amplitude approximation (ν = 1, µ = 2.5) compared to
the Ephraim-Malah weighting rule depending on the a posteriori
SNR γ for two a priori SNRs ξ = −5 dB and ξ = 5 dB.

decay of the model function towards larger values. Higher
observed spectral amplitudes R will result in a higher spec-
tral output compared to the Wiener filter or Ephraim-Malah
estimator. This effect is due to the underlying more accu-
rate statistical model of the spectral amplitude of speech, in
which high amplitudes are considered more likely than in the
Rayleigh model. Consequently, high observed noisy ampli-
tude will be judged to contain more speech components by
the super-Gaussian MAP estimator.

4.2. Joint MAP amplitude and phase estimator

To overcome the inability of the proposed MAP estimator
with approximation of the Bessel function to cope with an
underlying Gamma model or the model that minimizes the
Kullback divergence towards the measured data, we intro-
duce a joint MAP estimator of the amplitude and phase.
Instead of maximizing the a posteriori probability p(A|R),
we now jointly maximize the probability of amplitude and
phase conditioned on the observed complex coefficient, that
is, p(A,α|Y):

Â = arg max
A

p(A,α|Y) = arg max
A

p(Y |A,α)p(A,α)

p(Y)
,

α̂ = arg max
α

p(A,α|Y) = arg max
α

p(Y |A,α)p(A,α)

p(Y)
.

(34)

If the problem is formulated this way, the Bessel function and
its erroneous approximation are avoided. p(Y |A,α) is given
by (11) using the Gaussian assumption of noise. Up to now
we have only dealt with the probability of the speech ampli-
tude, that is, p(A), while the joint PDF of the amplitude and

phase p(A,α) is now required. For a rotational invariant PDF,

p(A,α) = 1

2π
p(A). (35)

Formulas (34) can be solved similar to the MAP estimator.
Again, the natural logarithm greatly facilitates the optimiza-
tion process. After insertion of (11) and (21) we get

log
(

p(Y |A,α)p(A,α)
)

= log

(

µν+1

2π2σ2
Nσ

ν+1
S Γ(ν + 1)

)

−
∣

∣Y−Ae jα
∣

∣

2

σ2
N

+ν logA−µ A
σS
.

(36)

The partial derivatives of log(p(Y |A,α)p(A,α)) with respect
to the phase α and amplitude A need to be zero. Differentiat-
ing with respect to α yields

δ

δα
log
(

p(Y |A,α)p(A,α)
)

=−
(

Y∗−Ae− jα
)(

− jAe jα
)

+
(

Y−Ae jα
)(

jAe− jα
)

σ2
N

.

(37)

Setting to zero and substituting Y = Re jϑ yields

α̂ = ϑ. (38)

The candidate for the joint MAP phase estimate is simply the
noisy phase. Differentiating with respect to the speech am-
plitude gives

δ

δA
log
(

p(Y |A,α)p(A,α)
)

=
(

Y∗ − Ae− jα
)

e jα +
(

Y − Ae jα
)

e− jα

σ2
N

+
ν

A
− µ

σS
.

(39)

Setting to zero and replacing α = ϑ, the following quadratic
equation is obtained:

A2 + A

(

µσ2
N

2σS
− R

)

− ν

2
σ2
N

!= 0. (40)

Solving the equation leads to an estimation rule similar to
that of the super-Gaussian MAP estimator:

G = u +

√

u2 +
ν

2γ
, u = 1

2
− µ

4
√

γξ
. (41)

Again, checking the second derivatives guarantees that the
extremum found by (41) is a local maximum. Figures 13
and 14 plot the weights of the joint MAP estimator in de-
pendence on the a posteriori SNR for two different a priori
SNRs and different set of parameters (ν, µ), that is, Laplace
and Gamma amplitude approximations as well as Kullback
divergence matching.
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Figure 13: Weights of the joint MAP estimator as a function of the a
posteriori SNR γ with different parameter sets, that is, Laplace and
Gamma amplitude approximations as well as Kullback divergence
matching, compared to the MAP estimator with Laplace approxi-
mation model for ξ = −5 dB.

For comparison the weights of the MAP estimator with
Laplace amplitude approximation are also plotted. The
weights of the joint MAP estimator with Laplace approxi-
mation model are always higher than that of the MAP am-
plitude estimator. Using the Gamma amplitude approxima-
tion or the Kullback fit, the weighting rule delivers signif-
icantly lower values at low observed SNRs. Moreover, the
weights rise faster towards higher a posteriori SNRs com-
pared to the Laplace estimation. This behavior is directly due
to the different underlying statistical models of the speech
amplitude by using different parameters (ν, µ) in (21). Low
observed a posteriori SNRs compared to the ratio of vari-
ances in the form of the a priori SNR will highlight the ef-
fect of the statistical model at low values of A, while the be-
havior at high a posteriori SNRs will be influenced by the
values of the PDF towards high speech spectral amplitudes.
Since the Gamma amplitude approximation model assumes
the highest values of the speech spectral amplitude PDF at
low amplitudes and also shows the slowest decay towards
high amplitude, its resulting weight rule deviates most from
the Ephraim-Malah rule both at low and high a posteriori
SNRs.

Comparison of computational burden

Table 2 lists the computational burden of the proposed esti-
mators compared to other existing rules in the form of basic
operations, and the evaluation of functions. A differentiation
has been made between common functions like square root
or exponential function, which are in digital signal proces-
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Figure 14: Weights of the joint MAP estimator as a function of the a
posteriori SNR γ with different parameter sets, that is, Laplace and
Gamma amplitude approximations as well as Kullback divergence
matching, compared to the MAP estimator with Laplace approxi-
mation model for ξ = 5 dB.

sors OFTEN realized by dedicated memory tables and other
more exotic functions, which are hardly considered for real-
time implementations.

Among the estimators that apply a Gaussian model of
speech and noise, the Wiener filter requires by far the fewest
computations. The Ephraim-Malah spectral amplitude esti-
mator needs to evaluate a square root, an exponential func-
tion, and also two Bessel functions. The MAP estimators de-
rived by Wolfe can be realized at significantly less computa-
tions.

Considering the spectral estimators with super-Gaussian
speech model, Martin’s Laplace-Gauss estimator requires
some divisions and a special function to be evaluated four
times, especially because the estimation rule has to be exe-
cuted independently for both real and imaginary parts. The
proposed super-Gaussian estimators consume one square
root operation more than the efficient Wolfe estimator.
In a real-time implementation, the special functions for
the Ephraim-Malah or Martin estimator will be realized as
lookup tables. Such a table can be spared when using the pro-
posed estimators.

5. EXPERIMENTAL RESULTS

While in informal listening tests, the super-Gaussian estima-
tors seem to deliver a higher noise reduction at a similar
speech quality compared to the Ephraim-Malah estimator,
we also evaluate the performance by instrumental measure-
ments.
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Table 2: Computations required for different estimation rules (for each frequency bin).

Estimation rule Add Multiply Divide Function Special functions

Wiener rule 1 — 1 — —

Ephraim-Malah MMSE 3 8 2 Sqrt. (1x), exp (1x) Bessel-fct. (2x)

Martin Laplace-Gauss 10 4 7 Sqrt. (2x) Scaled compl. error-fct. (4x)

Wolfe MAP 4 3 2 Sqrt. (1x) —

Super-Gaussian MAP 3–4 3 2 Sqrt. (2x) —

Speech quality

s(l)
Fixed
filter

s̃(l)

Filter coefficients

y(l)
Noise

reduction

ŝ(l)

Filter coefficients

Noise reduction

n(l)
Fixed
filter

ñ(l)

Figure 15: Instrumental performance evaluation of the noise re-
duction system.

The Ephraim-Malah MMSE estimator was taken as a
reference, because it is considered as the best-performing
speech spectral amplitude estimator. The MAP estimator de-
rived by Wolfe results in approximately the same spectral
weight, which can be calculated with much less computa-
tions. A detailed discussion about the difference in spectral
weights and performance between the MAP estimators and
the Ephraim-Malah rule can be found in [8]. The behav-
ior of the proposed super-Gaussian MAP estimators with
respect to the Ephraim-Malah reference is similar to the
performance gain obtained by Martin’s complex spectrum
estimators [5, 6] with Laplace and Gamma speech model
with respect to the Wiener reference. Some additional per-
formance gain can be expected when the parameters of the
super-Gaussian model function are optimally adjusted to the
real distribution. Also , the resulting estimation rule is much
more simple for the proposed super-Gaussian spectral am-
plitude estimators. Compared to approaches that model the
DFT coefficient vector with Gaussian mixture models [27],
the proposed estimators require less training in advance.

The noise reduction filter was applied to a speech signal
with additive noise at different SNRs. To measure the qual-
ity of the filter, the system described in [28, 29] depicted in
Figure 15 was applied to judge the performance of a noise
reduction algorithm. The desired signal s and the interfer-
ing undesired signal n are superposed with a given SNR. The
noisy signal y(l) is processed with the noise reduction al-
gorithm. Afterwards the desired and the interfering signal
are separately processed with the resulting filter coefficients.

Hence, the system enables separate tracking of speech quality
and noise reduction amount by comparing outputs to inputs
of the fixed filters. Using the master-slave system depicted in
Figure 15 the speech quality is tracked using the segmental
signal-to-noise ratio, that is,

segmental speech SNR/dB

= 1

P

P
∑

p=1





10·log10







∑I
i=1 s

2(i+pI)
∑I

i=1

(

s(i+pI)−s̃(i + pI)
)2











.
(42)

Here M is the length of the signal, I denotes the length of the
segment and P the number of segments, such that P · I =M.
On the other hand, the noise reduction amount is measured
in terms of segmental noise power attenuation as

segmental noise reduction/dB

= 1

P

P
∑

p=1





10 · log10







∑I
i=1 n

2(i + pI)
∑I

i=1 ñ2(i + pI)











.
(43)

To highlight the noise reduction during speech we only take
segments p with global speech activity into account. The
global activity is detected in advance by applying a VAD on
the clean speech signal. The parameters (ν, µ) determine
the underlying statistical model of the speech amplitude.
For the super-Gaussian MAP estimator we favor (ν = 1,
µ = 2.5), which approximate the amplitude of a complex
RV with independent Laplace components. If the parame-
ters are adjusted for Gamma-distributed components or in
order to minimize the Kullback divergence, the enhanced sig-
nal is greatly disturbed. This is due to the approximation of
the Bessel function, which generates an uncompensated pole
at A = 0 for ν < 0.5. In general, the proposed super-Gaussian
MAP estimator cannot be applied for ν < 0.5.

The super-Gaussian joint MAP estimator however can be
applied to every reasonable set of parameters (ν, µ). Here,
we favor the parameters that were determined by minimizing
the Kullback divergence towards the measured data, that is,
(ν = 0.126, µ = 1.74).

The amount of noise reduction using (33) with (ν = 1,
µ = 2.5) or (41) with (ν = 0.126, µ = 1.74) is signifi-
cantly higher than that for the Ephraim-Malah algorithm.
The more super-Gaussian the statistical model for the speech
spectral amplitude, the higher the noise reduction. Conse-
quently, a lower speech quality will be reached. Comparing
speech quality and noise reduction of the super-Gaussian
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Figure 16: Speech quality and noise reduction amount of statistical
filter with Ephraim-Malah estimator (solid), super-Gaussian MAP
estimator (dashed), and super-Gaussian joint MAP estimator (dot-
ted) for speech corrupted with white noise.

estimators to the Ephraim-Malah estimator would thus be
of limited value. For comparability the weights of the super-
Gaussian estimators are scaled by a constant factor greater
than one so that approximately the same speech quality is
reached for all estimators. The amount of noise reduction
achieved then allows a comparison between the estimators.
In all versions we include the soft weight given by Ephraim
and Malah [3] with tracking speech absence probabilities
[30].

In the following, different experiments are documented.
First, the system is applied to the speech disturbed by white
noise at different SNRs and the performance when using the
Ephraim-Malah estimator, the super-Gaussian MAP estima-
tor with Laplace amplitude approximation, and the super-
Gaussian joint MAP estimator with optimal parameters is
compared. The experiment is then extended to reverberant
speech with additive white noise. Thirdly, the experiments
are conducted with fan noise and finally, the performance
of the estimators is compared with the speech disturbed by
cafeteria noise.

5.1. Performance in white noise

The results for white noise and the three different estima-
tors, that is, Ephraim-Malah, MAP with (ν = 1, µ = 2.5),
and joint MAP with (ν = 0.126, µ = 1.74) are shown in
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Figure 17: Speech quality and noise reduction amount of statistical
filter with Ephraim-Malah estimator (solid), super-Gaussian MAP
estimator (dashed), and super-Gaussian joint MAP estimator (dot-
ted) for reverberant speech corrupted with white noise.

Figure 16. The super-Gaussian MAP estimator achieves a sig-
nificantly higher noise attenuation than the Ephraim-Malah
estimator. By applying the super-Gaussian joint MAP esti-
mator with parameters optimally adjusted to the measured
data, the noise reduction amount can be increased further
without decreasing the speech quality.

Generally, the single-microphone noise reduction system
is comparably robust against reverberation. However, rever-
beration will degrade its performance, especially because it
is harder for the noise estimation algorithm to differentiate
between noise and weak reverberating parts of the speech.
While this will degrade the performance of all estimators,
the proposed super-Gaussian estimators are also affected by
the change of distribution of the speech DFT coefficients as
shown in Figure 9. To examine the performance of the pro-
posed estimators, the acoustic scenario depicted in Figure 8
was simulated using the image method. The clean speech
was filtered with the impulse response delivered by the image
method and was processed by the noise reduction algorithm
after adding white noise at different SNRs.

Figure 17 plots the performance in terms of instrumen-
tal speech quality and noise reduction. The reverberation
hardly affects the performance gain provided by the super-
Gaussian estimators. Still a significant advantage compared
to the Ephraim-Malah estimator can be expected. Also, the
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Figure 18: Speech quality and noise reduction amount of statistical
filter with Ephraim-Malah estimator (solid), super-Gaussian MAP
estimator (dashed), and super-Gaussian joint MAP estimator (dot-
ted) for speech corrupted with fan noise.

joint MAP estimator with optimal parameters for anechoic
conditions outperforms the MAP estimator with Laplace ap-
proximation. This is because the anechoic approximation is
still closer to the real PDF than the Laplace amplitude ap-
proximation as depicted in Figure 9.

5.2. Performance in realistic noise

Figure 18 plots the performance of the estimators for speech
with fan noise and Figure 19 shows the performance for
speech disturbed by cafeteria noise.

The noise reduction amount is lower for white noise, be-
cause the nonstationary cafeteria and fan noise are harder to
track by the noise estimation algorithm.

The proposed super-Gaussian estimators still outper-
form the Ephraim-Malah algorithm although the perfor-
mance gain is lower for the white noise. Again, the joint MAP
estimator with optimal parameters performs best.

6. CONCLUSION

We have derived a computationally efficient MAP estimator
for the speech spectral amplitude and a joint MAP estima-
tor for the speech spectral amplitude and phase. Both es-
timators apply a Gaussian model for the noise coefficients,
and a super-Gaussian model for the speech DFT coefficients.
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Figure 19: Speech quality and noise reduction amount of statistical
filter with Ephraim-Malah estimator (solid), super-Gaussian MAP
estimator (dashed), and super-Gaussian joint MAP estimator (dot-
ted) for speech corrupted with cafeteria noise.

The underlying super-Gaussian model can be adjusted to the
demands of the specific noise reduction system. While the
MAP estimator allows an estimation with respect to a Laplace
amplitude model for the speech DFT magnitude, the joint
MAP estimator also allows an optimal adjustment of the un-
derlying statistical model to the real PDF of the speech spec-
tral amplitude for a specific noise reduction system.

The proposed super-Gaussian spectral amplitude estima-
tors significantly improve the quality of the enhanced signal.
The performance gain comes for free, it is obtained by ap-
plying a more accurate statistical model. Also, the weight-
ing rules do not require the use of tables for special com-
plicated functions compared to the state-of-the art speech
spectral amplitude estimator derived by Ephraim-Malah or
the super-Gaussian speech spectral estimators derived by
Martin.

REFERENCES

[1] S. F. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 27, no. 2, pp. 113–120, 1979.

[2] R. Martin, “Noise power spectral density estimation based
on optimal smoothing and minimum statistics,” IEEE Trans.
Speech Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.



1126 EURASIP Journal on Applied Signal Processing

[3] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error short-time spectral amplitude esti-
mator,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 32, no. 6, pp. 1109–1121, 1984.

[4] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error log-spectral amplitude estimator,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 33,
no. 2, pp. 443–445, 1985.

[5] R. Martin, “Speech enhancement using MMSE short time
spectral estimation with gamma distributed speech priors,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP ’02), vol. 1, pp. 253–256, Orlando, Fla, USA, May
2002.

[6] R. Martin and C. Breithaupt, “Speech enhancement in the
DFT domain using Laplacian speech priors,” in Proc. Interna-
tional Workshop on Acoustic Echo and Noise Control (IWAENC
’03), pp. 87–90, Kyoto, Japan, September 2003.

[7] P. Vary, “Noise suppression by spectral magnitude estima-
tion—mechanisms and theoretical limits,” Signal Processing,
vol. 8, no. 4, pp. 387–400, 1985.

[8] P. J. Wolfe and S. J. Godsill, “Efficient alternatives to the
Ephraim and Malah suppression rule for audio signal en-
hancement,” EURASIP Journal on Applied Signal Processing,
vol. 2003, no. 10, pp. 1043–1051, 2003, special issue: Digital

Audio for Multimedia Communications.
[9] T. Lotter, Single and multimicrophone speech enhancement

for hearing aids, Ph.D. thesis, Aachen University (RWTH),
Aachen, Germany, 2004.

[10] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based
voice activity detection,” IEEE Signal Processing Lett., vol. 6,
no. 1, pp. 1–3, 1999.

[11] I. Cohen and B. Berdugo, “Speech enhancement for non-
stationary noise environments,” Signal Processing, vol. 81, no.
11, pp. 2403–2418, 2001, Elsevier.

[12] O. Cappe, “Elimination of the musical noise phenomenon
with the Ephraim and Malah noise suppressor,” IEEE Trans.
Speech Audio Processing, vol. 2, no. 2, pp. 345–349, 1994.

[13] P. Scalart and J. V. Filho, “Speech enhancement based on a pri-
ori signal to noise estimation,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing (ICASSP ’96), vol. 2, pp. 629–
632, Atlanta, Ga, USA, May 1996.

[14] D. R. Brillinger, Time Series: Data Analysis and Theory,
McGraw-Hill, New York, NY, USA, 1981.

[15] R. J. McAulay and M. L. Malpass, “Speech enhancement using
a soft-decision noise suppression filter,” IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. 28, no. 2, pp. 137–145, 1980.

[16] H. Brehm and W. Stammler, “Description and generation of
spherically invariant speech-model signals,” Signal Processing,
vol. 12, no. 2, pp. 119–141, 1987, Elsevier.

[17] T. Lotter and P. Vary, “Noise reduction by maximum a poste-
riori spectral amplitude estimation with supergaussian speech
modeling,” in Proc. International Workshop on Acoustic Echo
and Noise Control (IWAENC ’03), pp. 83–86, Kyoto, Japan,
September 2003.

[18] D. L. Wang and J. S. Lim, “The unimportance of phase in
speech enhancement,” IEEE Trans. Acoustics, Speech, and Sig-
nal Processing, vol. 30, no. 4, pp. 679–681, 1982.

[19] A. Papoulis, Probability, Random Variables and Stochastic Pro-
cesses, McGraw-Hill, New York, NY, USA, 1991.

[20] N. D. Wallace, “Computer generation of gamma random vari-
ates with non-integral shape parameters,” Communications of
the ACM, vol. 17, no. 12, pp. 691–695, 1974.

[21] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, Academic Press, San Diego, Calif, USA, 1994.

[22] S. Kullback, Information Theory and Statistics, Dover Publi-
cation, New York, NY, USA, 1968.

[23] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” Journal Acoustical Society
of America, vol. 65, no. 4, pp. 943–950, 1979.

[24] J. L. Melsa and D. L. Cohn, Decision and Estimation Theory,
McGraw-Hill, New York, NY, USA, 1978.

[25] C. You, S. Koo, and S. Rahardja, “Adaptive β-order
MMSE estimation for speech enhancement,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing (ICASSP ’03),
vol. 1, pp. 900–903, Hong Kong, China, April 2003.

[26] P. J. Wolfe and S. J. Godsill, “Simple alternatives to the
Ephraim and Malah suppression rule for speech enhance-
ment,” in Proc. 11th IEEE Signal Processing Workshop on Statis-
tical Signal Processing, pp. 496–499, Singapore, August 2001.

[27] D. Burshtein and S. Gannot, “Speech enhancement using a
mixture-maximum model,” IEEE Trans. Speech Audio Pro-
cessing, vol. 10, no. 6, pp. 341–351, 2002.

[28] S. Gustafsson, R. Martin, and P. Vary, “On the optimiza-
tion of speech enhancement systems using instrumental mea-
sures,” in Proc. Workshop on Quality Assessment in Speech, Au-
dio, and Image Communication, pp. 36–40, Darmstadt, Ger-
many, March 1996.

[29] K. U. Simmer, J. Bitzer, and C. Marro, “Post-filtering tech-
niques,” in Microphone Arrays, M. Brandstein and D. Ward,
Eds., pp. 39–60, Springer-Verlag, New York, NY, USA, 2001.

[30] D. Malah, R. V. Cox, and A. J. Accardi, “Tracking
speech-presence uncertainty to improve speech enhance-
ment in non-stationary noise environments,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing (ICASSP ’99),
vol. 2, pp. 789–792, Phoenix, Ariz, USA, March 1999.

Thomas Lotter received the Dipl.-Ing. de-
gree in electrical engineering in 2000
from the Aachen University of Technology,
RWTH Aachen. He received the Ph.D. de-
gree from the RWTH Aachen in 2004 af-
ter working at the Institute of Communi-
cation Systems and Data Processing in the
area of single- and multimicrophone speech
enhancement. In 2004, he joined Siemens
Audiological Engineering Group, Erlangen,
Germany with focus on wireless hearing aid applications. His main
research interests include speech enhancement, signal processing
for wireless systems, wireless standards, and audio coding.

Peter Vary received the Dipl.-Ing. degree
in electrical engineering in 1972 from the
University of Darmstadt, Darmstadt, Ger-
many. In 1978, he received the Ph.D. degree
from the University of Erlangen-Nurem-
berg, Germany. In 1980, he joined Philips
Communication Industries (PKI), Nurem-
berg, where he became Head of the Digi-
tal Signal Processing Group. Since 1988, he
has been a Professor at Aachen University of
Technology, Aachen, Germany, and Head of the Institute of Com-
munication Systems and Data Processing. His main research inter-
ests are in speech coding, channel coding, error concealment, adap-
tive filtering for acoustic echo cancellation and noise reduction, and
concepts of mobile radio transmission.


	1. INTRODUCTION
	2. OVERVIEW
	3. STATISTICAL MODEL
	3.1. Modelling the spectral amplitudes
	3.1.1. Matching with experimental data
	3.1.2. Reverberant signal
	3.1.3. Spectral amplitude of noise


	4. SPEECH ESTIMATORS
	4.1. MAP spectral amplitude estimator
	4.2. Joint MAP amplitude and phase estimator
	Comparison of computational burden


	5. EXPERIMENTAL RESULTS
	5.1. Performance in white noise
	5.2. Performance in realistic noise

	6. CONCLUSION
	REFERENCES

