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Speech Enhancement Using a
Mixture-Maximum Model

David Burshtein, Senior Member, IEEE,and Sharon Gannot, Member, IEEE

Abstract—We present a spectral domain, speech enhancement
algorithm. The new algorithm is based on a mixture model for
the short time spectrum of the clean speech signal, and on a max-
imum assumption in the production of the noisy speech spectrum.
In the past this model was used in the context of noise robust speech
recognition. In this paper we show that this model is also effec-
tive for improving the quality of speech signals corrupted by ad-
ditive noise. The computational requirements of the algorithm can
be significantly reduced, essentially without paying performance
penalties, by incorporating a dual codebook scheme with tied vari-
ances. Experiments, using recorded speech signals and actual noise
sources, show that in spite of its low computational requirements,
the algorithm shows improved performance compared to alterna-
tive speech enhancement algorithms.

Index Terms—Gaussian mixture model, MIXMAX model,
speech enhancement.

I. INTRODUCTION

SPEECH quality and intelligibility might significantly
deteriorate in the presence of background noise, especially

when the speech signal is subject to subsequent processing,
such as speech coding or automatic speech recognition. Con-
sequently, modern communications systems, such as cellular
phones, employ some speech enhancement procedure at the
preprocessing stage, prior to further processing (e.g., speech
coding). Speech enhancement algorithms have therefore at-
tracted a great deal of interest in the past two decades [1]–[14].

Speech enhancement algorithms may be broadly classified
as belonging to one of the following two categories. The first
is the class of time domain, parametric, model-based methods
[6]–[12]. The second class of speech enhancement algorithms is
the class of spectral domain algorithms. A subset of this class is
the popular spectral subtraction-based algorithms, e.g., [1], [14].
Other spectral domain algorithms include the short time spec-
tral amplitude (STSA) estimator and the log spectral amplitude
estimator (LSAE), both proposed by Ephraim and Malah [2],
[3], and the hidden Markov model (HMM)-based filtering algo-
rithms proposed by Ephraimet al. [4], [5]. In general, the com-
putational requirements of the spectral domain algorithms are
lower than the computational requirements of the time domain
algorithms. This property makes spectral domain algorithms at-
tractive candidates, especially for low-cost and/or low-power
(e.g., battery operated) applications, such as cellular telephony.
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The purpose of the paper is to present a spectral domain
algorithm, which produces high-quality enhanced speech on
the one hand, and has low computational requirements on the
other hand. The algorithm is similar to the HMM-based, min-
imum mean square error (MMSE) filtering algorithm proposed
by Ephraimet al. [4], [5], in the sense that it also utilizes a
Gaussian mixture to model the speech signal. However, while
the previous set of algorithms utilize a mixture of auto-re-
gressive models in the time domain, our algorithm models the
log-spectrum by a mixture of diagonal covariance Gaussians.
In this paper, we follow the MIXMAX approximation, which
was originally suggested by Nádaset al. [15] in the context of
speech recognition, and propose a new speech enhancement
algorithm. For this purpose, various modifications, adaptations
and improvements were made in the algorithm proposed in
[15] in order to make it a high-quality, low-complexity speech
enhancement algorithm. In [15], the MIXMAX model is used
to design a noise adaptive, discrete density, HMM-based,
speech recognition algorithm. In [16], we used the MIXMAX
model to design various noise adaptive, continuous density,
HMM-based speech recognition systems. In this paper, our
approach is more similar to the adaptation algorithm presented
in [16], when the feature vector comprises all the elements of
the DFT of the frame (instead of the MEL spectrum used in
[16]). We also discuss the computational complexity of the
new speech enhancement algorithm and show how it can be
reduced, essentially with no performance penalties. Our study
is supported by extensive speech enhancement experiments
using speech signals and various actual noise sources.

The organization of the paper is as follows. In Section II, we
review the MIXMAX model that was originally suggested by
Nádaset al. [15]. In Section III, we apply the MIXMAX model
to the speech enhancement problem. In Section IV, we compare
the MIXMAX speech enhancement algorithm to alternative en-
hancement algorithms. The comparison is supported by an ex-
perimental study. In Section V, we discuss the computational
complexity of the algorithm and show how it can be reduced.
Section VI concludes the paper.

II. MIXMAX M ODEL

Let be the samples of some speech
signal segment (frame), possibly weighted by some window
function, and let denote the corresponding short
time Fourier transform

(1)
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Fig. 1. Front-end signal processing.

Let denote the dimensional, log-spectral vector with
th component, , defined by

where ( may be
obtained using symmetry, i.e., ). The relations be-
tween , , and are shown in
Fig. 1. The most common modeling approach of the log spec-
tral vector, , is realized by an HMM with a state dependent
mixture of diagonal covariance Gaussians. In this paper, a single
state model is used. The corresponding probability density func-
tion, [for simplicity, we avoid the more accurate notation,

], is given by

(2)

where

(3)

In order to extend the Gaussian mixture model to the case
where the speech signal is contaminated by (a possibly colored)
additive noise, Nádaset al. [15] proposed the following model.
Let and denote the log-spectral vectors of the noise and
noisy speech signals, respectively, and let denote the prob-
ability density function of . We assume that the noise is statis-
tically independent of the speech signal. In addition both signals
have zero mean. For simplicity we also assume that can be
modeled by a single diagonal covariance Gaussian (the exten-
sion to a mixture of Gaussians noise density is straightforward),
i.e.,

where

(4)

Now, . Due to the statistical independence and
zero mean assumptions we thus have

Hence

The assumption in the MIXMAX model, suggested by Nádaset
al. [15], is that we can further approximate by ,
that is

where the maximum is carried out component-wise over the el-
ements of the log-spectral vectors.

Let , denote the cumulative distribution func-
tions of and , respectively. Note that

(5)

where

is the error function. Similarly

(6)

The cumulative distribution function of given the th mix-
ture, , is obtained by invoking the statistical indepen-
dence of and as follows:

(7)

Here is the class (mixture) random variable. The density of
given the th mixture, , is obtained by differentiating

(7), [15]

The probability density of is hence given by

(8)

Nádaset al. used a probabilistic rule based on (8) to adapt a
discrete density HMM-based speech recognition system in the
presence of additive noise. In [16] the MIXMAX model is used
in order to adapt other HMM-based speech recognition sys-
tems to noise, including systems that use continuous mixture of
Gaussians and systems that utilize time derivative (delta) spec-
tral features.

III. A PPLICATION TOSPEECHENHANCEMENT

In this paper, we apply the MIXMAX model to the related
problem of speech enhancement. In order to obtain an estimate,
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, to given , we use the following minimum mean square
error (MMSE) estimator:

(9)

where , the class conditioned probability is given by

(10)

, the th component of is the expected value of
given the class and the noisy observation

(11)

where is the conditional density of given
and . Note that

where is the unit step function. Differentiating the last ex-
pression with respect to , is obtained.
Now, recalling the Gaussian assumption for , and invoking
the integration required by (11), we obtain

(12)

where

(13)

Our estimate, , is calculated using (9), (10), (12), and (13). In
[16] we used in order to design a noise robust speech recog-
nition system and compared it to alternative noise adaptation
methods using the MIXMAX approach. For our present speech
enhancement application the reconstructed speech signal,,
for the current frame is given by

Note that the reconstructed phase angle is the original phase
angle of the noisy speech, as is usually the case when using
spectral-domain enhancement methods [2].

We assume the availability of a voice activity detector (VAD).
Based on the VAD indications of voice inactivity periods, we
collect noise statistics, continuously and adaptively. Hence, we
may assume that the (time varying) probability density of the
noise, , is known. For each frame we obtain an estimateto

, based on and on the current density of the noise.
In order to apply the method a mixture model of the type

of (2) needs to be trained. Let the training data consist of
log-spectrum frames, . The objective is
to set so as to maximize the log-likelihood

The maximization may be carried out by using the expecta-
tion–maximization (EM) algorithm [17].

Let , and be defined by

(14)

is the total number of mixtures. Note that are the class-
conditioned probabilities. Let , and denote the cur-
rent values of the model parameters, and let, , and
denote the values of the model parameters after the iteration.
The EM iteration is given by

(15)

(16)

(17)

where are computed using the current values of the param-
eters, , and .

To avoid numerical problems in the calculations, it is recom-
mended to use logarithmic arithmetic [15]. Let be some
given set of real numbers. Then, to evaluate , we use
the following relation:

(18)

where . Equation (18) is then used in (8)
and (10).

To further improve the subjective quality of the reconstructed
speech, we found it useful to apply the nonlinear postprocessing
method that was suggested in the past for spectral subtraction
[1], [14]. Let . is the spectral gain
(in fact, suppression, since ) of the th channel. The
idea is to constrain to be above some frequency-dependent
threshold, . That is, the reconstructed speech is now given by
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IV. COMPARISON WITH ALTERNATIVE SPEECH

ENHANCEMENT ALGORITHMS

The MIXMAX speech enhancement algorithm is closely
related to the HMM-based minimum mean square error
(MMSE) speech enhancement algorithm that was proposed by
Ephraimet al. [4], [5]. Both the HMM MMSE and MIXMAX
algorithms use the MMSE criterion and both utilize a Gaussian
mixture model for the speech signal. In addition both need
a clean speech database in order to train a speech model.
However, while the HMM MMSE algorithm employs a mixture
of auto-regressive models in the time domain, the MIXMAX
enhancement algorithm models the log-spectrum by a mixture
of diagonal covariance Gaussians. Both types of mixture
models have been suggested for speech recognition systems.
However, the time domain auto-regressive mixture yields a
somewhat lower recognition rate, at least when the alternative
spectral Gaussian mixture model is applied to the cepstrum
representation [18]. The later model is thus much more popular
in modern speech recognition systems. In fact when training
our clean speech model using the auto-regressive spectrum, the
quality of the enhanced speech degraded.

Since the HMM MMSE algorithm employs a mixture of auto-
regressive models in the time domain, it results in a series of
Wiener filters, such that the output signal is a mixture of the
signals produced by these filters. Our estimator is based on a
Gaussian mixture in the log-spectral domain. In this case the
MMSE criterion results in a much more complicated solution.
The MIXMAX assumption significantly simplifies the resulting
MMSE estimator. As an alternative to the MIXMAX solution,
one may use the MMSE estimator proposed in [19]. This esti-
mator is based on a model for the log-spectrum, and is signifi-
cantly more complicated than our MIXMAX estimator.

We compared the MIXMAX algorithm to the HMM MMSE
algorithm using both objective and subjective listening tests.
In our implementation of the HMM MMSE algorithm a single
HMM state is used. However, in our experience this model is as
effective as a multistate HMM, provided that sufficiently many
mixtures are used. This is due to the fact that the information
provided by temporal acoustic transitions is marginal compared
to the spectral information. Consequently, it is sufficient to use a
mixture of Gaussians model which assumes independence from
one frame to the other. This simplifying assumption is also used
by state-of-the-art speaker recognition systems [20]. In fact it
is also straight-forward to extend our MIXMAX algorithm to
a multistate HMM. In order to compare MIXMAX and HMM
MMSE on equal terms, both were implemented using a single
state HMM and with varying number of mixtures.

It has been noted in the past [13] that the performance of
the simple nonlinear spectral subtraction algorithm proposed by
Boll [1] is inferior to the HMM MMSE algorithm. Therefore
we do not provide a detailed comparison with Boll’s algorithm.
For comparison with time-domain algorithms, we used the pre-
viously proposed KEM algorithm [6]. Essentially, this algo-
rithm iterates between LPC parameters estimation and Kalman
filtering.

To test the performance of the various algorithms we used
50 sentences from the TIMIT database (25 females, 25 males).

All sentences were initially down-sampled from 16 KHz to
8 KHz. In order to apply the HMM MMSE and MIXMAX
algorithms, it is first necessary to obtain a clean speech model.
This was realized by using a set of additional 30 TIMIT
sentences (15 females, 15 males). The performance of both
algorithms essentially did not change when using a larger
database with 50 sentences to train the clean speech model.

The postprocessing modification that was outlined in
Section III was applied both for the HMM MMSE and
MIXMAX algorithms using

if

if .
(19)

In our implementation the frame length is , which cor-
responds to . Hence is higher for frequencies lower
than 1125 Hz ( ). As a result, the subjective quality of
both algorithms improved significantly. Lower threshold values
improved the objective criteria, and in particular the amount of
noise reduction, but reduced the subjective quality.

In both algorithms frame overlapping of 50% was used,
such that after synthesizing the reconstructed speech, we keep
only the output samples that correspond to the center of
the frame. The sentences were corrupted by additive noise,
using various types of noise signals, including a synthetic
white Gaussian noise source, and some noise signals from
the NOISEX-92 database [21] resampled to 8 KHz. These
include car noise, speech-like noise (synthetic noise with
speech-like spectrum), operation room noise and a factory floor
noise. The amplitude of the factory noise fluctuates in time
periodically, with a period of about 0.5 s. The characteristics
of the factory noise signal, as well as the other noise signals
from the NOISEX-92 database used throughout this paper, are
shown in Fig. 2.

Various SNRs were used in the experiments. We assumed the
existence of a reliable VAD. Later we note on this assumption.
Hence, prior to speech enhancement we estimated the noise
parameters using some independent segment from the noise
source. The duration of this segment was set to 250 ms. When
using the MIXMAX algorithm, the noise parameters,
and are estimated using the standard empirical mean and
variance equations. When using the HMM MMSE algorithm,
we employed the Blackman–Tukey method for spectrum
estimation.

Our objective set of criteria comprises total output SNR, seg-
mental SNR and Itakura–Saito distance measure. These distor-
tion measures are known to be correlated with the subjective
perception of speech quality [22].

The total output SNR is defined by

SNR (20)

where and are the reference (e.g., clean) and test (e.g.,
enhanced) speech signals, and where the time summations are
over the entire duration of the signals. Prior to the application of
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Fig. 2. Sonograms of the car, speech-like, operation room, and factory noise signals.

(20), and are scaled to have unit energy over the entire
sentence.

Segmental SNR is usually defined by the mean value of the
individual SNR measurements [using (20)] over the frames of
the sentence. Segmental SNR is known to be more strongly cor-
related with subjective quality, and is similar in that sense to the
performance of the Itakura–Saito distance measure [22]. How-
ever, total output SNR is more robust to the presence of low en-
ergy regions (frames), or to frames for which the energy of

is small. To increase the robustness of the segmental SNR
measure and to eliminate outliers (which are due to the reasons
outlined above) we used the median value of the individual SNR
measurements instead of using their mean. Likewise, we have
modified the standard definition of the Itakura–Saito distance
measure by replacing the mean value with median averaging.

Figs. 3 and 4 show the total SNR, segmental SNR and
Itakura–Saito (IS) distance measure of the HMM MMSE,
MIXMAX, and KEM algorithms, for the case where 20
Gaussian mixtures are used, for a factory noise source and
white Gaussian noise, respectively. All three distance measures
consistently show an advantage to the MIXMAX algorithm.
Similar trend was observed for other noise sources from the

NOISEX-92 database [21], including car noise, operation
room noise and the speech-like noise. In Figs. 3 and 4, we
provide results for the case where postprocessing [(19)] was
applied at the output of both the HMM MMSE and MIXMAX
algorithms. When postprocessing is not applied the objective
criteria tend to improve for both algorithms. However the
improvement is usually more significant for the MIXMAX
algorithm such that the gap between these algorithms slightly
increases. For example, for a factory noise signal and input
SNR of 12.5 dB, the output SNR of HMM MMSE is 14.5 dB
(same as with postprocessing). The output SNR of MIXMAX
is 16.1 dB (15.8 dB when postprocessing is used). When the
input SNR is 0.5 dB, the output SNR of HMM MMSE is 5.7 dB
(2.4 dB when postprocessing is used), while the output SNR of
MIXMAX is 6 dB (2.7 dB when postprocessing is used).

In Fig. 5, we present the sound sonograms of the clean,
noisy, HMM MMSE enhanced and MIXMAX enhanced
speech, when using an operation room noise source at an SNR
level of 9 dB. The reconstructed speech produced by both
algorithms is characterized by an almost equal noise reduction.
However, the MIXMAX output is less distorted compared
to the HMM MMSE output. These results were verified by
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Fig. 3. Comparison between MIXMAX, HMM MMSE, and KEM algorithms (factory noise, 20 mixtures).

informal listening tests using several listeners. Although the
noise reduction of MIXMAX and HMM MMSE is about the
same, the quality of the enhanced MIXMAX signal is superior
to that of HMM MMSE over the entire SNR range examined.
In particular, it seems that at low SNRs the MIXMAX output
respects the unvoiced part. The distortion of the speech pro-
duced by the KEM algorithm is low, but its noise reduction is
inferior. Speech samples can be found in [23].

So far we assumed an ideal VAD. In order to test the signif-
icance of this assumption we repeated the experiments with a
simple energy based VAD. While tested with the factory noise
source, the application of the VAD did not impose any signifi-
cant degradation in performance, both in objective and subjec-
tive measures. Note, that while in high SNR levels the simple
VAD performance is very good, it might collapse in the low
SNR region. However, we found that in this SNR range, any
corrupted speech segment might be used by the enhancement
algorithm, since the noisy signal is dominated by the noise.

To assess the sensitivity of the various algorithms to channel
mismatch, we repeated the experiments for the factory noise
summarized in Fig. 3 with the NTIMIT database, which is the
same database as TIMIT except that a telephone channel is used
(training was performed with the standard TIMIT database).

The results of this experiment were essentially the same as those
provided in Fig. 3. This shows that in spite of the fact that non
of these algorithms considers the effect of the channel, they all
seem to be insensitive to channel mismatch.

Our algorithm needs to be trained using some clean speech
database. To assess the sensitivity of the algorithm to the lan-
guage of this database, we tested the enhancement algorithm on
Dutch sentences (both male and female) taken from theAms-
terdam Free Universitydatabase. First we used the TIMIT data-
base (English) for the training stage (thus, there was a language
mismatch between the training and the enhancement stages). In
the second experiment, we used Dutch sentences for both the
training and enhancement stages. For example, for a background
speech noise signal at input SNR of 9.8 dB, the output SNR
of the MIXMAX algorithm trained with English database and
tested on Dutch sentences was 9.2 dB (degradation) and while
trained with Dutch database the output SNR was 11.9 dB. For
input SNR of 0.8 dB the output SNR for English training was
1.2 dB and for Dutch training it increased to 2 dB. The HMM
MMSE algorithm is more sensitive to language mismatch in
terms of the objective criteria. Subjective listening shows that
although some degradation due to language mismatch probably
exists, it is certainly not significant.
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Fig. 4. Comparison between MIXMAX, HMM MMSE, and KEM algorithms (white Gaussian noise, 20 mixtures).

V. REDUCED-COMPLEXITY MIXMAX E NHANCEMENT

In this section, we discuss the complexity of the algorithm and
its memory requirements. We then suggest some improvements
and simplifications that were found useful.

The algorithm processes the data block-wise, new
samples are produced from each input block of size. The
algorithm comprises the following computational stages:
spectral analysis, class-conditioned probability calculation,
filtering, and synthesis. Under the assumption ofand
sufficiently large, the computational complexity of these stages
is as follows.

Spectral Analysis and Synthesis:In the spectral analysis
stage, we compute the log-spectrum and phase. The computa-
tional complexity is dominated by a DFT of a block ofreal
numbers. The corresponding number of real multiplications is

, the number of real additions is . In the
spectral synthesis stage, we convert the log-spectrum and phase
back to the time domain. The computational complexity is the
same as that for the spectral analysis stage.

Class Conditioned Probability Calculation:To com-
pute , the class conditioned probabilities for

we use (10), (8), (3), (4), (6), and (5). Recall

that we are using logarithmic arithmetic. By (18) we have for

(21)

where . Assuming that is realized by a
table, (21) is implemented by two additions and one table lookup
(TLU). We also assume that (6) and (5) are calculated using a
table for the function . The
total number of operations to implement this stage is dominated
by additions, multiplications and TLUs.

Filtering: To compute we use (12) and (13). To calcu-
late we use a table form of the function .
The number of operations is dominated by additions,

multiplications and TLUs. Finally, we use (9) to
construct in additions and multiplications.

The total number of operations required by the MIXMAX al-
gorithm is summarized in Table I (recall that the computational
complexity in Table I is per output sample, while previously we
listed the complexity per frame, i.e., per output sam-
ples). We note that the computational burden imposed by the
HMM MMSE is also a sum of two terms, where the first is pro-
portional to and the second is proportional to the number
of mixtures, .
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Fig. 5. Sonograms of the clean, noisy, HMM MMSE enhanced and MIXMAX enhanced speech in operation room environment at SNR level of 9 dB.

TABLE I
TOTAL NUMBER OF OPERATIONS PEROUTPUT SAMPLE

FOR THEMIXMAX A LGORITHM

The memory requirement is dominated by the cells
required to store and .

Our algorithm can be easily implemented using a low cost
DSP chip (e.g., for , and a sampling rate
of 8 kHz, Table I shows that the total number of operations
per second is less than 4 million). However, in some appli-
cations, such as cellular communications, the DSP chip is re-
sponsible for a variety of tasks including speech coding and the
receive–transmit modem. In such applications the speech en-
hancement task should consume only a small fraction of the total
computational resources. By reducing the number of operations
per second we also reduce the power consumption of the DSP,
which may be limited in some applications, such as cellular tele-
phony. In some applications, the speech enhancement should be

performed on several channels at the same time (e.g., in a com-
munication center). In this case it is also important to reduce the
number of operations as much as possible in order to reduce the
size and cost of the required hardware. Thus, we are motivated
to reduce the computational requirements of the algorithm and
make it closer to the complexity of spectral subtraction algo-
rithms. In the rest of this section, we show how this goal can be
achieved.

A. Tied Variances

In this case, the same mixture model (2) is used, except that
the variance of theth spectral component is now independent
of the mixture

That is, the variances, are tied together. The EM
iteration is now described by (15), (16), and by the following
equation that replaces (17):
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Fig. 6. Comparison between the performances of several codebook configurations in factory noise.

Tied variances enable a more compact representation, that is,
when tying is applied, only variance parameters are required
(instead of ), thus lowering memory requirements.

B. Dual Codebook Scheme

Given the speech signal samples of the current frame
(possibly weighted by some window function),

we define

where is defined by (1). Hence

and are the (logarithmic) gain and gain normalized spec-
trum of the frame, respectively. We assume separate mixture
models to and . Let denote the mixture index that corre-

sponds to , and let denote the mixture index that corresponds
to . The class conditioned density of is

is the mean value that corresponds to theth component
of the th mixture of . Similarly, is the mean value that
corresponds to theth mixture of . Note that we assume a tied
variances model. Denote by , the total number of mixtures
that correspond to . Similarly, denote by , the total number
of mixtures that correspond to. The density of is

where are the mixture components that correspond to
and respectively.

We estimate
by clustering the gain normalized spec-

trum , using a K-means algorithm. We then estimate
by clustering the gains,. is obtained

as a by-product of the K-means algorithm, by calculating the
relative frequency of gain normalized spectrum vectors, classi-
fied as belonging to theth mixture. is obtained similarly,
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by calculating the relative frequency of gains classified as
belonging to the th mixture. Finally, the variances, are
obtained using

where is the index of the mixture mean which is closest to
, i.e.,

Similarly

and are obtained as a byproduct of the K-means procedure.
In Fig. 6, we compare the performance of a standard (nontied)

mixture (one with ten mixtures and one with 40 mixtures) with
that of two dual codebook configuration. The first dual code-
book configuration has and . The second con-
figuration has and . In Fig. 6, we present
the results for factory noise. Similar trend was observed for
other noise sources from the NOISEX-92 database [21], in-
cluding car noise and speech-like noise. As can be seen, even
a very compact dual codebook configuration with and

yields only a small degradation in the objective criteria
examined. Subjective listening tests support these findings by
showing no difference in the quality of the reconstructed speech
produced by each one of these codebook configurations. Thus,
a dual codebook scheme with relatively small can be as
effective as a standard (nontied) mixture with a larger value of

(i.e., ). In this way both the computational and
memory requirements of the algorithm may be reduced.

C. Replacing Weighted Mixtures by the Most Probable
Mixture Element

In this case we construct the enhanced speech based only on
the most probable mixture. That is, (9) is now replaced by

where

This simplification saves a fraction of of the fil-
tering stage in the enhancement algorithm (approximately
additions, multiplications and TLUs per output sample),
essentially with no noticeable reduction in the performance.

VI. CONCLUSIONS

We presented a new speech enhancement algorithm which
was shown to be effective for improving the quality of the
reconstructed speech. The derivation is based on the MIXMAX
model which was originally proposed for designing noise
adaptive speech recognition algorithms. Several modifications
and simplifications were found useful. In particular, by using
a dual codebook scheme that also incorporates tied variances,
it is possible to significantly reduce the amount of model

parameters (thus minimizing the memory and computational
requirements of the algorithm), essentially without paying
performance penalties.
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