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ABSTRACT

We propose a speech enhancement algorithm that applies a
Kalman filter in the modulation domain to the output of a
conventional enhancer operating in the time-frequency do-
main. The speech model required by the Kalman filter is
obtained by performing linear predictive analysis in each fre-
quency bin of the modulation domain signal. We show, howe-
ver, that the corresponding speech synthesis filter can have a
very high gain at low frequencies and may approach instabi-
lity. To improve the stability of the synthesis filter, we propose
two alternative methods of limiting its low frequency gain.
We evaluate the performance of the speech enhancement al-
gorithm on the core TIMIT test set and demonstrate that it
gives consistent performance improvements over the baseline
enhancer.

Index Terms— speech enhancement, post-processing,
Kalman filter, robust linear prediction, modulation domain

1. INTRODUCTION

The goal of a speech enhancement algorithm is to reduce or
eliminate background noise without distorting the speech si-
gnal. Numerous speech enhancement algorithms have been
proposed in the literature; among the most popular are those
that apply a variable gain in the time-frequency domain such
as the minimum mean square (MMSE) spectral amplitude [1]
and log spectral amplitude [2] enhancers. These enhancement
algorithms give dramatic improvements in signal-to-noise ra-
tio (SNR) but at the expense of introducing spurious tonal ar-
tefacts known as musical noise and speech distortion. A num-
ber of authors have suggested removing the musical noise by
applying some form of post-processing to the to output of the
baseline enhancer or to the time-frequency gain function that
it utilizes. Smoothing the enhancer gain function is used in
[3] to attenuate musical noise in time frames with low SNR
and in [4] the gain function of each frame is first transformed
into the cepstral domain so that smoothing may be selectively
applied to the high quefrency coefficients. In [5], median fil-
tering is applied to time-frequency cells that are classified as
having a low probability of containing speech energy in order

to eliminate the isolated peaks that characterise musical noise.
Several authors have proposed speech enhancers that ap-

ply a Kalman filter (KF) to the time domain signal [6, 7, 8, 9]
and more recently, So and Paliwal have proposed applying
the KF to the short-time modulation domain instead [10]. In
this paper, we propose the use of a KF in the modulation do-
main as a post-processor for speech that has been enhanced
by an MMSE spectral amplitude algorithm [1]. The KF in-
corporates an autoregressive model for the time-evolution of
the spectral amplitude in each frequency bin; this is estima-
ted using linear predictive (LPC) analysis applied to the time-
frequency domain output of the MMSE enhancer. Because
the spectral amplitudes include a strong DC component, the
gain of the corresponding LPC synthesis filter can be very
high at low frequencies and we therefore propose two alter-
native ways of constraining the low frequency gain in order
to improve the filter stability. The remainder of the paper is
organized as following; in Section 2 we describe the KF tech-
nique for speech enhancement in the modulation domain and
after that, in Section 3 we introduce the derivation of the two
robust linear prediction models. Finally the evaluation of the
new algorithms and the conclusions are given in Section 4 and
5, respectively.

2. MODULATION DOMAIN KALMAN FILTERING

Representing the amplitude spectrum of the noisy speech si-
gnal and the clean speech as Y (n, k) and S(n, k), respecti-
vely, we assume an additive model of the noisy speech as

Y (n, k) = S(n, k) +N(n, k) (1)

where n denotes the acoustic frame and k denotes the acoustic
frequency. To perform Kalman filtering in the modulation
domain, each frequency bin is processed independently; for
clarity, we omit the frequency index, k, in the description that
follows.

We assume that the temporal envelope, S(n), of the am-
plitude spectrum of speech signal can be modeled by a linear
predictor with coefficients ai (1 ≤ i ≤ p) in each modulation
frame:
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S(n) = −
p∑

i=1

aiS(n− i) + P (n) (2)

where P (n) is a random Gaussian excitation signal with va-
riance σ2

P . The equations for Kalman filtering in the modula-
tion domain are given in detail in [10] and we give only a brief
overview here. In the modulation domain, time-domain noise
has colored characteristics [10] and hence a KF for removing
a colored noise is used [6]. Within each frequency bin, we
use autoregressive models for the speech and the noise of or-
ders p and q respectively and so the state vector in our KF has
dimension p + q. The state space representation is given by

[
S(n)
N(n)

]
=

[
A(n) 0

0 B(n)

] [
S(n− 1)
N(n− 1)

]
+

[
dp 0
0 dq

] [
P (n)
Q(n)

]
(3)

Y (n) =
[

dT
p dT

q

] [ S(n)
N(n)

]
(4)

where S(n) = [S(n) · · · S(n− p+ 1)]
T is the speech state

vector. dp = [1 0 · · · 0]T is a p-dimensional vector and the

speech transition matrix has the form A(n) =

[
−aT

I 0

]
where a = [a1 · · · ap]T is the LPC coefficient vector, and 0
denotes an all-zero column vector of length p− 1. The quan-
tities dq , N(n) and B(n) are defined similarly for the order-q
noise model. The speech signal S(n) is thus generated in the
modulation domain as the output of the LPC synthesis filter
defined as

H(z) =
1

1 +
∑p

i=1 aiz
−i (5)

with the excitation signal P (n).
To determine the speech and noise model parameters, the

time-frequency signal is segmented into overlapping modula-
tion frames. For each frequency bin, a speech model

{
a, σ2

p

}
is estimated by applying autocorrelation LPC analysis to the
modulation frame. A separate voice activity detector is ap-
plied to each frequency bin and a noise model,

{
b, σ2

q

}
, es-

timated during intervals where speech is absent. Full details
are given in [10].

3. KALMAN FILTER POST-PROCESSING

The framework for our proposed speech enhancer is shown
in Fig. 1 and differs from that in [10] in two respects which
we have found to result in enhanced speech of improved qua-
lity. First, we apply the KF not to the spectrum of the origi-
nal noisy speech signal but rather to that of the output of an

Fig. 1. Block diagram of KFMD algorithm

enhancer that implements the spectral amplitude MMSE al-
gorithm from [1]. Second, motivated by [11] and [12] we ap-
ply the KF to the cube-root of the short-time power spectrum
rather than to the amplitude spectrum. Referring to Fig. 1, a
short-time Fourier transform (STFT) is applied to the MMSE-
enhanced speech and the cube-root of the resulting power
spectrum is taken. In our baseline system, denoted KFMD
in Sec. 4, the speech and noise models are estimated using
the method of [10] and are used in the KF described in Sec. 2.
The output from the KF is converted back to the amplitude
domain, combined with the noisy phase spectrum and pas-
sed through an inverse-STFT to create the output speech. Al-
though we do not do so in our implementation, it would be
possible to eliminate the initial STFT operation by taking the
MMSE enhancer output directly in the time-frequency do-
main.

LPC is conventionally applied to a zero-mean time-
domain signal but in the modulation domain KF, it is applied
to a positive-valued sequence of transformed spectral ampli-
tudes. As we will show, when LPC analysis is applied to
a signal that includes a strong DC component, the resultant
synthesis filter can have a very high gain at low frequencies
and the filter may, as a consequence, be close to instability.
We have found that this near-instability significantly degrades
the quality of the output speech and thus in Sec. 3.2 and 3.3
we propose two alternative ways of preventing it.

3.1. Effect of DC bias on LPC analysis

In this section, we determine the effect of a strong DC com-
ponent on the results of LPC analysis. Suppose first that S(n)
has zero mean and that the LPC coefficient vector, a, for a
frame of length N is determined from the Yule-Walker equa-
tions

a = −R−1g (6)

where the elements of the autocorrelation matrix, R, are given
by Ri,j = 1

N

∑
n S(n− i)S(n− j) for 1 ≤ i, j ≤ p and the

elements of g are gi = Ri,0. The DC gain of the synthesis
filter H(z) in equation (5) is given by

G =
1

1 + wTa

where w = [1 1 · · · 1]T is a p-dimensional vector of ones.
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If now a DC component, d, is added to each S(n), the ef-
fect is to add d2 onto each Ri,j and the new LPC coefficients,
a′, are given by

a′ = −
(
R + d2wwT

)−1 (
g + d2w

)
= −

(
R−1 − d2R−1wwTR−1

1 + d2wTR−1w

)(
g + d2w

)
where the second line follows from the Matrix Inversion
Lemma [13]. Writing r = d2wTR−1w, we can obtain

wTa′ =
−wTR−1g − r

1 + r
=

wTa − r

1 + r

Thus the DC gain of the new synthesis filter is

1

1 + wTa′
=

1 + r

1 + wTa
(7)

From (7) we see that the DC gain of the synthesis filter has
been multiplied by 1+ r where r is proportional to the power
ratio of the DC and AC components of S(n). If this ratio is
large, the low frequency gain of the LPC synthesis filter can
become very high which results in near instability and poor
prediction. Accordingly, in the following sections we propose
two alternative methods of limiting the low frequency gain of
the LPC synthesis filter.

3.2. Method 1: Bandwidth Expansion

The technique of bandwidth expansion is widely used in co-
ding algorithms to reduce the peak gain and improve the sta-
bility of an LPC synthesis filter [14]. If a modified set of LPC
coefficient is defined by ai = αiai, for some constant α < 1,
then the poles of the synthesis filter are all multiplied by α.
This moves the poles away from the unit circle thereby redu-
cing the gain of the corresponding frequency domain peaks
and improving the stability of the filter. In Sec. 4 we evaluate
the effect of using this revised set of LPC coefficients, ā, in
the KF of Fig. 1 (denoted the “BKFMD” algorithm) and find
that it results in a consistent improvement in performance.

3.3. Method 2: Constrained DC gain

Although the bandwidth expansion approach is effective in li-
miting the low frequency gain of the synthesis filter, it also
modifies the filter response at higher frequencies thereby des-
troying its optimality. An alternative approach is to constrain
the DC gain of the synthesis filter to a predetermined value
and determine the optimum LPC coefficients subject to this
constraint. As noted in Sec. 3.1, the DC gain of the LPC
synthesis filter is given by G and we can force G = G0 by
imposing the constraint

wTa =
1−G0

G0
, β > −1.

The average prediction error energy in the analysis frame
is given by

E =
1

N

∑
n

{
S(n) +

p∑
i=1

aiS(n− i)

}2

and we would like to minimize E subject to the constraint
wTa = β. Using a Lagrange multiplier, λ, the solution, ã to
this constrained optimization problem is obtained by solving
the p+ 1 equations

d

dai

(
E + λwT ã

)
= 0

wT ã = β

and the solution is(
0.5λ

ã

)
=

(
0 wT

w R

)−1(
β
−g

)
(8)

where R, g and w are as defined in Sec. 3.1. In Sec. 4 we eva-
luate the effect of using this revised set of LPC coefficients,
ã, in the KF of Fig. 1 (denoted the “CKFMD” algorithm) and
find that it results in a consistent improvement in performance
both over the KFMD algorithm, which uses the unconstrained
filter coefficients, and also over the BKFMD algorithm which
uses the bandwidth expanded coefficients.

4. IMPLEMENTATION AND EVALUATION

4.1. Stimuli of experiments

In this section, we compare the performance of the baseline
MMSE enhancer [15] with that of the three algorithms that
incorporate a KF postprocessor. The KFMD algorithm uses
an unconstrained speech model, the BKFMD algorithm in-
corporates the bandwidth expansion from Sec. 3.2 while the
CKFMD algorithm uses the constrained filter from Sec. 3.3.
In our experiments, we use the core test set from the TIMIT
database [16] which contains 16 male and 8 female speakers
each reading 8 distinct sentences (totalling 192 sentences) and
the speech is corrupted by white and factory noise from the
RSG-10 database [17] at −5, 0, 5, 10, 15, and 20 dB signal-to-
noise ratio (SNR). The algorithm parameters were determined
by optimizing performance on a subset of the TIMIT training
set. We use an acoustic frame length of 32 ms with a 4 ms
frame increment which gives a sample rate of 250 Hz in the
modulation domain. The speech model is determined from a
modulation frame of 128 ms (32 acoustic frames) with a 16
ms frame increment. For the KFMD algorithm, the speech
and noise models are of orders p = 2 and q = 4 respecti-
vely while for the BKFMD and CKFMD algorithms, they are
p = 3 and q = 6, as the different p and q give the best perfor-
mance for the corresponding enhancers. Additionally, we set
α = 0.7 and β = −0.8 and use a Bartelett-Hanning window
in the analysis-synthesis procedure and a Hamming window
for the estimation of the speech model coefficients.
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Fig. 2. Average segSNR values comparing different algo-
rithms, where speech signals are corrupted by white noise at
different SNR levels.

4.2. Performance of new algorithms

Using the new LPC models, the performance of the speech
enhancers is evaluated using both segmental SNR (segSNR)
and the perceptual evaluation of speech quality (PESQ) mea-
sure defined in ITU-T P.862. In all cases the measures are
averaged over the 192 sentences in the TIMIT core test set.
Figures 2 and 3 show how the average segSNR varies with
global SNR for white noise and factory noise for the unenhan-
ced speech, the baseline MMSE enhancer and the three KF
postprocessing algorithms presented here. We see that at high
SNRs, all the algorithms have very similar performance. Ho-
wever at 0 dB SNR the KFMD provides an approximate 2 dB
improvement in segSNR over MMSE enhancement and the
BKFMD and CKFMD algorithms give an additional 0.5 and
1.5 dB improvement respectively. The PESQ results shown in
Fig. 4 and 5 broadly mirror the segSNR results although the
post-processing gives an improvement in PESQ even at high
SNRs. For both noise types, the constrained KF postproces-
sor (CKFMD) gives a PESQ improvement of >0.2 over a wide
range of SNRs. In addition, informal listening tests also in-
dicate that the proposed post-processing methods, especially
BKFMD and CKFMD enhancers, are able to reduce the mu-
sical noise introduced by MMSE enhancer.

5. CONCLUSION

We have proposed three alternative methods of post-processing
the output of an MMSE spectral amplitude speech enhancer
by using a KF in the modulation domain. The three methods
differ in how they estimate the LPC speech model in each
modulation frame. We have shown that all three methods
give consistent improvements over the MMSE enhancer in
both segSNR and PESQ and that the best method, which
performs LPC analysis with a constrained DC gain, improves
PESQ scores by at least 0.2 over a wide range of SNRs.
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Fig. 3. Average segSNR values comparing different algo-
rithms, where speech signals are corrupted by factory noise
at different SNR levels.
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Fig. 4. Average PESQ values comparing different algorithms,
where speech signals are corrupted by white noise at different
SNR levels.
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Fig. 5. Average PESQ values comparing different algorithms,
where speech signals are corrupted by factory noise at differ-
ent SNR levels.
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