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ABSTRACT

In this paper, we propose a minimum mean square error spectral

estimator for clean speech spectral amplitudes that uses a Kalman

filter to model the temporal dynamics of the spectral amplitudes in

the modulation domain. Using a two-parameter Gamma distribution

to model the prior distribution of the speech spectral amplitudes, we

derive closed form expressions for the posterior mean and variance

of the spectral amplitudes as well as for the associated update step

of the Kalman filter. The performance of the proposed algorithm

is evaluated on the TIMIT core test set using the perceptual evalua-

tion of speech quality (PESQ) measure and segmental SNR measure

and is shown to give a consistent improvement over a wide range of

SNRs when compared to competitive algorithms.

Index Terms— speech enhancement, modulation domain Kalman

filter, minimum mean-square error (MMSE) estimator

1. INTRODUCTION

Over several decades, numerous speech enhancement algorithms

have been proposed. Among the most popular are those such as

[1, 2, 3] which apply a variable gain in the short time Fourier trans-

form (STFT) domain to estimate the spectral amplitudes of the

clean speech. Although these STFT-domain enhancement algo-

rithms often improve the signal-to-noise ratio (SNR) dramatically,

the temporal dynamics of the speech spectral amplitudes are not

incorporated into the derivation of the estimator. There is evidence,

however, that significant information in speech is carried by the

modulation of spectral envelopes in addition to the envelopes them-

selves [4, 5]. Spectral modulation-domain processing has been used

in speech recognition [6, 7], in speech intelligibility metrics [8, 9]

and in speech enhancement [10, 11, 12]. In one such enhancement

algorithm [12], the temporal envelope of the amplitude spectrum

of the noisy speech is processed separately in each subband by a

Kalman filter (KF) in order to obtain the spectral amplitudes of the

enhanced speech. This modulation-domain KF combines the esti-

mated dynamics of the speech spectral amplitudes with the observed

noisy speech amplitudes to give an minimum mean square error

(MMSE) estimate of the amplitude spectrum of the clean speech,

under the assumption that the spectral amplitudes of both the clean

speech and the noise are Gaussian distributed.

In this paper, we propose an MMSE spectral amplitude estima-

tor under the assumption that the speech amplitudes follow a gen-

eralized Gamma distribution [13]. The advantage of the proposed
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estimator over previously proposed spectral amplitude estimators

[2, 13, 14] is that it incorporates temporal continuity into the MMSE

estimator by the use of the KF and that it uses a Gamma prior which

is a more appropriate model for the speech spectral amplitudes than

a Gaussian prior [11].

2. SIGNAL MODEL AND KALMAN FILTER

We assume an additive model in the STFT domain in which, for

frequency bin k of frame n,

Yn,k = Xn,k +Wn,k (1)

where X and W denote the complex-valued STFT coefficients of

the clean speech and the noise respectively. Since each frequency

bin is processed independently within our algorithm, we omit the

frequency index, k, in the remainder of this paper. We denote the

spectral amplitudes as: |Xn| = An, |Yn| = Rn and |Wn| = Nn.

The prediction model we assume for the clean speech spectral am-

plitudes is

an = Fn−1an−1 + vn (2)

where an = [An · · ·An−p+1]
T is the p-dimensional state vec-

tor and vn denotes the zero-mean prediction residual with co-

variance matrix Qn. The (p × p) transition matrix has the form

Fn =



−bT
n

I 0

�

, where bn = [b1 · · · bp]
T is the vector of linear

prediction (LPC) coefficients for the speech spectral amplitudes in

frame n. Our model differs from that used in [12] in two respects:

we treat the noise and speech as additive in the complex STFT

domain rather than in the spectral amplitude domain and we use a

generalized Gamma prior for the speech amplitudes rather than a

Gaussian prior.

3. PROPOSED ESTIMATOR DESCRIPTION

A block diagram of the proposed algorithm is shown in Fig. 1.

The noisy speech, y(t) is converted to the time-frequency do-

main, Rn,ke
jΘn,k, using the STFT [15]. In order to perform LPC

modelling in the modulation domain, the noise power spectrum is

estimated using, for example, [16] or [17], and the speech is passed

through a conventional MMSE enhancer [3] to reduce the effects of

the noise on the modelling. Following this, the sequence of spec-

tral amplitudes in each frequency bin is divided into overlapping

modulation frames. Autocorrelation LPC [18] is performed on each

modulation frame to determine the coefficients, bn, and thence the

transition matrix Fn in (2).
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Fig. 1. Block diagram of the proposed Kalman Filter MMSE esti-

mator.

3.1. Kalman filter prediction step

From the time update model (2), we obtain the KF prediction equa-

tions

an|n−1 = Fn−1an−1|n−1 (3)

Pn|n−1 = Fn−1Pn−1|n−1F
T
n−1 +Qn, (4)

where an|n−1 and Pn|n−1 denote respectively the a priori estimates

of the amplitude state vector and of the corresponding covariance

matrix at time n, and an−1|n−1 denotes the a posteriori estimate of

the state vector at time n − 1. The first element of the state vector,

an|n−1, corresponds to the spectral amplitude in the current frame,

An|n−1, and so its a priori mean and variance are given by

µn|n−1 , E(An|Rn−1) = d
T
an|n−1 (5)

σ
2
n|n−1 , V ar(An|Rn−1) = c

T
Pn|n−1c, (6)

where Rn−1 represents the observed speech amplitudes up to time

n− 1 and c = [1 0...0]T .

3.2. Kalman Filter MMSE update model

In this section, we describe the KF MMSE update step which de-

termines an updated state estimate by combining the predicted state

vector and covariance, the estimated noise and the observed spec-

tral amplitude. Within the update step, we model the prior speech

amplitude An|n−1 using a 2-parameter Gamma distribution

p (an|Rn−1) =
2a2γn−1

n

β
2γn

n Γ (γn)
exp

✓

−

a2
n

β2
n

◆

, (7)

where Γ (·) is the Gamma function. The distribution is obtained

by setting c = 2 in the generalized Gamma distribution given in

[19], and the two parameters, βn and γn are chosen to match the

mean µn and variance σ2
n of the predicted amplitude from (5) and

(6). Examples of the probability density functions from (7) with

variance, σ2 = 1 and means, µ, in the range 0.5 to 8 are shown

in Fig. 2, from which it can be seen that the distribution in (7) is

sufficiently flexible to model the outcome of the prediction over a

wide range of µn/σn.

At frame n, the mean and variance of the Gamma distribution in

(7) can be expressed in terms of βn and γn [19] as
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Fig. 2. Curves of Gamma probability density function for (7) with

variance σ2 = 1 and different means.
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Fig. 3. The curve of φ versus λ, where 0 < φ = arctan(γ) < π
2

and 0 < λ = Γ
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< 1.

µn|n−1 = βn

Γ (γn + 0.5)

Γ (γn)
, (8)

σ
2
n|n−1 = β

2
n

✓

γn −

Γ
2 (γn + 0.5)

Γ2 (γn)

◆

. (9)

We can eliminate β between (8) and (9) to obtain

Γ
2 (γn + 0.5)

γnΓ2 (γn)
=

µ2
n|n−1

µ2
n|n−1 + σ2

n|n−1

, λn (10)

We need to solve the non-linear equation (10) to determine γn
from the value of λn which can be calculated from µn|n−1 and

σ2
n|n−1 and satisfies 0 < λn < 1. Instead of dealing with γn di-

rectly, it is convenient to set φn = arctan(γn) where φn lies in

the range 0 < φn < π
2

. The solid line in Fig. 3 shows the func-

tion φn(λ). We can approximate this function well with a low-order

polynomial that is constrained to pass through the points (0, 0) and

(1, π
2
) and in the experiments in Sec. 4.1 we use the quartic approx-

imation

φ(λ) = −0.1640λ4 + 2.3612λ3
− 1.2182λ2 + 0.5918λ

which is shown with asterisks in Fig. 3. Given λn we can use this

polynomial to obtain φn and thence γn by the inverse transform

γn = tan(φn).

3.3. Derivation of estimator

The MMSE estimate of An is given by the conditional expectation

µn|n = E(An|Rn) =

∞
ˆ

0

anp(an|Rn)dan (11)



Using Bayes rule, the conditional probability is expressed as

p (an|Rn) = p(an|yn,Rn−1)

=

´ 2π

0
p (yn|an,φn,Rn−1) p (an,φn|Rn−1) dφn

p (yn|Rn−1)
(12)

where φn is the realization of the random variable Φn which rep-

resents the phase of the clean speech. Because Yn is conditionally

independent of Rn−1 given an and φn, (12) becomes

p (an|Rn) =

´ 2π

0
p (yn|an,φn) p (an,φn|Rn−1) dφn

p (yn|Rn−1)
(13)

Following [2], the observation noise is assumed to be complex Gaus-

sian distributed with variance ν2
n = E(N2

n) leading to the observa-

tion prior model

p(yn|an,φn) =
1

πν2
n

exp

⇢

−

1

ν2
n

|yn − ane
jφn |2

�

(14)

Under the assumption of the statistical models previously defined

and assuming that the phase components and amplitude components,

Φn and An, are independent, we can now calculate a closed-form

expression for the estimator (11) using [20, Eq. 6.631, 9.201.1,

9.220.2]

µn|n =
Γ (γn + 0.5)

Γ (γn)

s

ξn

ζn(γn + ξn)

M
⇣

γn + 0.5; 1; ζnξn
γn+ξn

⌘

M
⇣

γn; 1;
ζnξn

γn+ξn

⌘ Rn,

(15)

where M is the confluent hypergeometric function [21], and

ξn =
E(A2

n|Yn−1)

ν2
n

=
µ2
n|n−1 + σ2

n|n−1

ν2
n

, ζn =
R2

n

ν2
n

are the a priori SNR and a posteriori SNR respectively. The variance

of the posterior estimate is given by

σ
2
n|n = E

�

A2
n|Rn,φn

�

− (E (An|Rn,φn))
2

=
γnξn

ζn(γn + ξn)

M
⇣

γn + 1; 1; ζnξn
γn+ξn

⌘

M
⇣

γn; 1;
ζnξn

γn+ξn

⌘ R2
n −

�

µn|n

�2
.

(16)

3.4. Update of state vector

The final step is to update the entire state vector and the associated

covariance matrix, an|n and Pn|n. In order to decorrelate the cur-

rent observation from the rest of the state vector, we decompose the

covariance matrix Pn|n−1 as

Pn|n−1 =



σ2
n|n−1 gT

n

gn Gn

�

,

where gn is a (p − 1)-dimensional vector. We now transform the

state vector as

zn|n−1 = Hnan|n−1 (17)

using the transformation matrix Hn =

"

1 0T

−

gn

σ2

n|n−1

I

#

. The

covariance matrix, Un|n−1, of the transformed state vector zn|n−1

is given by

Un|n−1 = E

⇣

zn|n−1z
T
n|n−1

⌘

= HnPn|n−1H
T
n

=

"

�
2
n|n−1

0T

0 Gn − �
−2
n|n−1

gng
T
n

#

.

We see that the first element of zn|n−1 is equal to µn|n−1 and un-

correlated with any of the other elements and is therefore distributed

as N (µn|n−1,σ
2
n|n−1). Using the posterior mean and variance from

(15) and (16) and c = [1 0 . . . 0]T , we can update the transformed

mean vector and covariance matrix as

zn|n = zn|n−1 + (µn|n − µn|n−1)c

Un|n = Un|n−1 +
�

σ
2
n|n − σ

2
n|n−1

�

cc
T .

Inverting the transformation in (17), we obtain, after some alge-

braic manipulation, the following update equations

an|n = an|n−1 +
�

µn|n − µn|n−1

�

σ
−2
n|n−1Pn|n−1c (18)

Pn|n = Pn|n−1 +
⇣

σ
2
n|nσ

−2
n|n−1 − 1

⌘

σ
−2
n|n−1Pn|n−1cc

T
Pn|n−1.

(19)

In this section we have derived the update equations for the KF.

For each acoustic frame of noisy speech, we first use (3) and (4)

to calculate the a priori state vector an|n−1 and the corresponding

covariance Pn|n−1, and solve (10) to find γn. We then use (15) and

(16) to calculate the a posteriori estimate of the amplitude and the

corresponding variance respectively. Finally, the KF state vector and

its covariance matrix are updated using (18) and (19).

4. IMPLEMENTATION AND EVALUATION

4.1. Implementation of algorithm

In this section, we compare the performance of the proposed KF

based MMSE (KMMSE) estimator with five other algorithms: (i)

logMMSE – the baseline log-amplitude MMSE enhancer from

[3, 22]; (ii) pMMSE – the perceptually motivated MMSE estimator

from [23, 22] using a weighted Euclidean distortion measure with

a power exponent of p = −1; (iii) ModSub – the modulation-

domain spectral subtraction from [11]; (iv) MDKF – the version

of the modulation-domain Kalman filter from [12] that extracts the

modulation-domain LPC coefficients from enhanced speech (using

the logMMSE algorithm [3, 22]); (v) KFMMSEI – an intermediate

version of our proposed algorithm that assumes the speech and noise

add in the STFT amplitude domain rather than the complex STFT

domain (i.e. replacing (1) with |Yn,k| = |Xn,k|+ |Wn,k|). The pa-

rameters of all the algorithms were chosen to optimize performance

on a subset of the training set of the TIMIT database [24]. We have

used an acoustic frame length of 32 ms with a 4 ms increment which

gives a 250 Hz sampling frequency in the modulation domain. The

speech LPC models are determined from a modulation frame of

duration 128 ms (32 acoustic frames) with a 16 ms frame increment

and the model orders in both the KMMSE and MDKF algorithms

are l = 2. In the experiments, we use the core test set from the

TIMIT database which contains 16 male and 8 female speakers
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Fig. 4. Average segmental SNR of enhanced speech speech after

processing by four algorithms plotted against the global SNR of the

input speech corrupted by additive car noise (left) and street noise

(right). The algorithm acronyms are defined in the text.
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Fig. 5. Average PESQ quality of enhanced speech after processing

by four algorithms plotted against the global SNR of the input speech

corrupted by additive car noise (left) and street nose (right).

each reading 8 distinct sentences (totalling 192 sentences) and the

speech is corrupted by the noise from the RSG-10 database [25] and

the ITU-T test signals database [26] at −10,−5, 0, 5, 10 and 15 dB

global SNR. A Hamming window is used in the STFT analysis and

synthesis and the noise power spectrum, ν2
n,k, is estimated using the

algorithm from [17] as implemented in [22]. It is possible for the

algorithm to lock up with µn|n = 0; to prevent this, we impose the

constraint γn > 0.5 in (10).

4.2. Performance evaluations

The performance of the algorithms is evaluated using both segmen-

tal SNR (segSNR) and the perceptual evaluation of speech quality

(PESQ) measure defined in ITU-T P.862. All the measured val-
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Fig. 6. Box plot of the PESQ scores for noisy speech processed by

six enhancement algorithms. The plots show the median, interquar-

tile range and extreme values from 2376 speech+noise combinations.
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Fig. 7. Box plot showing the difference in PESQ score between com-

peting algorithms and the proposed algorithm, KMMSE for 2376

speech+noise combinations.

ues shown are averages over the 192 sentences in the TIMIT core

test set. Figure 4 shows the average segSNR of speech enghanced

by the proposed algorithm (KMMSE) as well as by the logMMSE,

pMMSE and MDKF algorithms. The left and right plots respectively

show results for car noise [25] and street noise [26]. We see that for

car noise, which is predominantly low frequency, pMMSE gives the

best segSNR especially at poor SNRs where it is approximately 2

dB better than KMMSE, the next best algorithm. For street noise

however, which has a broader spectrum, the situation is reversed and

the KMMSE algorithm has the best performance especially at SNRs

above 5 dB. Figure 5 shows the corresponding average PESQ scores

for car noise (left plot) and street noise (right plot). We see that, with

this measure, the KMMSE algorithm clearly has the highest perfor-

mance. For car noise, the PESQ score from the KMMSE algorithm

is approximately 0.2 better than that of the other algorithms at SNRs

below 5 dB while for street noise, the corresponding figure is 0.15.

These differences correspond to SNR improvements of 4 dB and 2.5

dB respectively. To assess the robustness to noise type, we have eval-

uated the algorithms using twelve different noise types from [25]

with the average SNR for each noise type chosen to give a mean

PESQ score of 2.0 for the noisy speech. In Fig. 6, the solid lines

show the median, the boxes the interquartile range and the whiskers

the extreme PESQ values for the 198 × 12 speech-plus-noise com-

binations. Figure 7 shows box plots of the difference in PESQ score

between competing algorithms and KMMSE. We see that in all cases

the entire box lies below the axis line; this indicates that KMMSE

results in an improvement for an overwhelming majority of speech-

plus-noise combinations. The KMMSEI box plot demonstrates the

small but consistent benefit of using an additive model in the com-

plex STFT domain rather than the amplitude domain.

5. CONCLUSION

In this paper we have proposed an MMSE spectral amplitude estima-

tor based on a modulation domain Kalman filter. The novel MMSE

estimator incorporates a model of the temporal dynamics of spec-

tral amplitudes within each frequency bin by using a Kalman filter.

We have shown how the parameters of the speech prior model can

be estimated from the predicted state vector from the Kalman filter,

and used to calculate the estimator in the update step. The proposed

algorithm gives a consistent improvement in PESQ over all the com-

petitive algorithms demonstrating that PESQ can be improved by

about 0.2 over the baseline logMMSE enhancer for a wide range of

SNRs.
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