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Abstract—The enhancement of speech degraded by real-
world interferers is a highly relevant and difficult task. Its
importance arises from the multitude of practical applications,
whereas the difficulty is due to the fact that interferers
are often non-stationary and potentially similar to speech.
The goal of monaural speech enhancement is to separate a
single mixture into its underlying clean speech and interferer
components. This under-determined problem is solved by
incorporating prior knowledge in the form of learned speech
and interferer dictionaries. The clean speech is recovered from
the degraded speech by sparse coding of the mixture in
a composite dictionary consisting of the concatenation of a
speech and interferer dictionary. Enhancement performance
is measured using objective measures and is limited by two
effects. A too sparse coding of the mixture causes the speech
component to be explained with too few speech dictionary
atoms, which induces an approximation error we denote source
distortion. However, a too dense coding of the mixture results
in source confusion, where parts of the speech component
are explained by interferer dictionary atoms and vice-versa.
Our method enables the control of the source distortion and
source confusion trade-off, and therefore achieves superior
performance compared to powerful approaches like geometric
spectral subtraction and codebook-based filtering, for a number
of challenging interferer classes such as speech babble and
wind noise.

Index Terms—Speech enhancement, dictionary learning,
sparse coding.

I. INTRODUCTION

Enhancing speech degraded by non-stationary real-world

interferers is both an important and difficult task. The

importance arises from many signal processing applications,

including hearing aids, mobile communications, and pre-

processing for speech recognition. The difficulty of speech

enhancement in these applications arises from the nature of
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the encountered interferers, which often are non-stationary

and potentially speech-like, thereby inducing a significant

and time-varying spectral overlap between speech and inter-

ferer.

The goal of speech enhancement is twofold: to improve

both the perceived quality and the intelligibility of speech,

by attenuating the interferer without substantially degrading

the speech. Speech of higher quality is perceived as being

more comfortable to listen to, for longer periods of time,

whereas higher speech intelligibility is measured by lower

word error rates in speech recognition scenarios.

Ideally, the performance of speech enhancement algo-

rithms is measured by conducting subjective listening tests

with human listeners. Objective measures are designed

to approximate subjective quality scores and intelligibility

rates. Most objective measures quantify improvement by

comparing the (unobserved) clean speech with the degraded

speech and the enhanced speech in a perceptually mean-

ingful way. As a consequence, performance evaluation has

to be conducted on synthetic mixtures of clean speech and

interferer signals.

We consider the setting of a one-to-one conversation in a

natural environment, recorded by a single microphone. This

setup can be modeled as a linear additive mixture of target

clean speech and interferer

x(n) = s(n) + i(n), (1)

where x(n) is the time-domain mixture signal at sample n,

and s(n) and i(n) are the time-domain speech and inter-

ferer signals. Recovering the clean speech signal from the

mixture is under-determined without additional assumptions.

Our enhancement approach is based on transforming time-

domain signals into a suitably chosen feature space, and

sparse coding in this feature space using signal models for

both the speech and the interferer (called dictionaries). Since

speech and many kinds of interferers contain structure, their

structured component can be sparsely coded in coherent

dictionaries. If both the speech and interferer dictionary is

coherent only to its respective structured component in the

mixture signal, sparse coding is able to separate the mixture

into its structured components and to suppress any unstruc-

tured component (i.e. random noise) that is incoherent to

both dictionaries. Finally, an estimate of s(n) is obtained

by performing the inverse transform from the feature space

back to the time-domain.

Since clean speech is never observable in the environment

where enhancement is to take place, we learn the speech
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dictionary on a training corpus. Speech is a well-structured

signal class, therefore a pre-trained model remains largely

valid during enhancement, even in the speaker independent

case. The contrary is true for the interferer, which varies

considerably depending on the environment, and which

might be a superposition of several sources, requiring a

single general interferer model to be prohibitively complex.

On the other hand, the interferer can be observed during

segments of speech inactivity. Therefore, training data for

an interferer model can be obtained from speech pauses,

resulting in an interferer dictionary which is specific to the

current environment and which does not have to generalize

to other environments. In this work, we presuppose that

a conservative voice activity detector (VAD) is available

to obtain observations of the interferer signal for dictio-

nary learning. A VAD which is not conservative enough

could cause speech signal components to be present in the

interferer dictionary training data, and as a consequence,

enhancement performance likely degrades. Evaluation using

a non-ideal VAD is beyond the scope of this paper and

is considered in future work. For the speech enhancement

itself, no knowledge of speech activity is necessary. This

paper extends our preliminary results reported in [30].

A. Related Work in Speech Enhancement

Our method falls into the class of environment-adapted

algorithms [13], [14], which incorporate specific knowledge

about the environment where speech enhancement is to

be performed. Spectral subtraction (Sec. I-A1) employs a

point estimate of the average interferer magnitude spectrum.

Codebook-based spectral filtering (Sec. I-A2) approximates

the distribution of both the speech and interferer magnitude

spectra using a codebook of spectral prototypes. Finally,

source separation based on sparse coding (Sec. I-A3) models

both the speech and the interferer signal classes using

a sparse linear combination of atoms from a respective

dictionary.

1) Spectral Subtraction: The transformation of the mix-

ture equation (1) into the short-time Fourier domain,

X(ω, n) = S(ω, n) + I(ω, n), (2)

where X(ω, n), S(ω, n) and I(ω, n) denote the complex

mixture, speech and interferer spectra at frequency ω and

time n, respectively, suggests the following principle [3]:

an estimate of the clean speech spectrum is obtained by

subtracting an estimate of the interferer spectrum from the

observed mixture spectrum. Typically, only the magnitude

|I(ω, n)| of the spectrum or the power spectrum |I(ω, n)|2 is

estimated (e.g. during speech pauses), and as a consequence

the additivity of (2) only holds in approximation. The time-

domain speech signal estimate is obtained by inverse Fourier

transformation of the estimated speech magnitude spectrum

or power spectrum using the phase of the mixture signal.

In many relevant cases, modeling the interferer signal

using a single spectral prototype is insufficient, due to the

non-stationarity of the encountered interferers. Geometric

spectral subtraction [17] preserves the additivity of (2) by

taking the phase of the complex Fourier coefficients into

account, and the estimate of the interferer spectrum is

updated for each frame using minimum statistics [22]. This

method is further discussed in Sec. V-A

2) Codebook-based spectral filtering: Whereas spectral

subtraction employs a point estimate of the interferer spec-

trum, codebook-based spectral filtering models either the

speech, the interferer or both using vector codebooks. Ellis

and Weiss [12] trained a speaker dependent codebook using

vector quantization (VQ), and projected the mixture onto the

closest clean speech prototype for enhancement. Srinivasan

et al. [32] trained linear prediction coefficient (LPC) code-

books for both the speech and the interferer. The observed

mixture spectrum is assumed to be a linear combination

of exactly two spectral prototypes (with associated gains),

one from the speech and the other from the interferer

codebook. The selected prototype pair is used to estimate the

underlying clean speech by Wiener filtering of the mixture

signal. Roweis [26] enforces a temporal dependency between

consecutive codings of observations using a factorial hidden

Markov model.

Although codebooks are much more sophisticated signal

models, the major drawback of this paradigm is the induced

quantization error due to the maximally sparse coding. To

reduce the quantization error to an acceptable level, a very

large speech codebook [12], interpolation [32] or averaging

over all possible vector pairs [33] is required (see Sec. V-B

for further discussion).

3) Sparse coding for source separation: Structured signal

classes like speech have approximately sparse representa-

tions in suitably chosen dictionaries. This key observation

underlies source separation methods based on sparse coding.

In coherent denoising [21], an estimate of clean speech

can be recovered from a mixture of speech and Gaussian

white noise by capturing the components that are coherent

to the speech dictionary, because unstructured interferers

such as Gaussian white noise are incoherent to any fixed

dictionary [24]. A dictionary element (called atom) is co-

herent to a signal if the absolute value of the inner product

of the two vectors is large. For an orthonormal basis as

the speech dictionary, the energy in the coding coefficients

of an unstructured interferer is distributed uniformly over

all dictionary elements. A soft thresholding of the coding

coefficients results in a close to optimal estimate of the clean

speech [9].

However, as interferers become more structured and sim-

ilar to speech, the coherence to the speech dictionary grows.

In the case of structured interferers, better performance can

be achieved by coding the mixture in a composite dictionary

consisting of a speech and an interferer dictionary. Speech

components are captured by the speech dictionary, as they

are more coherent to the speech dictionary, but less so to

the interferer dictionary. For the same reason, structured in-

terferer components are captured by the interferer dictionary

instead of being explained by many speech dictionary atoms
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Figure 1. Our dictionary learning and speech enhancement pipeline. The
top part shows the dictionary learning step, where, separately for the speech
and the environment specific interferer, training data is transformed into
the feature space (FT), and a dictionary is learned (DL). Both dictionaries
D

(s) and D
(i) are combined into a composite dictionary D for speech

enhancement. The bottom part shows the enhancement step for a single
observation of degraded speech. It is transformed into the feature space,
and x is sparsely coded in D using LARC. The sparse code c is separated

into c
(s) and c

(i), to obtain estimates ŝ and î of the clean speech and
interferer contributions to x. For the MDCT feature domain, ŝ is directly
inverse transformed (IFT) back to the time domain. For the STFT magnitude

domain, a filter f is built based on ŝ and î and applied to x, followed by
the IFT of the filtered x back to the time domain.

with low associated weights. Any unstructured interferer

component is again incoherent to both dictionaries.

Therefore, sparse coding for speech enhancement requires

adapted dictionaries, as general analytic dictionaries (such as

wavelet bases) typically do not satisfy both coherence and

incoherence requirements. Adaptation of an initial dictionary

to the signal class can be achieved using dictionary learning,

which is a generalization of VQ [1]. From this perspective,

the codebook-based enhancement approaches of the previous

section can be seen as a special case of sparse coding for

speech enhancement, where a maximally sparse coding of

the mixture is enforced.

B. Method Overview

What follows is a high-level overview of our method,

illustrated in Fig. 1. The time-domain signal is transformed

(FT in the figure) into either the short-time Fourier (STFT)

magnitude domain or the modified discrete cosine (MDCT)

domain [23]. The feature transform needs to be invertible to

allow for the re-synthesis of the time-domain signal of the

enhanced speech. The MDCT is directly invertible, but in

the case of STFT magnitudes, the mixture phase is used for

re-synthesis. In the transform domain, overlapping blocks

are extracted and vectorized, and these vectors form the

elements of our feature space (Sec. VI-C).

Possibly over-complete dictionaries (Sec. III) are trained

for speech (either speaker dependent or independent) and

the environment specific interferer (DL in the figure). For

sparse coding (Sec. II) in the dictionary learning algorithm,

we extended the least angle regression (LARS) algorithm

[11] to include a residual coherence stopping criterion and

optimized it to solve a large number of simultaneous coding

problems efficiently. A C implementation of the algorithm

with a Matlab interface is available from the authors1. For

the dictionary update step, we use the fast approximate

SVD update of [28]. Identical algorithm parameters (such

as dictionary size or residual coherence threshold) are used

for training both the speech and the interferer dictionary,

in all tested environments. The trained dictionaries are

concatenated to form the composite dictionary.

In the enhancement step (Sec. IV, bottom half of Fig.

1), an observation of degraded speech is sparsely coded

in the composite dictionary. As a result, the mixture of

speech and interferer is explained by a linear combination

of atoms from the speech dictionary and of atoms from

the interferer dictionary. For the MDCT, the clean speech

estimate is directly inverse transformed (IFT in the figure)

back to the time domain. For the STFT magnitude domain, a

filter is built from the clean speech and interferer magnitude

estimates, and is applied to the mixture magnitude. The

filtered mixture magnitude is combined with the mixture

phase to re-synthesize the time domain signal.

As will be explained in Sec. IV-B, estimation errors

result from two different and competing effects. A too

sparse coding of the degraded speech in the composite

dictionary induces an approximation error of the clean

speech, which we call source distortion. A too dense coding

avoids source distortion, but causes source confusion, by

explaining some of the speech energy using interferer atoms.

In order to achieve low source distortion for a sparse coding,

the dictionaries must be coherent to their respective signal

class. To avoid source confusion, the trained dictionaries

must have low mutual coherence, i.e. the speech dictionary

must be incoherent to the interferer signal, and vice-versa.

Good speech enhancement performance can be achieved by

choosing a feature space which is high dimensional enough

such that low mutual coherence becomes feasible, and by

training sufficiently powerful dictionaries such that a low

approximation error is achieved with sparse codings.

C. Contributions of Paper

Our algorithm attains significant speech quality and in-

telligibility improvements (Sec. VI) in challenging environ-

ments, where the interferer signal is non-stationary, poten-

tially similar to speech and where the speech to interferer

power ratio (SIR) is low. Contrary to spectral subtraction,

our approach does not assume a stationary interferer, and

contrary to denoising by sparse coding in analytic dictionar-

ies, it can attenuate interferers that are partially coherent to

the speech signal.

We propose an extension of the least angle regression

(LARS) algorithm of Efron et al. [11] for dictionary learning

and sparse coding, where instead of using the residual

norm or the coding cardinality as the stopping criterion, the

1http://sigg-iten.ch/research/taslp2012/
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algorithm terminates if the coherence between the current

residual and the dictionary is below a chosen threshold.

Furthermore, the algorithm is reformulated such that coding

many observations in the same dictionary becomes much

more efficient. Our algorithm is called LARC, for least angle

regression with a coherence criterion.

We propose a blocking scheme in the feature domain

(discussed in Sec. VI-C), which enables a trade-off between

time and frequency resolution of the dictionary atoms.

Enhancement can be performed in the MDCT domain, which

facilitates direct inversion of the speech estimate, or it can

be performed in the STFT domain, where either the speech

magnitude estimate is combined with the mixture phase,

or the speech and interferer magnitudes provide estimates

of the instantaneous a-priori and a-posteriori SNR, from

which a suppression rule is derived for filtering the mixture

magnitude (see Sec. V-A).

Our algorithm has conceptual similarities to the non-

stationary noise reduction algorithm of Schmidt and Larsen

[29], which is based on a non-negative latent variable decom-

position model of the speech and the interferer signal, and

to work by Wilson et al. [36], which employs non-negative

matrix factorization (NMF) to train speech and interferer

models, as well as to work by Smaragdis et al. [31], which

applies probabilistic latent component analysis (PLCA) to

train speech and interferer models. All these approaches

enforce non-negativity constraints on both the dictionary and

the coding matrices, and they are therefore only appropriate

for non-negative feature domains. Our approach allows the

code and the dictionary entries to assume values of the entire

real domain. Furthermore, the residual coherence stopping

criterion of LARC is invariant to changes in signal energy,

and the same residual coherence threshold works well across

different interferer signal classes and mixture SIRs, which

are not known in advance.

D. Notation

Given a matrix A and a column vector b, scalars i, j, and

ordered sets I, J of scalars, Ai,j denotes the scalar matrix

element on row i and column j; a(i,:) denotes the i-th row-

vector of matrix A; a(:,j) denotes the j-th column-vector of

matrix A; A(I,J ) denotes the sub-matrix of A, consisting

of all elements of A which are on rows indexed by I and

on columns indexed by J . b⊤ denotes a row-vector, bI

denotes the column-vector consisting of all elements of b

indexed by I, and bi denotes the i-th element of vector b.

Sequences of matrices, vectors and scalars are indexed by

A(i), b(i) and c(i).

II. SPARSE CODING

The goal of sparse coding is to approximate a signal

observation with low error, using a linear combination of

only a few signal prototypes from a pre-specified set of

prototypes. More formally, a K-sparse coding c ∈ R
L of

a single signal frame x ∈ R
D in a dictionary D ∈ R

D×L

of unit norm atoms ‖d(:,l)‖2 = 1, ∀l = 1, . . . , L defines a

sparse linear combination of K ≪ L atoms. The cardinality

||c||0 = K is the number of non-zero coefficients of c, and

is also called the ℓ0 pseudo-norm of c. The dictionary D can

be over-complete, i.e. L > D is possible (and often desired).

Sparse coding lies at the core of our method, both in

dictionary learning and in enhancement. It is a trade-off

between three factors: the signal approximation error ||x −
Dc||2 measured using the ℓ2 norm, the coding cardinality

and the dictionary size. For structured signal classes such

as speech, a dictionary exists such that a low approxima-

tion error can be achieved with a sparse coding. Such a

dictionary is said to be coherent to the signal class, and the

approximation error decays quickly as the coding cardinality

increases. On the other hand, white noise is an unstructured

signal class that is incoherent to any fixed dictionary [24],

and the error decays slowly as the cardinality increases. Of

course, zero approximation error is possible in both cases if

D spans the signal space, but for a coherent dictionary the

error will be already sufficiently small for K ≪ D.

The sparse coding problem can be formulated using a

cardinality constraint

c∗ = argminc ||x−Dc||2
s.t. ||c||0 ≤ K,

(3)

or using an error constraint

c∗ = argminc ||c||0
s.t. ||x−Dc||2 ≤ σ.

(4)

Solving either (3) or (4) using the ℓ0 pseudo-norm is an NP-

hard combinatorial problem [6], an approximation scheme

is therefore necessary. We discuss greedy optimization in

Sec. II-A and convex relaxation of the ℓ0 norm to the ℓ1
norm in Sec. II-B.

A. Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) [7] computes an

approximate solution to the sparse coding problem (3) or

(4) using a greedy iterative update of c (see algorithm 1).

Algorithm 1 Orthogonal Matching Pursuit

1: Input: x ∈ R
D; D ∈ R

D×L; K or σ
2: Output: c ∈ R

L

3: A ← {}; c← 0; r← x

4: while ||c||0 ≤ K and ||r||2 > σ do

5: µ← D⊤r

6: j∗ ← argmaxj |µj |, j ∈ A
c

7: A ← A∪ {j∗}

8: cA ←
(

D⊤
ADA

)−1
D⊤

Ax

9: r← x−Dc

10: end while

Each iteration t of the while-loop consists of two steps:

atom selection and update of the coding vector. The atom

that is most coherent to the current residual r(t−1) is

selected, and its index j∗ is added to the active set of atoms
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A in lines 5 to 7. Then c(t) is set to the coordinates of

the orthogonal projection of x onto the subspace spanned

by D(:,A) in line 8, and the new residual r(t) is computed

in line 9. This procedure ensures that r(t) is always or-

thogonal to the span of D(:,A), and that the set of selected

atoms is linearly independent. The algorithm terminates after

||c(t)||0 = K or ||x − Dc(t)||2 ≤ σ is reached. OMP

converges with an exponential rate, which depends on the

coherence of the dictionary to the signal class [20].

B. Basis Pursuit and LASSO

Convex relaxation of the ℓ0 pseudo-norm to the ℓ1 norm

is another way to solve the sparse coding problem approxi-

mately. In this case, the cardinality constrained formulation

(3) is known as the LASSO [34], and the error norm con-

strained formulation (4) is known as Basis Pursuit Denoising

[4]. Because both the objective function and the constraint

are convex, the global minimum is unique and can be found

efficiently using quadratic programming techniques.

In contrast to the ℓ0 pseudo-norm, the ℓ1 norm penalizes

both the cardinality of the coding and the magnitude of the

coding coefficients. The second property will be important

for sparse coding in the concatenated dictionary, where large

magnitude coefficients can lead to instabilities (see Sec.

IV-B). If a sparse enough coding exists, the relaxed form

is equivalent to the hard combinatorial problem, meaning

that the sparsest coding can be found efficiently using the

ℓ1 norm [8].

1) Least Angle Regression (LARS): Least Angle Regres-

sion [11] is a very efficient iterative algorithm that obtains

a solution closely resembling LASSO, and with a simple

modification can be made to exactly obtain the LASSO

solution. As with OMP, each iteration consists of an atom

selection and a coding coefficient update step. Atom selec-

tion is identical to OMP. For the coefficient update, instead

of an orthogonal projection onto the span of the selected

atoms, LARS proceeds in the equiangular direction of the

selected atoms, until a new atom has equal correlation with

the residual as all atoms in the active set. Typically, either a

cardinality-based or a norm-based stopping criterion is used

(as with OMP).

2) Batch LARS with Coherence Criterion (LARC): We

have extended LARS in two ways for our application. Both

for dictionary learning and enhancement, a large number of

observations have to be sparsely coded in the same dictio-

nary. Pre-computing the Gram matrix G = D⊤D avoids

repeated computations of matrix-vector products involving

D, which are the most expensive operations in LARS. In

addition, the matrix inverse G−1
(A,A) is built iteratively using

an update scheme based on the Cholesky factorization [28].

The second extension concerns the stopping criterion. As

already mentioned in the introduction, an observation is a

linear superposition of components, one of them coherent

and one or more of them incoherent to the dictionary. Since

only the coherent component can be sparsely coded in the

dictionary, it can be separated from the other components

by choosing the right value for the stopping criterion.

Both OMP and LARS are greedy algorithms, therefore the

coherent components will be coded before the incoherent

components, and the maximum residual coherence (line 6

in algorithm 1) will decrease with every iteration [21]. This

decrease suggests to use a residual coherence threshold µdl

as the stopping criterion, which in contrast to the ℓ2 norm

of the residual or the ℓ1 norm of the coefficient vector does

not depend on the magnitude of the observation.

LARC (see algorithm 2) consists of three parts: atom

selection (lines 6 to 8), computation of the equiangular

direction u (lines 12 to 16) and update of c using the step

size γ (lines 17 to 21). “min+” denotes that the minimum

is only over positive arguments.

Note that the computation of D⊤r(t−1) in iteration t (line

6) is split into a constant part µ(x) = D⊤x and a variable

part µ(y) = D⊤y(t−1), which is updated efficiently in line

21. We have omitted the sequential Cholesky update of the

matrix inverse G−1
(A,A), the details are given e.g. in [28].

Algorithm 2 Batch LARC

1: Input: x ∈ R
D; D ∈ R

D×L; G = D⊤D; µdl

2: Output: c ∈ R
L

3: c← 0; y← 0; A ← {}
4: µ

(x) ← D⊤x; µ(y) ← 0

5: while |A| < D do

6: µ← µ
(x) − µ

(y)

7: j∗ ← argmaxj |µj |, j ∈ A
c

8: A ← A∪ {j∗}
9: if |µj∗ | /||x− y||2 < µdl then

10: break

11: end if

12: s← sign(µA)
13: g← G−1

(A,A)s

14: b← (g⊤s)−
1

2

15: w← bg
16: u← D(:,A)w

17: a← G(:,A)w

18: γ ← min+k∈Ac

(

|µj∗ |−µk

b−ak
,
|µj∗ |+µk

b+ak

)

19: y← y + γu
20: cA ← cA + γw
21: µ

(y) ← µ
(y) + γa

22: end while

III. DICTIONARY LEARNING

An iterative dictionary learning algorithm adapts an initial

dictionary to a particular signal class, such that observations

from that signal class are sparsely coded in the dictionary

with small error. As will be discussed in Sec. IV, such

adaptation is typically necessary for successful enhancement,

because the ideal dictionary has to be both coherent to its

signal class as well as incoherent to all other signals present

in the mixture.
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Formally, a dictionary learning algorithm approximately

factorizes a data matrix X ∈ R
D×N consisting of observa-

tions x(:,n), n = 1, . . . , N , into a dictionary D ∈ R
D×L and

a coding matrix C ∈ R
L×N . The factorization optimizes the

objective

argmin
D,C
‖X−D ·C‖2F , (5)

subject to a sparsity constraint on C and the unit ℓ2 norm

constraint on the atoms of D. The approximation error is

measured by the squared Frobenius norm ‖ · ‖2F , i.e. the

sum of squares of all matrix elements. Due to the fact

that both D and C are unknown, the objective function

(5) is not convex, and the sparsity constraint on C makes

finding the global optimum intractable. However, several

authors (see [27] for a review) have proposed efficient

algorithms based on an alternating minimization of C and

D until convergence to a local optimum. We present the

batch version of iterative dictionary learning used to train

the speech and interferer dictionaries for our experiments.

A productive implementation of the speech enhancement

pipeline would additionally use an online algorithm [19] to

learn and update the interferer dictionary.

Initialization. The initial dictionary D(0) can be defined

in various ways. For instance, the atoms can be chosen

uniformly at random on the unit hypersphere, or can be

sampled from the training data X, followed by rescaling

to unit length.

Coding update. The squared Frobenius norm and the

sparsity constraint are column separable, therefore mini-

mizing the objective (5) for C given D amounts to N
independent sparse coding problems, and in principle, any

sparse coding algorithm (see Sec. II) is applicable. We use

LARC in our experiments, i.e. given the previous dictionary

D(t−1), at iteration t of the dictionary learning algorithm

each column c
(t)
(:,n), n = 1, . . . , N of the coding matrix is

updated as

c
(t)
(:,n) ← LARC

(

D(t−1), x(:,n), µdl

)

.

The LARC sparse coding algorithm has three positive prop-

erties relevant to dictionary learning in our application. We

have empirically observed that an ℓ1 norm based sparsity

measure leads to better generalization performance of the

dictionary than an ℓ0 norm based sparsity measure as

employed by OMP (see below). Furthermore, the batch

formulation of LARC is suited to solving a large number

of independent coding problems given the same dictionary

(see Sec. II-B2). Finally, setting the same residual coherence

threshold for speech and all interferer types proved viable. A

dictionary learning algorithm where the sparsity parameter

had to be tuned would be unsuitable in our application, since

the interferer properties are not known in advance.

Dictionary update. The dictionary update step

D(t) ← argmin
D

∥

∥

∥X−D ·C(t)
∥

∥

∥

2

F
(6)

s.t.
∥

∥d(:,l)

∥

∥

2
= 1 ∀l = 1, . . . , L

is a least squares minimization problem with quadratic

equality constraints, and can be solved e.g. using a La-

grangian dual formalism [15]. However, there is no need

to find the exact minimum of (6), as long as the dictionary

learning objective (5) is reduced in each iteration.

The K-SVD dictionary update step [1] is a greedy atom-

by-atom update. For each atom d(:,l), l = 1, . . . , L, the

contribution to the residual norm due to d(:,l) is isolated as

‖X−D ·C‖2F =

∥

∥

∥

∥

∥

∥



X−
∑

m 6=l

d(:,m)c(m,:)



− d(:,l)c(l,:)

∥

∥

∥

∥

∥

∥

2

F

=
∥

∥

∥R
(l) − d(:,l)c(l,:)

∥

∥

∥

2

F
. (7)

The residual norm is minimized using the one rank ap-

proximation d(:,l)c(l,N ) of R
(l)
(:,N ), containing the columns

N = {n|Cl,n 6= 0, 1 ≤ n ≤ N} of R(l) where atom d(:,l)

was involved in the coding. The joint update of d(:,l) and

c(l,N ) ensures that the coding coefficients are adapted w.r.t.

to the new atom, where N preserves the location of the non-

zero coefficients in the coding row c(l,:). The updated d(:,l)

and c(l,N ) are immediately available in the computation of

d(:,l+1) and c(l+1,N ).

To further reduce complexity, Rubinstein et al. [28] pro-

posed a dictionary update step (algorithm 3) that approx-

imates the SVD of R
(l)
(:,N ) using power iterations. In our

application, executing a single power iteration (lines 8 to

10) reduced the residual norm sufficiently.

Algorithm 3 Approximate K-SVD Dictionary Update

1: Input: X = R
D×N ; D = R

D×L; C = R
L×N

2: Output: Updated dictionary D

3: for l ← 1 to L do

4: d(:,l) ← 0

5: N ← {n|Cl,n 6= 0, 1 ≤ n ≤ N}
6: R← X(:,N ) −DC(:,N )

7: g← c⊤(l,N )

8: h← Rg

9: h← h/ ‖h‖2
10: g← R⊤h

11: d(:,l) ← h

12: c(l,N ) ← g⊤

13: end for

The success of dictionary learning is measured by the

ability of a trained dictionary to achieve a low approximation

error when sparsely coding test data not seen during training.

Coding a test observation with increasing cardinality K, the

use of a coherent dictionary results in a rapid decay of the

approximation error, compared to the slow decay of using an

incoherent dictionary that only yields a low approximation

error when K approaches D.
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IV. SPEECH ENHANCEMENT

We model each observed frame x(n) ∈ R
D of degraded

speech as a linear additive mixture

x(n) = s(n) + i(n) (8)

of target speech frame s(n) ∈ R
D and interferer frame

i(n) ∈ R
D. Given a single frame x (where the dependency

on n is from now on omitted for notational clarity), speech

enhancement pursues the goal to obtain an estimate ŝ of

the underlying clean speech signal such that the residual

norm ‖ŝ− s‖2 is significantly lower than ‖x− s‖2 (see

Sec. VI-B for further discussion of measuring enhancement

performance).

Speech enhancement is successful if the speech dictionary

D(s) is coherent to the speech signal and incoherent to

the interferer signal. Classical coherent denoising considers

the case where the interferer is pure noise (e.g. zero-mean

Gaussian white noise) and does not contain any structure.

Such an interferer is incoherent to any fixed dictionary

[24], and in particular to the speech dictionary. This case

is covered in Sec. IV-A.

Many relevant kinds of interferers contain structure. If the

structured component of the interferer signal is also incoher-

ent to the speech dictionary, the treatment is equivalent to

the unstructured case. If the interferer is partially coherent

to the speech dictionary, there is a risk that parts of the

interferer signal will be confused as coming from the speech

source. But for a structured interferer, training a coherent

interferer dictionary D(i) is possible. A sparse coding of

the degraded speech observation in the composite dictionary

D =
[

D(s) D(i)
]

significantly improves enhancement per-

formance, if D(s) is more coherent to s than D(i), and D(i)

is more coherent to i than to D(s). This more general case

is covered in Sec. IV-B.

A. Incoherent Interferers

As mentioned, unstructured interferers cannot be sparsely

represented in any fixed dictionary, in particular also not

in a speech dictionary. As a prominent example for an

incoherent interferer scenario, we consider the enhancement

of speech degraded by zero-mean Gaussian white noise.

In the enhancement step, the degraded speech mixture is

sparsely coded in the speech dictionary using LARC with a

suitably chosen residual coherence threshold µenh. LARC

coding captures the structured speech signal components

which have a coherence to the speech dictionary that is above

the threshold, while discarding the interferer components, as

they fall below the residual coherence threshold.

Formally, an observation x of degraded speech is sparsely

coded in the speech dictionary D(s) using LARC with a

residual coherence threshold µenh, to obtain the vector of

coding coefficients c(s) ∈ R
Ls :

c(s) ← LARC
(

D(s), x, µenh

)

Coding with a suitable µenh leads to a coding vector c(s)

where large weights explain speech contributions in the

mixture x using atoms from the speech dictionary D(s).

An estimate of the underlying clean speech is obtained as

ŝ = D(s)c(s).

The above method provides excellent results as long as

the considered interferer is sufficiently incoherent to the

speech dictionary [20, ch. 12]. However, the more coherent

an interferer becomes to the speech dictionary, the more

likely it is that interferer components in the residual are

explained by speech dictionary atoms, instead of being

discarded by falling below µenh. For interferers which are

partially coherent to the speech dictionary and also contain

structure, a better approach is possible, based on sparse

coding in the composite dictionary consisting of a speech

and an interferer dictionary. This is discussed in the next

section.

B. Partially Coherent Interferers

A structured interferer can be sparsely represented with

low approximation error in a suitably trained dictionary. In

order to enhance speech degraded by structured interferers

which are partially coherent to the speech dictionary, the

degraded speech mixture is sparsely coded in the composite

dictionary consisting of the concatenation of the speech and

the interferer dictionary.

Formally, an observation x of degraded speech is sparsely

coded in the composite dictionary D = [D(s) D(i)] using

LARC with a residual coherence threshold µenh, to obtain

the coding vector c:

c← LARC
(

[D
(s)

D(i)], x, µenh

)

The vector c = [c(s); c(i)] (concatenation in column-

direction) consists of weights c(s) corresponding to the

speech dictionary D(s), as well as weights c(i) ∈ R
Li corre-

sponding to the interferer dictionary D(i). An estimate of the

underlying clean speech is again obtained as ŝ = D(s)c(s).

An exact recovery condition (ERC) [10] establishes the

requirements on the signals and dictionaries, such that the

speech contribution to the mixture is explained by weights

in c(s) only, and the structured interferer contribution is

explained by weights in c(i) only, i.e. no confusions occur

between the sources. Assuming that both the speech and

interferer signals have been generated by their respective

dictionaries, i.e. s = D(s)c̃(s) and i = D(i)c̃(i), Donoho

and Huo [10] show that recovery is exact if

‖c̃(s)‖0 + ‖c̃
(i)‖0 <

1

2

(

1 +
1

µ(D(s),D(i))

)

, (9)

where the mutual coherence between the speech and inter-

ferer dictionary is defined as

µ(D(s),D(i)) = max
p,q

∣

∣

∣d
(s)⊤
(:,p)d

(i)
(:,q)

∣

∣

∣ (10)

with p = 1, . . . , Ls and q = 1, . . . Li (also see [8] for

the case of an additional unstructured component in the
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mixture). Therefore, if the coding is sparse enough or the

dictionaries are incoherent enough, no source confusion

occurs.

For interferers like speech babble, the requirements of the

ERC are often not satisfied in practice, but (9) still motivates

how varying ‖c‖0 (by varying µenh) controls the trade-off

between source distortion and source confusion errors that

both contribute to the estimation error ‖s− ŝ‖2 (see Fig. 2

for an illustration). For a very sparse c, source confusions

are unlikely according to (9) as long as µ(D(s),D(i)) is

small enough, but ‖x−Dc‖2 is expected to be large because

c lacks the necessary degrees of freedom in the approx-

imation of x. Consequentially, the clean speech estimate

will sound distorted, due to a too sparse coding of the

speech source. On the other hand, ‖x−Dc‖2 can be made

arbitrarily small by increasing ‖c‖0. However, (9) predicts

that source confusions become more likely, which become

apparent when separating Dc into D(s)c(s) and D(i)c(i).

The resulting clean speech estimate will have insufficient

interferer attenuation.

In our experiments, we have consistently observed that

both source distortion and source confusion errors grow

gradually with an increasing violation of the ERC, and that

a trade-off is possible which leads to significantly better

enhancement performance than an extremely sparse or dense

coding. Furthermore, using LARC instead of OMP in the

enhancement step improved the temporal smoothness of

the enhanced speech, since the ℓ0 pseudo-norm (as used

in OMP) does not penalize the magnitudes of the coding

coefficients. If the optimal coding cardinality is not very

sparse, the OMP algorithm can show numerical instability

due to insufficient regularization. It then explains the residual

using a combination of nearly co-linear atoms with coding

coefficients that have large magnitudes and opposite signs.

After separating the code c into the speech and interferer

contributions c(s) and c(i), the large magnitude coding

coefficients no longer cancel each other, if the corresponding

atoms were chosen from both the speech and interferer

dictionaries. This issue becomes audible in the separated

signals as temporal fluctuations. The ℓ1 norm of LARC

penalizes both the cardinality and the coefficient magnitude

of c, and therefore, the method achieves better stability due

to a more effective regularization.

V. RELATED WORK

We evaluate the performance of our approach against two

other model based enhancement approaches, that differ in

model complexity and assumptions about the nature of the

speech and interferer signals.

A. Geometric Spectral Subtraction

Geometric spectral subtraction (GA) was proposed in [17]

to address the problem of residual musical noise encoun-

tered in standard spectral subtraction. As discussed in Sec.

I-A, a spectral subtraction algorithm estimates the average

interferer spectrum during speech inactivity, and subtracts it

from the mixture spectrum during speech activity. A naive

subtraction cannot perfectly recover the speech spectrum in

non-stationary interferer scenarios however, as at times it

subtracts too little or too much from the mixture spectrum,

producing random isolated peaks of residual interferer en-

ergy.

This fact follows from transforming (1) into the power

spectral domain,

|X(ω, n)|2 = |S(ω, n)|2 + |I(ω, n)|2 + S(ω, n)I∗(ω, n)

+S∗(ω, n)I(ω, n), (11)

where X(ω, n), S(ω, n) and I(ω, n) denote the complex

mixture, speech and interferer short-time Fourier spectra,

respectively, and I∗(ω, n) denotes the complex conjugate of

I(ω, n). Since the speech and the interferer are assumed to

be statistically independent, the cross terms in (11) vanish in

expectation. However, for short intervals they do not vanish,

and omitting them introduces an approximation error. As

shown in [17], this error is most severe if the SIR in a

frequency bin is close to zero dB, which is often the case

in speech enhancement applications.

Lu and Loizou therefore proposed short term estimators

for both the speech and the interferer spectrum. Using

geometric arguments, a suppression rule
∣

∣

∣Ŝ(ω, n)
∣

∣

∣ = HGA(ω, n) |X(ω, n)|

for estimating the clean speech magnitude spectrum at frame

n was derived, with

HGA(ω, n) =
|S(ω, n)|

|X(ω, n)|
=

√

√

√

√

√

1− [γ(ω,n)+1−ξ(ω,n)]2

4γ(ω,n)

1− [γ(ω,n)−1−ξ(ω,n)]2

4ξ(ω,n)

,

(12)

where ξ(ω, n) is the instantaneous a priori SNR and γ(ω, n)
is the instantaneous a posteriori SNR

ξ(ω, n) =
|S(ω, n)|2

|I(ω, n)|2
, γ(ω, n) =

|X(ω, n)|2

|I(ω, n)|2
. (13)

In contrast to naive spectral subtraction, the above

rule (12) does not assume that the cross terms in (11)

vanish. At each frame n, ξ(ω, n) and γ(ω, n) are recur-

sively computed from the clean speech spectrum estimate

of past frames and the interferer spectrum estimate, which

is initialized with the average interferer spectrum obtained

from a speech pause, and continuously updated using min-

imum statistics [22]. The suppression weights HGA(ω, n)
are limited to 1. Further details including smoothing and

thresholding constants are given in [17].

Our approach is conceptually similar to geometric spectral

subtraction in that both algorithms enhance the mixture

based on instantaneous estimates of the speech and inter-

ferer spectra. However, GA does not incorporate an explicit

speech model, and therefore its performance crucially de-

pends on how well the interferer spectrum is tracked by the

minimum statistics and recursive estimation approach.
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Figure 2. Illustration of the trade-off between source distortion and source confusion, for LARC coding a single frame of clean speech degraded by
babble noise. The left figure plots the speech distortion error ‖s− ŝ‖2 for coding s in D

(s), which steadily decreases for increasing coding cardinality

‖c(s)‖0. The middle figure plots the source confusion error, measured by ‖ŝ‖2 when coding i in the composite dictionary D (“Speech” curve), and

‖̂i‖2 when coding s in D (“Interferer” curve). Note that for the latter, no confusion occurs for ‖c‖0 < 5. The right figure plots the enhancement error
‖s − ŝ‖2 for coding x in D, which is minimal for ‖c‖0 = 8. For a sparser coding, the error is dominated by source distortion, whereas for a denser
coding, the error is dominated by source confusion.

B. Codebook-Based Spectral Filtering

Srinivasan et al. [32] trained speech and interferer code-

books by means of vector quantization in the LPC domain,

using Itakura-Saito (IS) distortion as the distance measure.

The long-term interferer spectrum (estimated by minimum

statistics) was also included in the interferer codebook. In the

enhancement step, the best matching pair of speech and in-

terferer spectral shapes (with associated gains) was estimated

from the mixture by minimizing the IS distortion between

the mixture power spectrum and the linear combination of

the speech and the interferer spectrum. Instead of a full

optimization over all possible combinations of speech and

interferer codebook elements, Srinivasan et al. proposed a

greedy search. Finally, a Wiener filter was constructed from

the spectral shapes and associated gains.

The interferer codebook size had to be chosen with care. A

too generic interferer codebook turned out to be problematic,

because the optimal pair of speech and interferer spectra

became increasingly ambiguous. Therefore, the authors pro-

posed to train several interferer specific codebooks, and to

select the one appropriate for enhancement based on a clas-

sification of the long-term interferer spectrum. Furthermore,

the LP order and the codebook size was optimized for each

interferer type. While avoiding the complexity of using a

VAD to obtain interferer training data, this approach presup-

poses that an appropriate interferer codebook is available for

enhancement.

Srinivasan et al. proposed two different approaches to

reduce the distortion resulting from the one-sparse coding of

speech. An interpolation codebook was proposed in [32], and

in [33] the mixture was explained by a Bayesian averaging

over all pairs of speech and interferer codebook vectors.

The full Bayesian treatment was simplified by assuming

that the spectral shapes and gains are all independent, and

that the likelihood is strongly peaked around the maximum-

likelihood (ML) values for the speech and interferer gains.

This assumption resulted in a weighted average over all

pairs of vectors from the speech and interferer codebooks,

where the weight of each pair is the product of the prior

probabilities of the spectra.

Dictionary learning generalizes vector quantization [1],

in that both speech and interferer are approximated by a

sparse linear combination of multiple atoms, instead of a

single codebook vector. This relaxation leads to a significant

reduction of the source distortion error. Instead of also

re-implementing the different feature space, the distance

measure and the interpolation scheme of [32], our evalu-

ation only focuses on the improvement gained by sparse

coding with cardinality greater than one in both the dic-

tionary learning and the enhancement steps. We therefore

evaluate vector quantization and dictionary learning based

enhancement in the same feature space, and compare our

method to codebook-based spectral filtering where a mixture

observation is explained using a weighted linear combination

of one vector from the speech codebook and one vector from

the interferer codebook.

VI. EVALUATION

We evaluate the performance of our method in comparison

with established and powerful baselines, both in the speaker

dependent and speaker independent case, with interferer

signals obtained from a range of relevant environments. As

the performance of speech enhancement strongly depends on

the trade-off between source distortion and source confusion,

we give insights on how to balance the two effects for

optimal enhancement results. We also discuss design choices

regarding feature extraction, dictionary learning, enhance-

ment and resynthesis.

For the purpose of evaluating the performance of our

enhancement approach, an environment specific interferer

dictionary was trained for each interferer class. The ability of

an interferer dictionary to generalize to signals from another

interferer class is not evaluated, as environment specific

interferer observations are assumed to be obtainable during

speech pauses (as discussed in Sec. I).

A. Data

Speech data is obtained from the GRID2 audio-visual cor-

pus, which provides a total of 34 speakers of both genders.

2http://www.dcs.shef.ac.uk/spandh/gridcorpus/
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We have used the audio data of 15 male and 15 female

speakers in our experiments. For each speaker, the corpus

contains 1000 sentences of a simple grammatical structure

without high-level linguistic cues, for instance “Place green

at B 4 now” [5].

As non-stationary interferer data, we used location record-

ings made in the following environments: classical piano

music replayed in a living room, street traffic noise and wind

noise of an exposed microphone, all obtained from a pro-

prietary corpus. Furthermore, obtained from the NOISEX-92

corpus [35]: speech babble noise, machine noise in a factory

and engine and tire noise in a Volvo car. As a maximally

unstructured and non-sparse interferer, synthetic zero-mean

Gaussian white noise was used as well. Both the speech and

the interferer data was sampled down to 16 kHz.

Dictionary learning as well as parameter optimization for

dictionary learning and speech enhancement was performed

on a training and a test data set. Final enhancement perfor-

mance is reported on a separate validation set. In the speaker

independent case, the speech dictionary was trained on six

male and six female speakers of the training set, and the

enhancement performance was averaged over the validation

data of three male and three female speakers of the validation

set. In the speaker dependent case, a dictionary was inferred

on training data for each speaker of the validation set, and

the enhancement performance was established on separate

validation data of that speaker. The final results are reported

as the average performance over all validation speakers. This

procedure guarantees that the enhancement performance

is established on the same validation data in the speaker

dependent and independent case.

For the speech data, splitting was performed on a file-

by-file basis. For the interferer data, the recordings were

each split into three disjoint segments for training, test and

validation, and an interferer specific dictionary was trained

for each interferer class on the respective training data.

B. Performance Measures

Speech enhancement algorithms aim to improve both the

speech quality and the speech intelligibility. A high-quality

speech signal is perceived as being natural and pleasant to

listen to, and free of distracting artifacts. However, measur-

ing speech quality is challenging, as it is subjective. Speech

intelligibility on the other hand is measured by word error

rates in a speech recognition scenario. Good speech quality

does not necessarily imply good speech intelligibility, and

vice-versa. For instance, low quality synthesized speech can

be highly intelligible.

We report results measured in the frequency-weighted

segmental SNR (fwSegSNR) and in PESQ scores, which were

shown to correlate well with both subjective speech quality

and subjective speech intelligibility scores [18]. fwSegSNR

is a conceptually simple objective measure, computed on in-

dividual signal frames, and the per-frame scores are averaged

over time. We use the frequency-domain definition of the
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Figure 3. The figure on the left shows a scenario where the transform
domain is tiled using tall and narrow blocks (A). In this case, the blocks are
overlapped and shifted only on the time axis, since the frequency axis is
fully covered by each block. The figure on the right shows a scenario where
tiling occurs using a short and wide block (B). In this case, the blocks are
overlapped and shifted both on the frequency and the time axis. For the
same number of bins, a tall and narrow block favors spectral information,
whereas a short and wide block favors temporal dynamics of the signal.

measure, incorporating a perceptually motivated frequency-

band weighting as well as frequency-band spacing.

Given the true and estimated speech magnitude spectra,

the frequency-weighted segmental SNR is defined as

10

Nw̄

N
∑

n=1

B
∑

b=1

wb log10
|S (b, n) |2

(

|S(b, n)| − |Ŝ(b, n)|
)2 (14)

where S (b, n) is the frequency-domain representation of the

clean speech signal, for frequency band b and time frame

n, Ŝ(b, n) is the frequency-domain representation of the

estimated speech signal, N is the total number of frames, B
is the total number of frequency bands, wb is the weight of

frequency-band b and w̄ =
∑B

b=1 wb. The frequency-band

weights wb are based on the articulation index [16]. We use

the Matlab implementation provided by [16].

The computation of PESQ scores is considerably more

involved, the details are given in [25]. The performance

results expressed in PESQ scores are available from the

authors’ website. We again use the Matlab implementation

provided by [16].

C. Feature Space

Speech enhancement was performed in the STFT magni-

tude domain and the MDCT domain. The MDCT is a real

valued transform that includes phase information, for the

STFT we only consider the magnitude and omit the phase,

which implies that (2) holds only approximately in this case.

Other representations could be chosen, as long as the feature

extraction is (approximately) linear and the distance function

is perceptually meaningful and mathematically tractable. We

have found the ℓ2 distance to correlate quite well with

perceptually motivated measures for our choice of feature

spaces.

The number of frequency bins per frame is determined

by the length of the time-domain analysis window, where a
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Hamming window was chosen for the STFT and a Kaiser-

Bessel derived window was chosen for the MDCT. The

temporal smoothness of frames is determined by the time-

domain analysis window overlap, where a minimum amount

of overlap is necessary to avoid aliasing. The transform

domain was tiled in overlapping blocks (see Fig. 3), where

the block height specifies the number of frequency bins, and

the block width specifies the number of consecutive frames.

A tall and narrow block (A in Fig. 3) captures more of

the harmonic content, whereas a short and wide block (B

in Fig. 3) captures more of the temporal dynamics. The

final feature space for dictionary learning and enhancement

is based on vectorized blocks.

As discussed in Sec. IV, estimating the clean speech from

the mixture is possible if the speech dictionary is coherent

to the target and incoherent to the interferer. Maximizing the

coherence of the dictionary to its signal class is more easily

achieved in a low dimensional feature space, i.e. a short

analysis window or short block height and a single analysis

frame per block. For structured signals, this results in low

source distortion even for very sparse codings. Conversely,

maximizing the incoherence of the dictionary to all other

signal classes requires a high dimensional feature space. This

minimizes source confusion and is achieved by increasing

the block height, block width or both.

We have investigated analysis window lengths of up to 64

ms, and used a constant analysis window shift of 10 ms. The

block height was varied from 8 frequency bins to full height,

and the block width was varied from two to 64 frames. The

resulting feature space dimensionality varied from 512 up to

2048 dimensions.

D. Dictionary Learning

An iterative dictionary learning algorithm is specified by

the sparse coding algorithm, the dictionary update method

and the choice of the initial dictionary. We used LARC

(algorithm 2) as the sparse coding method, and the com-

putationally efficient approximate SVD atom update step

(algorithm 3) of [28]. Since the interferer properties are not

known in advance, a dictionary learning algorithm where

the sparsity parameter had to be tuned would be unsuitable.

Specifying the desired coding sparsity using the residual

coherence threshold µdl has the advantage over a fixed

coding cardinality K that incoherent signal frames (such as

background noise in the speech corpus) are rejected, and

has the advantage over setting a residual noise variance

σ that adaptation to the energy distribution of the signal

is not necessary. We have investigated residual coherence

thresholds from 0.2 to 0.6 for the sparse coding step.

We evaluated two initialization methods: the atoms of

the initial dictionary were either sampled uniformly on the

unit hypersphere, or obtained by re-sampling the training

data. The first method generates an initial dictionary that is

not adapted to the training data at all, whereas the second

method results in atoms which are overly adapted to single

observations. We have consistently observed that the latter
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Figure 4. Generalization performance of speaker independent (solid black)
and dependent (dashed red) dictionaries on validation data (D = 560), for
dictionary sizes of L = 200, 500 and 1000 atoms. Better performance
can be achieved in the speaker dependent case, which is indicated by a
faster decay of the median residual norm. Increasing the number of atoms
improves coherence of the dictionary to its signal class in both cases.

sampling scheme leads to significantly faster convergence

and better generalization performance than random initial-

ization of the dictionary.

The algorithm approximately converged after twenty iter-

ations of coding and dictionary updates.

1) Speech Dictionary: Both for the speaker dependent

and independent case, the training utterances were randomly

sub-sampled on a file and block level to obtain five minutes

of clean speech. We have trained dictionaries containing

up to 2000 atoms. Fig. 4 illustrates the generalization

performance of the speech dictionary, measured by the

residual norm versus coding cardinality curve, in the speaker

independent and dependent case. Increasing the dictionary

size leads to lower residual norm for a given cardinality,

with diminishing returns for larger dictionaries. Furthermore,

better coherence of the dictionary to the signal class is

achieved in the speaker dependent case, where the 200 atom

dictionary outperforms the 1000 atom speaker independent

dictionary. This is to be expected, given the greater spectral

variation induced by the different genders in the speaker

independent case.

2) Interferer Dictionary: We have trained dictionaries on

a consecutive 30 second segment for each interferer. The

algorithm parameters were identical for all interferers, and

set to the same values as in speech dictionary learning.

Plotting the generalization performance (see Fig. 5) reveals

the amount of structure present in each interferer class.

Compared to unstructured Gaussian white noise, a rapid

decay of the median residual norm is achieved for car

noise and piano music, indicating that there is prominent

structure which is effectively modeled by a coherent trained

dictionary. The generalization performance of the interferer

dictionary is also predictive for the overall speech enhance-

ment performance (see Sec. VI-E): a larger improvement
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Figure 5. Generalization performance of interferer dictionaries (L = 2000)
on validation data (D = 560), for babble, piano, car and white noise
interferers (all having the same average power). The rate of decay of the
median residual norm, in comparison to Gaussian white noise, indicates the
amount of structure present in the signal which is amenable to dictionary
learning.

is achieved both for highly structured and unstructured

interferers, whereas a smaller improvement is achieved for

the speech babble interferer, which contains an intermediate

amount of structure that is partially coherent to the speech

signal.

E. Speech Enhancement

The enhancement performance of all methods are eval-

uated using synthetic mixtures, which are generated by

linear additive mixing of clean speech and interferer signals

in the time-domain at various speech to interferer power

ratios (SIRs). For the computation of the SIR, the signals

were pre-processed with an A-weighted filter, in order to

model the auditory sensitivity to different frequencies. An

improvement is deemed significant if the median fwSegSNR

value given the enhanced and the clean speech is above the

75th percentile of the fwSegSNR value given the degraded

and the clean speech.

For the STFT domain, the speech magnitude estimate can

be combined with the mixture phase, or the speech and

interferer magnitudes provide estimates of the instantaneous

a-priori and a-posteriori SNR, from which a suppression

rule can be derived for filtering the mixture magnitude. We

used the suppression rule of (12) in our experiments both

for codebook-based filtering and our proposed algorithm,

which enables a direct comparison with geometric spectral

subtraction. Binary masking or Wiener filtering would be

other options.

For all interferers and at all mixture SIRs that were tested,

enhancement in the STFT magnitude domain significantly

outperformed enhancement in the MDCT domain. Although

(8) only holds in approximation for the STFT magnitude

domain, and resynthesis of the time domain signal relies

on the degraded mixture phase, the additional complexity
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Figure 6. Enhancement performance in the speaker independent case
at three different signal-to-interferer ratios (SIR), for seven different
interferers, speech babble (bab), factory noise (fct), piano music (pno),
street noise (str), engine and tire noise (vlv), wind noise (wnd) and
Gaussian white noise (wht). GA denotes geometric spectral subtraction, VQ

denotes codebook-based filtering, DL denotes our method and X denotes the
objective measurement before any enhancement. The median fwSegSNR
value is denoted by the filled bar, while the whisker denotes the 75th
percentile of the distribution of fwSegSNR values.

of modeling phase information in the MDCT proved to

have a greater negative impact on enhancement performance.

We, therefore, only report detailed results for the STFT

magnitude features.

In Fig. 6, X denotes the fwSegSNR value given the

degraded speech and the clean speech, i.e. the objective mea-

surement before any enhancement. Note that the fwSegSNR

measure is sensitive to the spectral characteristics of each

interferer class. This sensitivity explains the fact that for a

fixed mixture SIR (e.g. 10 dB), the frequency-weighted seg-

mental SNR shows different values for different interferers.

Furthermore, GA denotes geometric spectral subtraction, VQ

denotes codebook-based filtering using a linear combination
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of exactly one atom from the speech dictionary and one

atom from the interferer dictionary (see Sec. V-B), and DL

denotes our method.

The codebook size and the dictionary size were set to

L = 1000 atoms each for the speech and the interferer

dictionary. For dictionary learning, the residual coherence

threshold µdl was set to 0.2 for all dictionaries. µenh during

enhancement was set to 0.15 and 0.1 in the speaker depen-

dent and independent case, respectively. Both in the speaker

dependent and speaker independent case, the maximum anal-

ysis window length (64 ms), full block height and maximum

feature space dimensionality (2048) was optimal for VQ and

DL. Given the range of block heights and widths that were

tested, spectral information proved to be more important than

temporal dynamics, i.e. tall and narrow blocks led to better

results than short and wide blocks (for the same feature space

dimensionality). Further analysis did show that although

coherent dictionaries can also be trained for wide blocks, tall

blocks result in smaller confusion error, which implies that

all else being equal, the speech contribution to the mixture

can be better distinguished from the interferer contribution

based on spectral than based on temporal information.

We have also evaluated a variant of our method where

only the speech dictionary (instead of the composite dictio-

nary) was used in the enhancement step. As expected from

the discussion in sections IV-A and IV-B, a significant im-

provement was only achieved for the white noise interferer,

therefore we omit detailed results.

In the speaker independent case (Fig. 6), DL significantly

outperforms the comparison methods in all interferer sce-

narios at 10 dB and 5 dB SIR, and in 5 out of 7 interferer

scenarios at 0 dB SIR. Our method achieves a median

fwSegSNR gain of 3.6 dB at 10 dB SIR, a median gain

of 3.8 dB at 5 db SIR, and a median gain of 3.2 dB at 0 dB

SIR. In the case of lightly degraded speech (10 dB SIR),

DL achieves a significant improvement for all interferer

scenarios, whereas GA and VQ can introduce strong artifacts

which further degrade the mixture signal. Note that our

method shows the highest gain for the piano and the white

noise interferer. This gain is explained by the fact that the

piano interferer is very structured, which enables the learning

of a good interferer model. On the other hand, the white

noise interferer is unstructured and incoherent to speech, and

is thus disregarded by LARC coding.

In the speaker dependent case (for detailed results, see

the authors’ website), both DL and VQ achieve higher

performance gains than in the speaker independent case. This

is due to the fact that speaker dependency allows for a more

coherent speech dictionary (cf. figure 4). At 10 dB SIR,

DL achieves a median performance gain of 4.8 dB, where

at 5 db SIR a median gain of 5.2 dB and at 0 dB SIR a

median gain of 4.6 dB is achieved. The performance increase

from VQ to DL is smaller in the speaker dependent case,

because less source distortion is introduced by the maximally

sparse coding when the codebook is more coherent to the

speech source. However, the increase from VQ to DL is still

significant in all interferer scenarios at 10 dB and at 5 dB

SIR, and in four out of seven scenarios at 0 dB SIR.

Spectrograms and example audio clips of clean speech,

degraded speech, and enhanced speech are available from

the authors’ website.

VII. CONCLUSIONS

We have presented an enhancement method for speech

degraded by non-stationary real-world interferer signals.

Our method is based on learning speech and interferer

signal models, and achieves significant improvements over

geometric spectral subtraction and codebook-based filtering,

both for light and considerable degradation of the clean

speech signal.

We model the speech signal class and the interferer

signal classes using learned dictionaries. An observation of

degraded speech is enhanced by coding it in a composite

dictionary, followed by separating the contributions to the

observed mixture into a speech and an interferer contribu-

tion, based on the sparse coding weights. For this purpose we

introduced LARC, a coding algorithm based on Least Angle

Regression, which employs a residual coherence threshold

as the sparsity parameter. In contrast to specifying a coding

cardinality or a residual norm value, it is not necessary to

adapt the residual coherence threshold to the data on a frame

by frame basis. Controlling the coding sparsity enables a

trade-off between source distortion and source confusion,

i.e. controlling the amount of speech degradation versus

interferer intrusion in the enhanced speech signal.

For high-dimensional feature spaces, the trained dictio-

nary matrices contain millions of entries. The use of para-

metric functions for the dictionary atoms could reduce the

size of the dictionary to a small number of parameters per

atom [2]. This approach promises the possibility to handle

larger dictionaries due to fewer model parameters, as well

as enabling more efficient coherence computations if the

parametric form has special structure, such as the Gabor

atoms for which the coherence can be computed efficiently

using the fast Fourier transform. Furthermore, the signal

models could be extended to include a more descriptive prior

probability distribution over the coding coefficients beyond

independent sparsity priors, which would reduce the source

confusion risk during enhancement.
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