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ABSTRACT

The enhancement of speech degraded by non-stationary in-
terferers is a highly relevant and difficult task of many sig-
nal processing applications. We present a monaural speech
enhancement method based on sparse coding of noisy speech
signals in a composite dictionary, consisting of the concatena-
tion of a speech and interferer dictionary, both being possibly
over-complete. The speech dictionary is learned off-line on a
training corpus, while an environment specific interferer dic-
tionary is learned on-line during speech pauses. Our approach
optimizes the trade-off between source distortion and source
confusion, and thus achieves significant improvements on ob-
jective quality measures like cepstral distance, in the speaker
dependent and independent case, in several real-world envi-
ronments and at low signal-to-noise ratios. Our enhancement
method outperforms state-of-the-art methods like multi-band
spectral subtraction and approaches based on vector quanti-
zation.

Index Terms— Speech Enhancement, Dictionary Learn-
ing, Sparse Coding, Source Separation.

1. INTRODUCTION

Enhancing speech degraded by interferers is an important task
for many signal processing applications, including hearing
aids, mobile communications and speech recognition [1]. The
difficulty arises from the nature of real-world interferers that
are often non-stationary and potentially speech-like, thereby
inducing a significant and variable spectral overlap between
speech and interferer. Furthermore, the class of possible in-
terferer signals shows high variability, and interferers are typ-
ically a superposition of several sources, requiring a compre-
hensive interferer model to be prohibitively complex.

The goal of speech enhancement is to improve both the
intelligibility and the quality of speech, by attenuating the
interferer without substantially degrading the speech. As a
substitute to perform subjective listening tests, objective mea-
sures like cepstral distance [1] quantify quality improvement
by comparing the (unobserved) clean speech with the noisy
speech and the enhanced speech in a perceptually meaningful
way.

This work was in part funded by CTI grant 8539.2;2 ESPP-ES.

We consider the setting of a one-to-one conversation in a
natural environment, recorded by a single microphone. This
setup results in a linear additive mixture of clean speech and
interferer. The clean speech is not directly observable, the
interferer signal however is observed during speech pauses.
Therefore, we learn a speech model on a training corpus. This
approach is justified because speech has limited variability,
and a pre-trained model remains largely valid during enhance-
ment. The contrary is true for the interferer, for which learn-
ing and adaptation is hence performed during every speech
pause, resulting in a model that is specific to the current envi-
ronment.

What follows is a high-level overview of our method,
which is described in detail in Section 2. Our enhancer is im-
plemented in the short-time Fourier transform (STFT) magni-
tude domain. Assuming that the phase of the interferer can be
approximated with the phase of the mixture (common in the
derivation of spectral subtraction algorithms [1]), linear addi-
tivity holds in the STFT magnitude domain, too. A possibly
over-complete dictionary of atoms is trained for both speech
and interferer magnitudes (Section 2.1), which are then con-
catenated into a composite dictionary. In the enhancement
step (Section 2.2), an observation of noisy speech is sparsely
coded in the composite dictionary. As a result, the mixture
of speech and interferer is explained by a sum of a linear
combination of atoms from the speech dictionary and a linear
combination of atoms from the interferer dictionary. The
clean speech magnitude is estimated by disregarding the con-
tribution from the interferer dictionary, preserving only the
linear combination of speech dictionary atoms (analogously
for the interferer). Finally, a Wiener-like filter (Section 2.2) is
constructed from the estimated magnitudes and applied to the
mixture magnitude, to obtain an estimate of the clean speech
magnitude. This estimate is combined with the phase of the
mixture to re-synthesize the time domain signal.

As will be explained in Section 2.2, speech and inter-
ferer magnitude estimation errors result from two different
and competing effects. A too sparse coding of the speech
induces an approximation error, which we denote by source
distortion. A too dense coding avoids source distortion, but
causes source confusion, by explaining some of the speech
magnitude using interferer atoms (analogously for the inter-
ferer, for both effects). A vector quantization (VQ) based



enhancer explains the mixture magnitude using at most one
atom from the speech dictionary and one atom from the in-
terferer dictionary. This restriction introduces a significant
source distortion and thereby substantial magnitude estima-
tion error. Results of Section 4 demonstrate that a better
trade-off between source distortion and source confusion is
achieved with a linear combination of several atoms per dic-
tionary, explaining the superior enhancement performance of
our method.

2. METHOD

We consider a signal x ∈ R
D and a dictionary D =[

d(1) · · · d(L)

] ∈ R
D×L consisting of L unit-norm atoms,

‖d(l)‖2 =1, l = 1, . . . , L. A sparse coding c ∈ R
L of sig-

nal x in dictionary D defines a sparse linear combination of
K � L atoms, such that the approximation error ‖x−Dc‖2

is “sufficiently small”. The observation that speech and other
structured signals can be well approximated by few atoms
of a suitably trained dictionary [2] lies at the core of our
enhancement algorithm.

2.1. Dictionary Learning

Dictionary learning adapts an initial dictionary to a specific
signal class (e.g. speech). It is the generalization of code-
book learning for VQ [3]. Instead of representing a signal by
a single codebook vector, it is represented by a linear combi-
nation of dictionary atoms. Learning the dictionary is crucial
for successful enhancement, where speech must have a sparse
representation in the speech dictionary, but not in the inter-
ferer dictionary (i.e. the dictionaries must have low mutual
coherence, see Section 2.2). Constructive dictionaries that are
not signal class specific do not satisfy this requirement.

Dictionary learning is the matrix factorization of a data
matrix X =

[
x(1) · · · x(N)

] ∈ R
D×N into a dictionary D

and a coding C =
[
c(1) · · · c(N)

] ∈ R
L×N , given by

argmin
D,C

‖X−D ·C‖2F , (1)

subject to a sparsity constraint on C and the unit norm con-
straint on D. ‖ · ‖F denotes the Frobenius norm.

Matrix factorization is a difficult problem, since the joint
optimization of D and C is non-convex. Iterative solvers
yield locally optimal solutions, by alternating between opti-
mizing the coding and the dictionary. We use the kSVD algo-
rithm of Aharon et al. [3], implemented in Matlab by kSVD-
Box1. On-line dictionary learning algorithms also exist [4].
The two steps of kSVD are as follows.

Coding update. For each column c(n), n = 1, . . . N ,
perform orthogonal matching pursuit (OMP) regression with

1http://www.cs.technion.ac.il/~ronrubin/software.html

approximation parameter σ,
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Dictionary update. For each column d(l), l = 1, . . . , L,
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where c[j] is the j-th row of C.
The residual norm is minimized w.r.t. d(l) and c[l] using

the SVD. Define R̃(l) as the set of columns ofR(l) indexed by{
n|c[l](n) �= 0, 1 ≤ n ≤ N

}
where atom d(l) was involved

in the coding. Compute the SVD

R̃(l) = UΣV�, (6)

and updated(l) as the first column ofU, and c[l] as Σ1,1 times
the first row of V�.

2.2. Enhancement

As discussed in the introduction, we assume that the observed
noisy speech magnitude is the linear additive mixture x =
s+ i of clean speech magnitude s ∈ R

D and interferer magni-
tude i ∈ R

D. The goal of the enhancement step is to obtain an
estimate ŝ of clean speech and an estimate î of the interferer,
given x, a speech dictionary Ds ∈ R

D×Ls and an interferer
dictionary Di ∈ R

D×Li . For the formal analysis, we dis-
tinguish between unstructured and structured interferers (e.g.
Gaussian white noise and background music, respectively),
and make use of two results from sparse coding theory to en-
hance noisy speech in the presence of both. Due to space
constraints, we omit detailed references, they can be found in
chapters 11 and 12 of [2].

Unstructured interferer. An interferer is unstructured if
it cannot be sparsely coded in any fixed dictionary, in partic-
ular not in Ds. The coding of a mixture x in Ds therefore
distributes the energy of the unstructured interferer contribu-
tion over all atoms of Ds. OMP coding (eq. 2) of a mixture
of speech and Gaussian white noise, with σ set to the noise
standard deviation, correctly recovers the atoms in Ds which
were responsible for the speech contribution to the mixture.
This provides an accurate estimate ŝ of the clean speech.

Structured interferer. An interferer is structured if it can
be sparsely coded in a suitable dictionaryDi. Define the com-
posite dictionary D = [Ds Di] as the concatenation of the



speech and interferer dictionaries. The mixture x is coded in
D using LASSO regression

argmin
c

||x−Dc||2 (7)

= arg min
cs,ci

∥∥
∥
∥x− [Ds Di]

[ cs

ci

]∥∥
∥
∥
2

(8)

subject to
||c||1
||x||2 ≤ θ, (9)

with aptly chosen sparsity parameter θ (division by ||x||2 nor-
malizes variable signal gain), where cs ∈ R

Ls and ci ∈ R
Li .

We estimate the clean speech as ŝ = Dsc
s, and the inter-

ferer as î = Dic
i. Lasso regularizes c by the penalty ‖c‖1,

which produces more stable speech and interferer estimates
than OMP regression with the penalty ‖c‖0. OMP codings
can have large weights of opposite sign, which become ap-
parent when separating the coding c into cs and ci.

The estimation errors ‖s − ŝ‖2 and ‖i − î‖2 are small
if s and i in fact can be sparsely coded in their respective
dictionaries, and if Ds and Di have low mutual coherence

μ(Ds,Di) = max
1≤p≤Ls,1≤q≤Li

∣
∣∣ds�

(p)d
i
(q)

∣
∣∣ , (10)

where ds
(p) is the p-th atom of Ds. If an exact speech coding

c̃s exists, i.e. s = Dsc̃
s (analogously for the interferer), and

the exact recovery condition (ERC)

‖c̃s‖0 + ‖c̃i‖0 <
1

2

(
1 +

1

μ(Ds,Di)

)
(11)

is fulfilled, the LASSO coding c explains s using only atoms
from Ds, and i using only atoms from Di.

Because real-world interferers might not allow for a suffi-
ciently sparse coding, and because they can have speech like
properties increasing the mutual coherence, the ERC might
not be satisfied. As a consequence, a too dense coding of x
in D introduces source confusion, explaining some of the en-
ergy in s using atoms from Di (analogously for i). On the
other hand, a too sparse coding of x in D, although avoid-
ing source confusion, increases source distortion by coding s
with too few atoms of Ds (analogously for i). We have ob-
served empirically that both effects contribute to estimation
errors ‖s− ŝ‖2 and ‖i− î‖2, and that the minimum is attained
by a trade-off between both effects.

Varying the sparsity of c (with LASSO parameter θ) con-
trols the trade-off between source confusion and source dis-
tortion. By choosing the optimal θ∗, our method lowers the
source distortion significantly more than increasing the esti-
mation error due to source confusion. In contrast, the VQ
based enhancer selects only one atom per dictionary, resulting
in small source confusion, but significant source distortion.

Wiener-like filtering. A filter constructed from ŝ and î
is applied to the mixture x, to obtain the final clean speech
magnitude estimate

sw = ŝ� (ŝ + î)⊗ x, (12)

where � and ⊗ denote element-wise division and multiplica-
tion. Note that if ŝ, î and x were power spectra, (12) would
correspond to a Wiener filter. Finally, sw is combined with
the mixture phase to re-synthesize the time-domain signal.

3. RELATED WORK

We compare our method to two established speech enhance-
ment approaches, VQ based enhancement and multi-band
spectral subtraction. Srinivasan et al. [5] pre-train short-term
linear prediction codebooks for speech and interferer signals.
They avoid the full complexity of considering all pairs of an
element from the speech codebook with an element of the
noise codebook by an iterative element selection strategy. For
our evaluation, we implemented a VQ based enhancer that
shares the same pipeline as our method, but chooses one atom
from the speech dictionary and one atom from the interferer
dictionary only, using a greedy selection strategy.

We also compare our method to multi-band spectral sub-
traction, using the implementation of [1]. This state-of-the-
art method achieves equal or better subjective listener rat-
ings [1] than many other approaches (e.g. subspace methods
and statistical model based methods). Spectral subtraction
only models the interferer, by averaging the interferer mag-
nitude spectrum during a speech pause. However, estimating
only average interferer magnitude limits enhancement perfor-
mance, because the interferer contribution to the mixture at
some point in time can deviate significantly from the average.

Our work has conceptual similarities to the single-channel
speaker separation approach of Schmidt and Olsson [6],
where the authors used sparse non-negative matrix factor-
ization (sNMF) to train speaker dependent dictionaries, and
separated an anechoic mixture of two speakers by sNMF cod-
ing in the concatenated dictionary. We show that the same
fundamental idea can be successfully extended to speech
enhancement, and complement it by providing insight into
the conditions for enhancement in real-world environments,
where the theoretical guarantees of the ERC don’t hold.

4. EVALUATION

We predict in Section 2.2 that our method achieves a better
source distortion and confusion trade-off than VQ based en-
hancement. This translates into significantly higher quality
improvements, quantified by the cepstral distance measure on
validation data. In addition, we provide baseline results of the
multi-band spectral subtraction enhancer. Example spectro-
grams, audio clips and results for additional objective mea-
sures are available on the web2.

As speech data, we use recordings from the Grid cor-
pus3. As non-stationary interferers, four recordings taken in

2http://www.inf.ethz.ch/personal/chrsigg/icassp2010
3http://www.dcs.shef.ac.uk/spandh/gridcorpus/
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Fig. 1. Objective quality improvements, measured by the difference of cepstral distance of noisy to clean speech, and the
cepstral distance of enhanced to clean speech. We compare our method in the speaker dependent (DL d) and independent case
(DLi) to VQ based speaker independent enhancement (VQ i) and spectral subtraction (SP). Filled bars denote median cepstral
distance improvements, error bars denote 25% quantiles for negative and 75% quantiles for positive improvements.

real-world environments are used: speech babble and clatter
noise in a bar, engine and tire noise in a car, classical piano
music replayed indoors, street traffic noise, and white noise
as a maximally non-sparse interferer. The data is randomly
split into train, test and validation sets, using a 9:3:3 ratio.
The speaker dependent experiment uses one male speaker,
the speaker independent experiment uses 30 speakers of both
genders. The time-domain signals are transformed into STFT
frames (D = 129). Mixtures are synthetically generated by
adding clean speech and interferer at various SNRs, since ob-
jective measures require access to the clean speech signal.

Dictionaries are trained using kSVD, initialized with
atoms sampled uniformly on the unit sphere. The optimal
parameter σ∗ (eq. 3) for each dictionary size L is determined
on test data. For the enhancement, the optimal combination
of dictionary sizes L∗

s and L∗
i , as well as the optimal sparsity

parameter θ∗ at a given SNR, is again determined on test data.
Enhancement performance is measured by the difference

of cepstral distance [1] of noisy to clean speech, and the cep-
stral distance of enhanced to clean speech. A positive im-
provement implies a reduction of cepstral distance, and a neg-
ative improvement implies that artifacts introduced by the en-
hancer degrade the noisy speech even further. Figure 1 re-
ports the performance of our method in the speaker dependent
(DLd) and speaker independent case (DL i), compared to VQ
based speaker independent enhancement (VQ i) and spectral
subtraction (SP). Both DLd and DLi significantly outper-
formVQi and SP at +12dB and +6dB SNR. At 0dB SNR, the
median quality improvement of DL i compared to VQi is less
significant for street traffic and white noise, as source confu-
sions become increasingly likely.

5. CONCLUSION

We presented a speech enhancement method based on sparse
coding in learned dictionaries. The method integrates key re-

sults from the dictionary learning and sparse coding literature,
to provide effective enhancement of speech in the presence of
real-world non-stationary and potentially speech-like interfer-
ers. Our method explicitly optimizes the source distortion and
source confusion trade-off, which translates into significantly
higher quality improvements than highly competitive VQ and
state-of-the-art multi-band spectral subtraction enhancers.

Currently, the speech and interferer contributions to the
signal mixture are estimated by maximum-likelihood. We
plan to develop a fully Bayesian framework by introducing
suitable prior distributions on speech and interferer codings.
Furthermore, incorporating the visible dynamics of speech
production could provide valuable side information for fur-
ther improving performance in very low SNR situations.
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